职高高一数学试卷及答案
数学职高高一试题及答案

数学职高高一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. -3.14C. πD. 0.1010010001…答案:C2. 函数f(x) = 2x^2 - 4x + 3的零点是:A. x = 1/2B. x = 2C. x = -1D. x = 3答案:B3. 等差数列{an}中,a1 = 2,公差d = 3,那么a5的值是:A. 14B. 17C. 20D. 23答案:A4. 已知集合A = {1, 2, 3},B = {2, 4, 6},那么A∩B的值是:A. {1, 2, 3}B. {2, 4, 6}C. {2}D. 空集答案:C5. 直线y = 2x + 1与x轴的交点坐标是:A. (-1/2, 0)B. (0, 1)C. (-1, 0)D. (1, 0)答案:A6. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 25答案:C7. 以下哪个选项是复数?A. 3 + 4iB. -2C. √2D. 0.5答案:A8. 函数f(x) = x^3 - 3x^2 + 2x的导数是:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 3x + 2D. x^2 - 3x + 2答案:A9. 一个等边三角形的边长为a,那么它的高是:A. a√3/2B. a√3/3C. a√3D. a/√3答案:A10. 一个圆的周长是6π,那么它的直径是:A. 3B. 6C. 2D. 1答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2,那么这个数是______。
答案:42. 等比数列{bn}中,b1 = 8,公比q = 1/2,那么b4的值是______。
答案:23. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是______。
答案:54. 函数f(x) = x^2 - 6x + 8的最小值是______。
职高数学高一试题及答案

职高数学高一试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A2. 函数f(x)=3x^2-2x+1的图像开口方向是:A. 向上B. 向下C. 不能确定D. 没有开口答案:A3. 计算下列表达式的结果:(2x+3)(3x-2) = ?A. 6x^2-x-6B. 6x^2-x+6C. 6x^2+x-6D. 6x^2+x+6答案:A4. 圆的方程为(x-2)^2+(y+3)^2=9,圆心坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)答案:A5. 已知数列{an}的前n项和为Sn,且满足a1=1,an=2an-1+1,求S5的值。
A. 31B. 63C. 15D. 11答案:A6. 函数y=sin(x)在区间[0, π]上的最大值是:A. 0B. 1C. -1D. π答案:B二、填空题(每题5分,共20分)1. 如果一个等差数列的前三项依次为2,5,8,则该数列的第10项是______。
答案:232. 一个圆的半径为5,那么它的面积是______。
答案:25π3. 函数f(x)=x^3-3x+2在x=1处的导数值是______。
答案:04. 已知等比数列{bn}的前三项依次为2,4,8,则该数列的第5项是______。
答案:16三、解答题(每题10分,共50分)1. 解不等式:3x-2>5x+4。
答案:由3x-2>5x+4,得-2x>6,所以x<-3。
2. 求函数f(x)=x^2-4x+3在区间[1,3]上的最大值和最小值。
答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4,令f'(x)=0,得x=2为极值点。
计算f(1)=0,f(2)=-1,f(3)=0,所以最大值为0,最小值为-1。
职高高一期末数学试卷答案

一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -2D. 0答案:D2. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 6C. 7D. 8答案:C3. 在直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A4. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D5. 下列各式中,最简二次根式是()A. √18B. √24C. √36D. √48答案:C二、填空题(每题5分,共20分)6. 二项式定理中,(a + b)^3的展开式中,a^2b的系数是______。
