北师大版高中数学2-2第二章变化率与导数-导数的概念与导数的几何意义习题课课件73324
高中数学第二章变化率与导数2.2导数的几何意义2.2.2导数的几何意义课件北师大版选修2_2

=
4������,
得k=f'(x0)=4x0.
根据题意 4x0=8,x0=2,代入 8x-y-15=0 得 y0=1.
故所求切点为 P(2,1),a=2x02 − ������0 = 7.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
f'(x0)=
lim
Δ ������ →0
������y ������x
=
������������������
������x →0
[2(������+������)2-������]-(2������2-������) ������
=
lim (4������
Δ ������ →0
+
2������)
y=
1 2
������
+
2,
则������(1) + ������′(1) =
.
解析:由导数的几何意义得
f'(1)=
1 2
,
由点M
在切线上得
f(1)=
1 2
×
1
+
2
=
5 2
,
所以f(1)+f'(1)=3.
答案:3
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
D 典例透析 IANLI TOUXI
A.f'(x0)=2
B.f'(x0)=-2
C.f'(x0)=1
D.f'(x0)不确定
答案:A
M 目标导航 UBIAODAOHANG
北师大版高中数学选择性必修2第2章2.1导数的概念及其几何意义课件

谢
聆
听
(环节五)目标检测
1.已知函数f(x)的图象如图所示,‘ 是f(x)的导函数, 2.如图,函数y=f(x)的图象在点P处的
5+∆ − 5
切线方程是y=-x+8,则 lim
=(
则下列结论正确的是(
)
∆
A. 0 < ′ 1 < ′ 3 <
C. 0 < ′ 3 < ′ 1 <
3 − 1
能帮助我们解决哪些与切线相关的问题?
以 = 2 为例
4
瞬时变化率
y
3
2
切线斜率
1
–4
切线方程
–3
–2
–1
O
–1
–2
–3
–4
1
2
3
4
x
(环节三)应用拓展
例5:图5.1-7是人体血管中药物浓度c=f(t)(单
位:mg/mL)随时间t(单位:min)变化的函数图
象,根据图象,估计t=0.2,0.4,0.6,0.8min时,
1.(1)求曲线 = −2 2 + 1在 1, −1 处的切线方程.
1
2
3
2
(2)求曲线 = 2 − 2在点(1, − )处切线的倾斜角.
(3)课本71页第10题
B组 思考 运用
2.(1)课本71页第11,12题
(2)阅读•理解:收集有关微积分创建的时代背景和牛顿、莱布尼兹的资料.
谢谢大家!
B.f(x)的递减速度越来越快,g(x)的递减速度越来越慢,h(x)的递减速度越来越快
C.f(x)的递减速度越来越慢,g(x)的递减速度越来越慢,h(x)的递增速度越来越慢
北师大版高中数学选择性必修第二册2.2 导数的概念及其几何意义【课件】

点A
线l为曲线y=f(x)在________处的切线.
要点四 导数的几何意义
函 数 y = f(x) 在 x0 处 的 导 数 , 是 曲 线 y = f(x) 在 点 (x0 , f(x0)) 处 的
切线的斜率
_____________.
函数y=f(x)在[x0,x0+Δx]的平均变化率为 ,它是过A(x0,f(x0))和
∆
斜率
B(x0+Δx,f(x0+Δx))两点的直线的________,这条直线称为曲线y=
f(x)在点A处的一条割线.
要点三 切线的定义
点A
当Δx趋于零时,点B将沿着曲线y=f(x)趋于________,割线AB将绕
Δy 2 Δx 2 +16Δx
∴ =
=2Δx+16.
Δx
Δx
Δy
当Δx趋于0时, =16,∴f′(3)=16.
Δx
题型三 求曲线在某点处的切线方程
1 3 4
例3 已知曲线C:y= x + ,求曲线C上的横坐标为2的点处的切
3
3
线方程.
解析:将x=2代入曲线C的方程得y=4,
∴切点P(2,4),
Δy
要点一 导数的概念
设函数y=f(x),当自变量x从x0变到x1时,函数值y从f(x0)变到f(x1),
−
∆
+∆ −(0 )
−
函数值y关于x的平均变化率为 =___________=
.
∆
∆
固定的值
当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个____________,
北师大版高中数学选修2-2:第二章 变化率与导数 复习课件

