重点小学数学教学中渗透模型思想的案例
小学数学教学中渗透模型思想的案例

1数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。
数学学习只有深入到“模型”“建模”的意义上,才是一种真正的数学学习。
这种“深入”,就小学数学教学而言,具有鲜明的阶段性、初始性特点,它更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
”在此基础上,初步形成模型思想,提高学习数学的兴趣和应用意识。
【教学片段】出示情境图。
师:谁来说一说第一幅图,你看到了什么?生:从图中我看到了有5个小朋友在浇花。
师:第二幅图呢?生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。
师:你能把两幅图的意思连起来说吗?生:有5个小朋友在浇花,走了2个,还剩下3个。
师:同学们观察得很仔细,也说得很好。
你们能根据这两幅图的意思提一个数学问题吗?生:有5个小朋友在浇花,走了2个,还剩几个?生(齐):3个。
师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。
)师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。
(在圆片下板书:5-2=3)生齐读:5减2等于3。
师:谁来说一说这里的5表示什么?2、3又表示什么呢?……师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。
生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。
生2:树上有5只小鸟,飞走2只,还剩3只。
……除了教学充分展开外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。
且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以更多的“模型”意义。
小学数学教学中渗透模型思想的案例

小学数学教学中渗透模型思想的案例第一篇:小学数学教学中渗透模型思想的案例数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。
数学学习只有深入到“模型”“建模”的意义上,才是一种真正的数学学习。
这种“深入”,就小学数学教学而言,具有鲜明的阶段性、初始性特点,它更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
”在此基础上,初步形成模型思想,提高学习数学的兴趣和应用意识。
【教学片段】出示情境图。
师:谁来说一说第一幅图,你看到了什么?生:从图中我看到了有5个小朋友在浇花。
师:第二幅图呢?生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。
师:你能把两幅图的意思连起来说吗?生:有5个小朋友在浇花,走了2个,还剩下3个。
师:同学们观察得很仔细,也说得很好。
你们能根据这两幅图的意思提一个数学问题吗?生:有5个小朋友在浇花,走了2个,还剩几个?生(齐):3个。
师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。
)师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。
(在圆片下板书:5-2=3)生齐读:5减2等于3。
师:谁来说一说这里的5表示什么?2、3又表示什么呢?……师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。
生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。
生2:树上有5只小鸟,飞走2只,还剩3只。
……除了教学充分展开外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。
且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以更多的“模型”意义。
渗透数学思想的小学数学史实例

对于数学史融入小学数学课堂,一要做到让学生了解数学知识来源的历史过程,从而提升学生学习数学的兴趣,扩展学生的知识面,加深对数学知识的理解;二要在数学史融入课堂过程中,注意渗透相应的数学思维方法。
下面我给出四个例子供同行们借鉴。