答案:37. 若sin∠A = 0.6,则∠A的余弦值cos∠A = ______。
答案:0.88. 一次函数y = 2x - 3的图像与x轴的交点坐标是______。
答案:(3/2, 0)9. 在等差数列中,若首项a1 = 2,公差d = 3,则第10项a10 = ______。
答案:2910. 若三角形的三边长分别为3、4、5,则该三角形的面积是______。
答案:6三、解答题(每题10分,共30分)11. (10分)解下列方程:3x^2 - 5x - 2 = 0。
解:首先,我们尝试因式分解方程。
观察方程3x^2 - 5x - 2,我们需要找到两个数,它们的乘积等于 3 (-2) = -6,而它们的和等于-5。
这两个数是-6和1。
因此,我们可以将方程重写为:3x^2 - 6x + x - 2 = 0接下来,我们将方程分组:3x(x - 2) + 1(x - 2) = 0提取公因式:(3x + 1)(x - 2) = 0根据零因子定理,我们得到两个解:3x + 1 = 0 或 x - 2 = 0解这两个方程,我们得到:x = -1/3 或 x = 2所以,方程3x^2 - 5x - 2 = 0的解是x = -1/3和x = 2。
长沙职高数学试题及答案

长沙职高数学试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=2x+1的值域是()A. (-∞,+∞)B. [1,+∞)C. (-∞,1]D. [0,+∞)答案:A2. 已知集合A={x|x<2},B={x|x>3},则A∩B=()A. {x|x<2}B. {x|x>3}C. ∅D. {x|2<x<3}答案:C3. 若直线y=kx+b与x轴交于点(2,0),则b的值为()A. 2B. -2C. 4D. -4答案:B4. 函数y=x^2-4x+4的最小值是()A. 0B. 1C. 4D. -1答案:A5. 已知向量a=(3,-2),b=(1,2),则a·b的值为()A. 1B. -1C. 5D. -5答案:B6. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()A. 9B. 10C. 11D. 12答案:A7. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,则a与b的关系为()A. a=bB. a=2bC. b=2aD. b=a/2答案:B8. 已知抛物线y=ax^2+bx+c的顶点坐标为(1,-4),则a的值为()A. 2B. -2C. 4D. -4答案:B9. 函数y=ln(x+√(x^2+1))的值域是()A. (-∞,+∞)B. [0,+∞)C. (0,+∞)D. [-1,+∞)答案:C10. 已知矩阵A=\[\begin{bmatrix}1 & 2\\ 3 & 4\end{bmatrix}\],矩阵B=\[\begin{bmatrix}5 & 6\\ 7 & 8\end{bmatrix}\],则AB的行列式为()A. 6B. 12C. 24D. 36答案:C二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的导数为 f'(x)=3x^2-3。
职业高中高一下学期期末数学试题卷4(含答案)

B C D16改写成对数形式为 ( ) 16 B.log 24=16 =2 D.log 416=2。
是第一象限角,那么α/2是. ( ). B.第二象限角 D.第一或第三象限角。
α为 象限角。
( )B 、第二象限角C 、第 三象限角D 、第四象限角 )内,使sinx>cosx,成立的x 的取值范围是. ( ))45,(ππY B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππYy=lg(2x-1)定义域为. ( )B.(1,2)C.(1,1.5)D.(0.5,+∞)。
,是数列{n(n+1)}中一项的是 ( ) B 、32 C 、39 D 、380}{n a 中,已知5a =2,10a =10,则15a 等于( ) B 、50 C 、75 D 、100。
2,5,9,14,20,x,…中,x 的值应该是. ( ) 、25 C 、26 D 、27。