g
(
x)
(
g
(
x)
0)
当点Q沿着曲线无限接点
P即Δx→0时,割线PQ如果有一
个极限位置PT。则我们把直线
y
PT称为曲线在点P处的切线。
设切线的倾斜角为α,那 么当Δx→0时,割线PQ的斜率, 称为曲线在点P处的切线的斜 率。
P o
即: k切线
f
' ( x0 )
lim
x0
y x
练习3:求下列函数的导数。
12 y
x x2
y 1 4 x2 x3
x y
1 x2
y 1 x2
1 x2 2
y tan x
本题可先将tanx转化为sinx和cosx的比值, 再利用导数的运算法则(3)来计算。
y
1 cos2
x
练习4:求曲线
y
9 x
在点M(3,3)处的切线
x)-f(x0),若极限
lim
x0
y x
lim
x0
f
( x0
x) x
f
(x0 )
存在,
则此极限称为f(x)在点 x x0 处的导数,记为
f ’(x0),或 y |xx0 。
2.导函数:如果函数y=f(x)在区间(a,b)内每一点都可导,
就说y=f(x)在区间(a,b)内可导.即对于开区间(a,b)内每
y 3x2 2
练习2:求下列函数的导数。
y x3 sin x cos x y 3 x 2 cos x sin x
y 2sin x cos x 2x2 1 y co s x 4 x
高中数学第二章变化率与导数2.2导数的概念及其几何意义课件北师大选修2_2

=
������(������0
+
������)-������(������0) ������
,曲线割线的斜率就是函数的平均
(2)切线的斜率.
当点B沿曲线趋近于点A时,割线AB绕点A转动,它的最终位置为
直线AD,这条直线AD叫作此曲线在点A的切线.则当Δx→0时,割线
AB的斜率趋近于在点A的切线AD的斜率,即 切线AD的斜率.
1.导数的概念
定义:设函数y=f(x),当自变量x从x0变到x1时,函数值从f(x0)变到
f(x1),函数值y关于x的平均变化率为
������ ������
=
������(������1)-������(������0) ������1-������0
=
������(������0+ΔΔ������������)-������(������0),
当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那
么这个值就是函数y=f(x)在x0点的瞬时变化率,在数学中,称瞬时变
化率为函数y=f(x)在x0点的导数.
计算公式:f'(x)= lim
������ 1 →������ 0
f(xx11)--fx(0x0)=������������x������→������0
§2.2 导数的概念及其几何意义
学习目标
思维脉络
1.通过实例分析,体会由平 均变化率过渡到瞬时变化
率的过程,了解导数概念建 立的背景. 2.理解瞬时变化率的含义, 并知道瞬时变化率就是导
数. 3.会求函数 f(x)在某一点 x0 处的导数. 4.理解导数的几何意义,并 能利用几何意义解决相关
问题. 5.会求与导数相关的切线 问题.
高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义课件 北师大版选

提示:在点x=x0处的导数的定义可变形为f′(x0)=
lx im 0f(x0- 或- xf )′- x (xf0)=x0
lim
f
x
f
x0
.
xx0 x-x0
28
【类题·通】
求一个函数y=f(x)在x=x0处的导数的步骤
(1)求函数值的变化量Δy=f(x0+Δx)-f(x0).
(2)求平均变化率 yf(x0x)fx0.
47
(1)求直线l1,l2的方程. (2)求由直线l1,l2和x轴所围成的三角形的面积.
48
【思维·引】1.设出切点的坐标,利用导数在切点处的 导数值即为切线的斜率求解. 2.(1)利用导数的几何意义求出切线的斜率,进而求出 两直线的方程;(2)解方程组求出两直线的交点坐标, 利用三角形的面积公式求解.
36
【解析】将x=1代入曲线C的方程得y=1,即切点
P(1,1).
因为f′(1)=
limy= lim(1x)313
x x 0
x 0
x
= lim3x3(x)2(x)3
x 0
x
=
l
xi[m30 +3Δx+(Δx)2]=3,
37
所以切线方程为y-1=3(x-1), 即3x-y-2=0.
38
【素养·探】 求曲线在某点处的切线方程通常应用的数学核心素养 是数学运算,一般要根据导数的定义求出函数的导数, 即所求切线的斜率,然后利用直线的点斜式方程求切 线的方程. 本典例中的切线与曲线C是否还有其他的公共点?
59
2.面积问题三类型 (1)曲线的一条切线与两坐标轴围成的图形的面积.此类 问题,只要求出切线方程与两坐标轴的交点,即可计 算.
2.2《导数的概念及其几何意义》课件(北师大版选修2-2)