一、渗透方程或化归思想的数学史实例鸡兔同笼。
笼子中有30个头,有80条腿,问笼中鸡、兔各有多少只?"鸡兔同笼"这个数学问题,是一个中国传统数学名题,是我国古代著名趣题之一。
大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
针对这一问题,我们要深入分析与挖掘它蕴含着独特的数学思想和背景文化,这也是代数运算中很典型的一道鸡兔同笼的问题。
这道题直接解决问题会显得很困难,利用化归思想来解决,把问题转化成简单的知识,就能很容易地解答。
一只鸡有2只脚,而一只兔有4只脚,这是我们能从生活的常识中能够获取的已知数学数据。
分析化归的实质就是不断变更问题。
对题目的数学数据进行分析,一只鸡抬起一条腿,一只兔抬起两条腿。
笼中就剩40条腿,每只鸡着地的腿和头一样多,每只兔着地的脚比头多1。
有一只兔,就多一条腿,现在只有30个头,则兔有10只,鸡有20只。
这一道题除了用化归思想来解答,还可以用我们平常最常用的方程思想来解答。
设有鸡x只,则兔有(30–x)只,由题意可得2x+4(30–x)=802x=40X=20兔:30–20=10(只)答:笼中有鸡20只,兔10只。
通过学习"鸡兔同笼",让学生发挥自己的能力,自主选择不同的解题方法,不仅可以让学生感受祖先的聪明才智,更让学生体会到它的解题策略的多样性以及其中蕴含的数学价值。
二、渗透变换思想的数学史实例求1212+1616+112112112+120120+……+11101110的和。
观察式子,拆分各项的分母,2=1×2,6=2×3,12=3×4,20=4×5,……110=10×11,即S[n]=1n1n×1n+11n+1,利用变换思想,问题可以转化成以下形式原式=11×211×2+12×312×3+13×413×4+14×514×5+……+110×11110×11=(1*1212)+(1212*1313)+(1313*1414)+(1414-*1515)+……+(110110*111111)把问题从一种形式等价成另一种形式是变换思想的核心,可以使问题得到方便快速的解答。
小学数学中模型思想的渗透

小学数学中模型思想的渗透模型思想是指将实际问题抽象为适当的数学模型,通过对模型的研究和分析来解决问题的思考方式。
在小学数学教学中,模型思想开始逐渐渗透到各个知识点中,使数学知识的学习更加贴近实际,有助于培养学生的数学思维和解决实际问题的能力。
下面通过几个例子来说明小学数学中模型思想的渗透。
在小学数学的加减法教学中,可以通过引入模型来帮助学生更好地理解问题。
教学中常用的加法模型有“柠檬果汁”的例子。
老师可以告诉学生,小明有3杯柠檬果汁,小红有5杯柠檬果汁,他们要一起喝,一共有多少杯柠檬果汁?通过将问题进行抽象,学生可以将这个问题转化为3+5=8的算式,帮助学生理解加法的含义和计算方法。
在小学数学的乘除法教学中,也可以引入模型来帮助学生理解和记忆乘除法的运算规则。
教学中常使用的乘法模型有“田地的面积”和“长方体的体积”。
通过给学生展示一个田地或一个长方体,老师可以引导学生观察田地或长方体的形状和尺寸,让学生模拟计算田地的面积或长方体的体积的过程,帮助学生理解乘法的含义和计算方法。
在解决实际问题时,模型思想也被广泛应用。
在应用问题中,要求学生求解一个问题,需要学生先建立一个与实际情况相对应的模型,然后通过对模型的分析和计算,得出问题的答案。
教学中常出现的“一个矩形花坛”的问题,老师可以引导学生通过画图或使用图形模型来解决问题。
学生可以画出问题中的矩形花坛,并求出其面积,从而得出问题的答案。
在一些游戏和竞赛中,模型思想也起到了重要作用。
数独游戏中,玩家需要根据已知的条件填补空白格子,使得每一行、每一列和每一个宫都满足数独的规则。
在解决数独问题时,玩家可以建立一个数独模型,通过分析并计算已知条件,逐步填充空白格子,从而解决数独问题。
小学模型思想的例子及答案

案例1:有一根20米长的绳子,要剪成2米和5米长两种规格的跳绳,每种跳绳各剪多少根?(要求绳子无剩余,并且每种规格的绳子至少要有一根)分析:此题从表面上看,是小学数学整数乘法的一般问题,但是由于题中有特殊要求,无法列式解答。
如果用方程,题目中涉及了两个未知数,属于二元一次方程,超出了小学数学的范围。
那么,面对这样的问题如何解决呢?在小学数学中面对一些非常规范的问题时,有时运用列表列举或猜测的方式是一种可行的策略,只不过会繁琐些。
5米跳绳的根数 1 2 3 42米跳绳的根数7 5 2 0剩余根数 1 0 1 0由上表可知符号要求的答案为:5米和2米的跳绳分别减2根和5根。