α·cos α>0,且cos α·tan α<0,则角α所在的象限是…( ) B 、第二象限 C 、第三象限 D 、第四象限 8小题,40分) 91log .81log 53(6分)2、化简:)cos()cos()tan()2tan()tan()sin(πααπαπααπα++-+++-+--+-(6分)3、成等差数列的三个数的和等于12,若这三个数分别减去1、2、2、就成等比数列,求这三个数 (6分)4、求值 )619(tan 23)423tan(38cos 2πππ-+--.(7分)5、解不等式.0)1(log 21≥-x (7分)6、在等比数列}{n a 中1031=+a a ,4564=+a a ,求4a 和5S (8分)高一数学答案一1,27 2,-0.5 3,(0,1)4,0.7781 5,-450+4*3600 6,2,1,-1 7,+-42 8,<> 9,3 500 10,-5/13二11,c12,d 13,d14,c15,d 16,d 17,d 18,b19,d20,c 三1 ,-3002,-cosa3,3,4,5或者6,4,24,15,X<=1.56,1 15.5。
职高高一数学集合测试卷

职高高一数学集合测试卷一、选择题(每题3分,共30分)1. 下列集合中,表示同一集合的是()A = {1,2},B = {(1,2)}A = {x x>0},B = {y y>0}A = {x x = 2k,k∈Z},B = {x x = 2k + 1,k∈Z}A = {x x² - 3x+2 = 0},B = {1,2}2. 设集合A={1,2,3},B = {3,4,5},则A∪B=( ) {1,2,3,4,5}{3}{1,2,4,5}{1,2,3}3. 若集合A={x x<0},B={x x²>1},则A∩B=( ){x x< - 1}{x - 1<x<0}{x x<0}{x x>1}4. 已知集合A = {x x² - 5x+6 = 0},则集合A的子集个数为()23455. 设全集U={1,2,3,4,5},集合A={1,3,5},则∁UA=( ){2,4}{1,3,5}{1,2,3,4,5}∅6. 集合A={x - 1<x<2},集合B={x 0<x<3},则A - B=( ){x - 1<x≤0}{x 0<x<2}{x 2≤x<3}{x - 1<x<3}7. 若集合A = {x x = 2n,n∈N},B = {x x = 3n,n∈N},则A∩B中的最小元素是()6238. 设集合M={x x = a²+1,a∈R},N={y y=b² - 1,b∈R},则M与N 的关系是()M = NM⊂NN⊂MM∩N = ∅9. 集合A={x x² - 3x - 4 = 0},则方程x² - 3x - 4 = 0的根是集合A的()子集真子集元素以上都不对10. 已知集合A={1,2,3,4},B={y y = x - 1,x∈A},则B=( ){0,1,2,3}{1,2,3,4}{2,3,4,5}{ - 1,0,1,2}二、填空题(每题4分,共20分)1. 集合A={x x² - 9 = 0}的元素是______。
(完整)中职高一(上)期末数学试卷A3.docx

职业中专期末试卷(一到四章 )一、选择题( 2 分× 18=36 分,选择题答案请写上面表格中,谢谢配合!)1. 若 A∪B=A, 则 A∩ B 为()A. AB. BC.?D. A或 B2. 不等式 |3x-12|≤9 的整数解的个数是()A. 7B. 6C. 5D. 43.(-a 2) 3的运算结果是()A. a 5B.-a5C.a6D.-a6)4. 如果全集 U=R,A={x|2 < x≤ 4},B={3,4},则 A∩ ( CB)等于(UA.(2,3)∪(3,4 )B.(2,4)C.(2,3)∪(3,4]D. ( 2,4]5.已知集合 A={x|x >2} ,B={x|x > a}, 若 A B ,则 a 的范围为()A.a =2B.a≤2C.a≥ 2D.a≠26.函数 y=2x2-8x+9的最小值是()A. 0B. 1C. 7D. 97.若 x∈[3,5 ),那么式子 3-x 的值一定是()A. 正数B.负数C.非负数D.非正数8.某商品零售价 2006 年比 2005 年上涨 25%,欲控制 2007 年比 2005年只上涨10%,则 2007 年应比 2006 年降价()A.15%B.12%C.10%D.50%9. 已知 a< b<0, 那么一定有()b a b112A.a >b B.0<a<1 C.a<b D.ab< b110. 函数 y=x+x-2 (x >2) 的最小值为()A.4B.3C.2D.12-x11.函数 y= lgx的定义域是()A.[-2,2]B.(0,2)C.(0,2]D.(0,1)∪ (0,2]12.函数 y=lg(x 2-2x-3)的单调递增区间为()A.(3,+∞ )B.(-∞,-1)C.(1,+∞)D.(-∞,1)13.集合 A B 是 A B=A的( )A. 充分但非必要条件B.必要但非充分条件C. 充分必要条件D.既非充分又非必要条件14.已知关于 x 的方程 x2+ ax-a=0 有两个不等的实数根,则()A.a < -4 或 a>0B.a ≥ 0C.