(2)f′(3)=-4的实际意义是什么?如果f(3)=60(℃),你能
画出函数在点t=3时图象的大致形状吗?
2.已知曲线C:y=x2与定点A(2,3),过定点A与曲线相切的直 线方程为________.
3.求曲线f(x)=x2-x+3在点(1,3)处的切线方程.
∴切线方程为y-1=3(x-1) 即3x-y-2=0. 如图所示 易求得直线x=2与直线3x-y-2=0 的交点为(2,4)
1 2 4 8 (2- ) 4=2 = . 2 3 3 3 8 答案: 3
∴S△=
4.(15分)已知抛物线C1:y1=x2+2x和C2:y2=-x2+a.如果直线l
(A)4
(B) - 1 (C)2 (D) 1 4 2 【解题提示】求y=f(x)在点(1,f(1))处切线的斜率即
求f′(1),可借助g′(1)求解.
【解析】
2.(5分)垂直于2x-6y+1=0且与曲线y=x3+3x2-1相切的直线方 程一般形式为_______.
【解析】直线2x-6y+1=0的斜率为 1 , 3 ∴所求直线的斜率为-3.
课程目标设置
主题探究导学
1.“函数y=f(x)在x=x0处的导数值就是Δ x=0时的平均变化率”.
这种说法对吗?
提示:这种说法不对,y=f(x)在x=x0处的导数值是Δx趋向于
y 0时,平均变化率 无限接近的一个常数值,而不是Δx=0时 x y 的值,实际上,在平均变化率的表达式 中,Δx≠0. x
2.能否认为函数在x=x0处导数越大,其函数值变化就越快? 提示:这种说法不正确.导数的正、负号确定函数值变化的趋 势,其绝对值大小确定变化的快慢.应说导数的绝对值越大, 函数值变化越快,即切线“越陡”.
高中数学 第二章 变化率与导数 2.2.1 导数的概念 2.2.2 导数的几何意义学案(含解析)北师