此题如果用方程解决,可设5米和2米的跳绳分别剪x根和y根,可列方程:5x=2y=20.可仿照正比例关系y=kx图像的画法,再有方格纸的坐标系里,通过两点(010)和(40)画出一条直线,就是方程5x=2y=20.图像。
再找出图像与方程的交叉点重合的点,就是方程的解。
案例2:一瓶矿泉水满瓶为500毫升,小林喝了一些,剩余的水都在圆柱形的部分,高度是16厘米。
如果把瓶盖拧紧,倒立过来,无水的部分高度为4厘米。
小林喝了多少水?分析:此题是求水的容积,有一个在建模过程中需要假设,就是矿泉水瓶援助部分并不是一个圆柱的形状,这样才便于建立模型,由于不知道圆柱的底面积,所以无法用容积公式直接求解。
这就需要换一个思路来想,根据容积公式v=sh可知如果底面积一定,容积与圆柱的高成正比,这样就把求容积问题转化为比例问题。
由于矿泉水瓶最上面部分形状不规则,倒立过来以后喝的水就相当于圆柱形瓶子高度为4厘米的水。
满瓶矿泉水就相当于这瓶水都装在圆柱形瓶子后,高度为20厘米的水。
可设小林喝的水为v毫升,列式为:v:500=4:(16+4),V=100案例3:小明的家距学校600米,每天上学从家步行10分钟到学校。
今天早上出门2分钟后发现忘记带学具了,立即回家去取。
小学数学建模思想的案例研究

教材教法|教法研究学生回归自我本性,体验生命的可贵,同时扮演不同的角色,能够使学生体会到他人生命也是十分珍贵的,需要被尊重和包容。
例如,盲人游戏可以让学生扮演盲人,体会到盲人是如何在黑暗中生活,通过他人的搀扶等帮助,感受到更多的温暖。
这样学生就能够在遇到盲人时不会嘲笑和议论,而是能够力所能及的帮忙,不仅仅提升了自身的道德素养,增强助人为乐的幸福感,同时也能够温暖他人的心,使更多的人更加珍视生命。
同时,学校可以编排一些心理剧,形成剧本的形式进行表演,在愉快的氛围下,学生可以说出自己的心声,同时也能够传递温暖,让平凡的生命绽放异彩。
在此基础上,依据学校自身特点,编制和开发基于学生学情,结合社会热点问题的校本课程,学生在此过程中,既是课程的体验者,创造者,也是受益者,具有动态性和体验性的校本课程编制更有益于现代学生的成长发展。
四、总结初中生的生命教育已经逐渐引起人们不同程度上的重视,在心理健康课程中融入生命教育,是为学生的生命健康发展提供保障,同时也是为了能够传递更多的社会温暖。
通过本文的研究可以发现,教师应该引导学生学会自我保护,树立自我生命价值意义的观念,同时也需要尊重和爱护他人生命,这是心理健康教育融入生命教育的主要目的,综上所述,生命教育的全面开展势在必行,对学生的心理健康发展起到了至关重要的作用。
参考文献:[1]王继民,郝武敬,李静静.将生命教育融入初中心理健康教育的实践与思考[J].心理月刊,2020,(05):73.[2]刘英国.初中生生命教育有效性问题研究[D].内蒙古师范大学,2019.[3]贾锁琴.生命教育在初中生物教学中的有效渗透[J].教育观察,2019,(33):131.[4]郑莉君.中国心理健康教育的回顾与展望[J].内蒙古师大学报(哲学社会科学版).2000年04期[5]黄中,姚小蓉.师范专科生心理健康水平的研究[J].内蒙古师大学报(哲学社会科学版).2000年04期[6]杨仲夏,韩丁.中专学生心理健康教育初探[J].内蒙古科技与经济.2000年S1期[7]祁新荣.大学生心理健康与全面发展[J].连云港职业技术学院学报.2000年02期[8]陈利虎,马洪涛.谈心理健康教育与“减负”[J].山东教育学院学报.2000年06期[9]林增学.心理健康结构维度的研究概述及理论构想[J].社会科学家.2000年06期[10]翟安平,张懿红.要关注大学生的心理健康[J].社科纵横.2000年01期[11]张亚东,刘芳.大学生心理健康的现状及对策[J].山西高等学校社会科学学报.2000年10期[12]王丽芹,陈凤茹.加强大学生心理健康教育的对策[J].河北职工医学院学报.2000年04期[13]刘晓仙.谈高校特困生的心理健康教育[J].许昌师专学报.2000年06期作者简介:沙良梦(1995——)女,汉族,籍贯:江苏省邳州人,心理健康教育专业,在读硕士研究生。
计算教学中建构数学模型——以四年级上册第四单元《三位数乘两位数》为例

计算教学中建构数学模型——以四年级上册第四单元《三位数乘两位数》为例在小学数学教学中培养学生的模型意识,要立足学生的年龄和智力发展实际,在学生头脑中能够初步建立数学模型意识。
这就需要我们教师足够了解建立数学模型的内涵,把握培养学生数学模型意识的实质,并善于运用模型意识组织教学活动,注意知识间的内在联系,在数学知识教学过程中注重数学建模意识和能力的培养。