-4<a<0D. a>-415.若f2则 f ()的值为()(x+1)=x+3x+5,0A. 3B. 5C.2D.-116.已知 f (x)=x2+ bx+ c 的对称轴为直线 x= 2,则 f(1),f(2),f(4)的大小关系是()A. f(2)< f(1)< f(4)B. f(1)< f(2)< f(4)C. f(2)< f(4)< f(1)D. f(4)< f(2)< f(1)17.下列具有特征 f(x 1· x2)=f(x 1) +f(x 2) 的函数是()A.f(x)=2xB.f(x)=2xC.f(x)=2+xD.f(x)=log x218.设 f(x) 是( - ∞, +∞)上的奇函数, f(x+2)=-f(x),当 0≤x≤1 时,f(x)=x, 则 f(7.5)=()A. -1.5B. -0.5C.0.5D.1.5二、填空题( 3 分× 8=24 分)19.满足条件 {1,2,3}M {1,2,3,4,5,6}的集合的个数是20. 比较大小: 2x 2+5x-3_______ x 2+5x-4. 21. 已知 f (1)=3, f (n+1)=2 f (n)+n, nN +,则 f (4)=_______.22. 函数 f (x)=lg(x 2-kx+k) 无论 x 取何值均有意义,则 k 的取值范围为 _______________.23. 已知 f(x) 是奇函数,且 f(2)=3, 则 f(-2)=________.24. 二次函数 y=ax2+ bx +c (a <0) 与 x 轴的两个交点为( -2,0 ),( 2,0 ) , 则 不 等 式 ax 2 + bx + c > 0 的 解 集 是_____________________. 25. 已知 f (x +1)=x2+ 1,则 f (x )=_____________________.xx 226.求值log 2 1 ( 2 1 ) =_________________. 三、解答题(本题共 8 小题,共 60 分)27. ( 6 分)写出集合 P={1,2,3} 的所有子集。
职高数学试题及答案

职高数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = 2x + 3在x=1时的值是多少?A. 5B. 6C. 7D. 8答案:A3. 以下哪个不是二次方程?A. x^2 + 4x + 4 = 0B. x^2 - 5x + 6 = 0C. 3x^2 - 2x + 1 = 0D. 4x + 7 = 0答案:D4. 圆的面积公式是什么?A. πr^2B. 2πrC. r^2D. πd答案:A5. 直线y = 3x + 2与x轴的交点坐标是什么?A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:C6. 以下哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 8, 16C. 1, 1, 1, 1D. 1, 4, 9, 16答案:A7. 一个直角三角形的两条直角边分别为3和4,斜边长度是多少?A. 5B. 6C. 7D. 8答案:A8. 以下哪个是复数的实部?A. 3 + 4iB. 2 - 3iC. 5iD. -1答案:D9. 以下哪个是正弦函数的周期?A. 2πB. πC. 1D. 3π答案:A10. 一个数的平方根是它自己,这个数是什么?A. 0B. 1C. -1D. 2答案:A二、填空题(每题2分,共20分)1. 一个数的绝对值是它自己,这个数是______或______。
答案:正数;02. 圆的周长公式是C = ______。
答案:2πr3. 一个二次方程ax^2 + bx + c = 0的判别式是______。
答案:b^2 - 4ac4. 函数y = kx的斜率是______。
答案:k5. 一个数的倒数是1/x,这个数是______。
答案:非零数6. 正弦函数sin(x)的值域是______。
答案:[-1, 1]7. 一个数的对数以10为底,记作______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职教中心期中考试
高一数学试卷 2010.11.13
试卷说明:本卷满分100分,考试时间100分钟。
学生答题时可使用专用计算器。
一、选择题。
(共10小题,每题4分)
1、设集合A={x
Q|x>-1},则()
A、
B、
C、
D、
2、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()
A、{1,2}
B、{1,5}
C、{2,5}
D、{1,2,5}
3、函数
的定义域为()
A、[1,2)∪(2,+∞)
B、(1,+∞)