2016-2017学年高中数学第二章变化率与导数2.2.1 导数的概念2.2.2 导数的几何意义学案(含解析)北师大版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第二章变化率与导数2.2.1 导数的概念2.2.2 导数的几何意义学案(含解析)北师大版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第二章变化率与导数2.2.1 导数的概念2.2.2 导数的几何意义学案(含解析)北师大版选修2-2的全部内容。
2.2。
1 导数的概念2.2。
2 导数的几何意义1.理解导数的概念及导数的几何意义。
(重点、难点)2.会求导函数及理解导数的实际意义。
(重点)3.掌握利用导数求切线方程的方法.(难点)[基础·初探]教材整理1 函数f(x)在x=x0处的导数阅读教材P32“例1”以上部分,完成下列问题。
函数y=f(x)在x0点的瞬时变化率称为函数y=f(x)在x0点的导数,通常用符号f′(x0)表示,记作f′(x0)=错误!错误!=错误!_错误!.设函数y=f(x)可导,则错误!错误!等于()A.f′(1) B。
3f′(1)C.错误!f′(1)D.以上都不对【解析】由f(x)在x=1处的导数的定义知,应选A。
【答案】A教材整理2 导数的几何意义阅读教材P34~P36,完成下列问题.函数y=f(x)在x0处的导数,是曲线y=f(x)在点(x0,f(x0))处的切线的斜率。
函数y =f(x)在x0处切线的斜率反映了导数的几何意义.抛物线y=x2+4在点(-2,8)处的切线方程为________________.【解析】因为y′=错误!错误!=错误! (2x+Δx)=2x,所以k=-4,故所求切线方程为4x+y=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.02.2021
练习 3.⑴如图已知曲线 y 1 x3 上的一点 P( 3 , 9) ,
3
28
求点 P 处的切线方程.
解:∵
y
x2 ,∴
y
|
x
3
2
9. 4
即点 P 处的切线的斜率等于 9 . 4
∴在点 P 处的切线方程
是 y 9 9(x 3) , 84 2
x03
x02 (1
x0 ) 化简得
2 3
x03
x02
0
解得
x0
0或
x0
3 2
①当 x0 0 时,所求的切线方程为:y=0;
②当
x0
3 2
时,所求的切线方程为:
y
9
9
(
x
3 )
,
84 2
即 9x 4 y 12 0
注:过一2点5.02的.202切1 线与一点处的切线是有区别的
能力练习:
1.过点 (1, 0) 作抛物线 y x 2 x 1的切线,则其中一条切线
f ( x0 ) 0 ,
f ( x0 )
1 ,则 lim
2
△x0
f ( x0 3△x) △x
___ .
2
25.02.2021
1.过点 (1, 0) 作抛物线 y x2 x 1的切线,则其中一条切线为( )
(A) 2x y 2 0 (B) 3x y 3 0 (C) x y 1 0 (D) x y 1 0
⑵直线运动的物体位移 s 与时间 t 的关系是
C s t2 2t 3, 则它的初速度为( )
(A)0 (B)3 (C) 2
(D)1
练习 3.⑴如图已知曲线 y 1 x3 上的一点 P( 3 , 9) ,求点
. 3
28
P 处的切线方程. 9 x 4 y 12 0
⑵已知曲线 y 1 x3 和点 A(1,0) , 求过点 A 的切线方程. 3
= 2x △x (△x)2 2△x
△y △x
2x △x
(△x)2 △x
2△x
2x
2 △x
.
∴ y lim y lim (2x 2 △x) 2 x 2
x x0
x 0
25.02.2021
练习 2.
⑴物体的运动方程是 s t 2 2t 3 (s 的单位:m.t 的
单位:s), 则物体在 t 2 s 时的瞬时速度是2___m_./s
解析:设 (x1, y1 ) 为作抛物线 y x 2 x 1上一点,则在该点处切 线的斜率为 y 2x1 1 ,于是过点 (x1, y1 ) 的抛物线的切线的方程为 y y1 (2x1 1)( x x1 ),又 y1 x12 x1 1, y (x12 x1 1) (2x1 1)( x x1 ) 又点(1,0)在切线上, (x12 x1 1)(2x1 1)(1 x1 ) 解之得 x1 0, x1 2 ,于是 y1 1或y1 3 则:过(0,1)的切线方程为 y 1 x ,即 x y 1 0 过(-2,-3)的切线方程为 y 3 3(x 2) ,即 3x y 12 0
即 9x 4 y 12 0 .
25.02.2021
⑵已知曲线 y 1 x3 和点 A(1,0) , 求过点 A 的切线方程. 3
解:
设切线的斜率为
k
f ( x0 )
x02
∴切线方程为
y
1 3
x03
x02 ( x
x0 )
又∵切线过点
A(1,0)
∴0
1 3
为( D )
(A) 2x y 2 0
(B) 3x y 3 0
(C) x y 1 0
(D) x y 1 0
2.已知曲线 C : y x2 2 x 3 ,直线 l : x y 4 0 ,在曲线 C
上求一点 P,使 P 到直线 L 的距离最短,并求出最短距离.
19 2
8
3 3.已知
∵ f ( x) 2x 2 , ∴ 2 x0 2 1 ,
解得 x0
3 2
,∴
y0
9 4
∴P
到直线的最短距离
d
|
3 2
9 4
4
|
19
2
2
8
25.02.2021
感谢观赏
讲评:本题考查利用导数的几何意义求抛物线的切线方程,注意 点(-1,0)不在抛物线上.
25.02.2021
2.已知曲线 C : y x2 2x 3 ,直线 l : x y 4 0 ,在
曲线 C 上求一点 P,使 P 到直线 L 的距离最短,并求
出最短距离.
解:设 P( x0 , y0 ) ,
北师大版高 中数学2-2 第二章变化 率与导数导数的概念 与导数的几 何意义习题
课课件
73324
练习 1.求下列函数的导函数
⑴y x
⑵ y 1 x3 3
⑶ y x2 2x 3
解:⑶ △ y ( x △x)2 2( x △x) 3 ( x2 2x 3)
x2 2x △x (△x)2 2x 2△x 3 x2 2x 3