下面我以四年级上册《三位数乘两位数》为例,从主题与背景和案例分析两方面浅谈一下在计算教学中如何建构数学模型。
新课标(2022版)在学段目标中指出:尝试从日常生活中发现和提出数学问题,探索分析和解决问题的方法,精力独立思考,并与他人合作交流,解决问题的过程,会用常见的数量关系和其他学科的知识与方法解决问题,能初步判断结果的合理性,形成初步的模型意识,几何直观和应用意识。
本课选自人教版四年级上册第四单元内容。
属于数与代数领域内容。
通过本节课内容的学习,有利于学生完整地掌握整数乘法的计算方法,并为以后进一步学习小数乘法打好基础。
教材以简单行程问题为背景,一是体会计算的现实需要,二是为后面抽象出速度、时间和路程之间的关系积累一定的经验。
在学生已有的计算经验基础上,本课内容更突出自主探索。
四年级的学生在已经掌握的表内乘法、三位数乘一位数、两位数乘两位数的笔算以及用乘法解决实际问题的基础上学习本节课三位数乘两位数的内容,作为整数乘法运算学习的最后一部分知识,不仅要提高学生计算技能,还要帮助学生建构整数乘法之间的联系,打通多位数乘多位数的计算方法。
在此过程中充分发挥原有经验的作用,突出学生的自主探究,四年级的学生已经具备独立思考,小组合作学习的能力,他们对知识充满好奇,乐于探究,乐于发现,已经初步积累数学学习的基本活动经验,能够有效帮助学生理解相应的算理,从而建构起笔算乘法的运算法则。
依据以上内容确定本节课的教学目标及重难点:1.理解三位数乘两位数的算理,掌握算法,沟通知识之间的联系。
渗透数学思想方法的小学数学教学案例研究以四年级为例

渗透数学思想方法的小学数学教学案例研究以四年级为例一、本文概述随着教育改革的深入,小学数学教学已不仅仅满足于传统的知识传授,而是更加注重数学思维的培养和数学方法的渗透。
数学思想方法是数学的灵魂,是解决数学问题的关键。
特别是在小学阶段,正是孩子们数学思维和习惯形成的关键时期,因此,将数学思想方法渗透到小学数学教学中显得尤为重要。
本文将以四年级数学教学为例,深入探讨如何在日常教学中渗透数学思想方法,使学生不仅掌握数学知识,更能形成正确的数学思维方式和解题策略。
我们将结合具体的教学案例,分析如何有效地在小学数学教学中融入数学思想方法,以期提高学生的数学素养和解决问题的能力。
本文首先将对数学思想方法在小学数学教学中的重要性进行阐述,接着将以四年级数学教学案例为基础,详细分析如何在教学中渗透数学思想方法,包括化归思想、数形结合思想、函数与方程思想等。
我们将总结实践经验,探讨数学思想方法在小学数学教学中的应用策略,以期为广大小学数学教师提供有益的参考和启示。
二、数学思想方法概述数学思想方法是数学学科的灵魂,是解决问题、获取新知识的重要工具。
数学思想方法不仅关乎数学知识的获取,更关乎学生数学思维的培养和数学素养的提升。
在小学数学教育中,渗透数学思想方法,是提高学生数学素养、培养学生创新能力的重要途径。
数学思想方法包括归纳与演绎、类比与迁移、化归与变换、模型与建模等。
这些思想方法在数学教学中具有广泛的应用,能够帮助学生更好地理解和应用数学知识。
例如,归纳与演绎思想可以帮助学生从特殊到一般,或从一般到特殊地理解数学概念和性质;类比与迁移思想可以帮助学生将已有的数学知识迁移到新的情境中,从而解决新问题;化归与变换思想可以帮助学生将复杂问题转化为简单问题,或将未知问题转化为已知问题,从而方便求解;模型与建模思想则可以帮助学生将现实问题抽象为数学问题,建立数学模型进行求解。
在四年级的数学教学中,渗透数学思想方法尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。
数学学习只有深入到“模型”“建模”的意义上,才是一种真正的数学学习。
这种“深入”,就小学数学教学而言,具有鲜明的阶段性、初始性特点,它更多地是指用数学建模的思想和精神来指导着数学教学,“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与运用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
”在此基础上,初步形成模型思想,提高学习数学的兴趣和应用意识。
【教学片段】
出示情境图。
师:谁来说一说第一幅图,你看到了什么?
生:从图中我看到了有5个小朋友在浇花。
师:第二幅图呢?
生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。
师:你能把两幅图的意思连起来说吗?
生:有5个小朋友在浇花,走了2个,还剩下3个。
师:同学们观察得很仔细,也说得很好。
你们能根据这两幅图的意思提一个数学问
题吗?