C、[1,2)
D、[1,+∞)
4、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()
5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是()
A、 70。
3,0.37,,㏑0.3,
B、70。
3,,㏑
0.3, 0.37
C、 0.37, , 70。
3,,㏑0.3,
D、㏑0.3, 70。
3,
0.37,
6、若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:
f(1)=-2 f(1.5)=0.625
f(1.25)=-0.984 f(1.375)=-0.260
f(1.438)=0.165 f(1.4065)=-0.052
那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为()
A、1.2
B、1.3
C、1.4
D、
1.5
7、函数
的图像为()
8、设
(a>0,a≠1),对于任意的正实数x,y,都有()
A、f(xy)=f(x)f(y)
B、
f(xy)=f(x)+f(y)
C、f(x+y)=f(x)f(y)
D、
f(x+y)=f(x)+f(y)
9、函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则()
A、b>0且a<0
B、b=2a<0
C、b=2a>0
D、a,b的符号不定
10、某企业近几年的年产值如图,则年增长率最高的是
()(年增长率=年增长值/年产值)
A、97年
B、98年
C、99年
D、00年
二、填空题(共4题,每题4分)
11、f(x)的图像如下图,则f(x)的值域为;
12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为;
13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,
f(x)= ;
14、老师给出一个函数,请三位同学各说出了这个函数的一条性质:
①此函数为偶函数;
②定义域为
;
③在
上为增函数.
老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
请你写出一个(或几个)这样的函数
学校_____________班级_________________姓名__________________试场号座位号_________。
装。
订。
线。
高一数学答题卷 2007.11.13
题号一二三
总分15 16 17 18 19 20
得分
一、选择题(本大题共10小题,每小题4分,满分40分。
)
题号 1 2 3 4 5 6 7 8 9 10 答案
二、填空题(本大题共4小题,每小题4分,满分16分。
)
11、 12、 13、 14、
三、解答题(本大题共6小题,满分44分,解答题写出必要的文字说明、推演步骤。
)
15、(本题6分)设全集为R,
,
,求
及
16、(每题3分,共6分)不用计算器求下列各式的值
⑴
⑵
17、(本题8分)设
,
(1)在下列直角坐标系中画出
的图象;
(2)若
,求
值;
(3)用单调性定义证明在
时单调递增。
18、(本题8分)某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件,为了估测以后各月的产量,以这三个月产品数为依据,用一个函数模拟此产品的月产量y(万件)与月份数x的关系,模拟函数可以选取二次函数y=px2+qx+r或函数y=abx+c(其中p、q、r、a、b、c均为常数),已知4月份该新产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?求出此函数。
19、(本题8分)已知函数f(x)=㏒a
,
且
,
(1)求f(x)函数的定义域。
(2)求使f(x)>0的x的取值范围。
20、(本题8分)已知函数f(x)=
(1)写出函数f(x)的反函数
及定义域;
(2)借助计算器用二分法求
=4-x的近似解(精确度0.1)
高一数学参考答案
命题:碧莲中学
一、选择题(共10题,每题4分)
题号 1 2 3 4 5 6 7 8 9 10 答案 C D A B A C B B A B
二、填空题(共4题,每题4分)
11、[-4,3] 12、300 13、-
x
14、
或
或
三、解答题(共44分)
15、解:
16、解(1)原式=
=
=
=
(2)原式=
=
=
17、略
18、解:若y=则由题设
若
则
选用函数
作为模拟函数较好
19、解:(1)>0且2x-1
(2)㏒a
>0,当a>1时,
>1
当0<a<1时,
<1且x>0
20、略。