生:有5个小朋友在浇花,走了2个,还剩几个?
生(齐):3个。
师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?
(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。
)
师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。
(在
圆片下板书:5-2=3)
生齐读:5减2等于3。
师:谁来说一说这里的5表示什么?2、3又表示什么呢?
……
师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示
什么呢?请同桌互相说一说。
生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。
生2:树上有5只小鸟,飞走2只,还剩3只。
……
除了教学充分展开外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。
且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以更多的“模型”
意义。
再比如,在小学阶段,学生认识小数时主要是将它和分数之间进行意义上的关联,即:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。
按照螺旋上升的教材编排原则,上述内容大多分解在三、四年级分两次学完,三年级先认识一位小数。
如何在三年级初步认识一位小数时就体现出“建模”的思想呢,
我进行了如下教学:
课始,教师出示到超市购买的一些物品和相应的价钱:水彩笔12元、美工刀3元5角、铅笔0.4元。
当“0.4元”出现后,教师提问:
师:知道“0.4元”到底是多少钱吗?
生:0.4元就是4角钱。
(板书4角=0.4元)
师:4角钱有没有1元多?
生:没有。
师:看来,和1元相比,0.4元只能算是一个“零头”了。
如果我们用这样的一个长方形来表示1元(出示图1),你能把它分一分、涂一涂,将0.4元表示出来吗?
图1图2
(学生拿出练习纸画画涂涂,把自己的想法表示出来。
交流时,寻找共性特点:平
均分成10份,涂出其中的4份)
师:为什么这样就将“0.4元”表示出来了呢?
生:因为1元等于10角,平均分成10份,1份就是1角,4份就是4角。
师:看着大家画出的图示,让我想起以前咱们学什么时,也是这样子平均分一分、
涂一涂?
生:分数!
师:那0.4元如果用分数表示,如何表示呢?
生:十分之四元。
师:数学真是有趣,原来0.4元也就是我们熟悉的十分之四元。
(出示图2)
师:老师购买了一块橡皮,它的价钱是多少呢?(出示:0.8元)0.8元是多少钱?
生:0.8元就是8角
师:又是一个不足1元的零头,如果我们还是用这样的一个长方形来表示1元,那
0.8元又该怎么表示呢?
学生模仿者刚才的方式表示出“0.8元也就是十分之八元”(见右图)。
接着,老师给学生提供一个空白的平均分成10份的长方形,任意涂出其中一部分,表示出一个小数和相应的分数。
几个学生自由展示后,组织梳理,从0.1就是十分之一,0.2就
是十分之二……
师:接下来我们再来看看笔记本的价格,我给你一个图示(见下图),你知道它的
价钱了吗?
生:笔记本的价格是1.2
师:刚才的小数都是“零点几”,现在怎么变成“一点几”了?
生:现在有两个长方形了,第一个涂满了颜色,表示整1元。
第二个平均分成了10份,涂了其中的2份,也就是2角钱,0.2元,合起来就是1.2元了。
师:我买的钢笔的价钱是8.6元,如果让你画一幅图来表示它的价钱,你准备怎样画
呢?
生:我准备先画9个大小一样的长方形,然后把前面8个涂满颜色,第9个长方形
平均分成10份,涂出其中的6份。
……
上述教学过程抓住了知识间的联系(小数和十进分数的关系)而展开,但又不是停留在教师直接的讲解和“告诉”,而是让学生充分展开探索过程,借助于直观图示的形象支撑,建立起了一位小数的“直观模型”(长方形等分、涂色)。
这种形象的“直观模型”既搭起了小数和分数之间的桥梁,也具有强大的“扩展”功能,对后面学习两位小数、三位小数(同样的长方形,只是平均分成100份、1000份)以及抽象概括“小数的意义”具有统摄作用。
从上述两例可以看出,运用建模思想来指导小学数学教学,在很大程度上是要在学生的认知过程中建立起一种统摄性、符号化的具有数学结构特征的“模型”载体,
通过这样的具有“模型”功能的载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。
当然,对学生“模型”意识的培养和“建模”方法的指导,要根据具体内容和具体年级而有层次不同的要求,低年级要恰到好处地结合日常实例和常规教学对学生进行“模型”及“模型意识”的渗透、点化,高年级则可以更明确地引导学生关注数学学习中“模型”的存在,培养初步的建模能力。