结构材料的力学性能
建筑结构结构材料力学性能.

在规定的循环次数(200万次)和荷载变 幅下,材料所能承受的最大动态应力称为疲 劳强度。
材力“疲劳极限” 经历无穷多次应力循环而不发生疲劳破
坏之最大应力。
6.徐变(蠕变)与应力松驰
在温度和作用应力 不变的情况下,应变或 变形随时间而增加的现 象称为徐变(蠕变)。
在温度和应变不变 的情况下,应力随时间 而减小的现象称为应力 松驰。
第三章 建筑结构材料力学性能
一.材料力学性能指标
1.强度指标 (抗拉、抗压)
屈服点 比例极限
强度极限
r 0.2
名义屈服点 冷作硬化
塑性材料
0.2%
脆性材料
钢材的冷加工 冷拉
常 温 ---20d , 100℃---2h
●冷拉(时效)硬化 ●抗拉强度提高 ●塑性降低 ●不提高抗压强度 ●先焊后拉 ●不得作吊环
ak Wk
冲击韧性试验
(a)夏比试件 (b)梅氏试件
4.冷弯性能
冷弯试验示意图
钢筋延伸率及冷弯性能要求
钢筋级别
HPB235 HRB335 HRB400
5
冷
弯 冲头直径
25% 180° 1D
16% 180° 3D
14% 90° 3D
RRB400 10% 90° 5D
5.疲劳强度
结构构件在变幅(△ = max-min)一定的 循环荷载作用下,当达到一定的循环次数n时, 便发生脆性破坏,且破坏应力远小于s或b, 这种现象称为疲劳破坏。
-曲线
冷拔
●截面变小长度增长 ●抗拉抗压强度提高 ●塑性显著降低 ●无明显屈服点
-曲线
2.塑性指标 ◆延伸率
l1 l0 100%l0<来自%为脆性材料 ≥5%为塑性材料
第3章 结构材料的力学性能及指标.

la
fy d ft
23
【小结】
1. 建筑用钢筋的种类、力学性能 2. 混凝土的力学性能 3. 混凝土的变形 4. 钢筋与混凝土的粘结锚固
24
The End
25
F
F=13.4KN 截面开裂并破坏
b. 钢筋混凝土梁:受拉区配220钢筋
F
300
200
f
t
200
300
220
Fcr=15 KN 截面开裂; Fu=87KN 截面破坏。
梁的承载力大大提高,梁的受力性能改善。
12
2.1.2 钢筋
一、钢筋的种类及选用
HPB235
热轧钢筋
HRB335 HRB400
其冷弯指标是指在常温下被检验材料对于某一相对的半径 (相对板材厚度与钢筋直径)的弯曲角度。
17
3. 钢材的加工性能
常见的建筑工程钢材加工有冷加工、热加工两类:
冷加工:板材、线材的冷弯;线材的冷拉、冷拔;
热加工:焊接。
冷拉
σ
A B
0
冷拉后的钢筋没有明显的屈服阶段,如
B图。
冷拉卸载后经过一段时间的停滞,再对
e
a—弹性极限fb
c—屈服强度fy
d—极限强度fu
sd
o
e
s0.2 c
0
0.2%
某些无明显屈服点的材料,以残余变形0.2%对应应力
作为名义屈服强度。
4
e
b. 弹性与塑性
材料在外力作用下产生变形,当外力除去后能完全恢复到原
始形状的性质,称为弹性。
s
f
弹性模量: Es s e
u
fbf a’
第三章 结构材料的力学性能及指标
结构材料的力学性能资料

三、钢筋与混凝土相互作用
(一). 粘结力
胶合力
钢
筋
摩擦力
机械咬合力
主要作用
带肋钢筋的机械咬合力 > 光圆钢筋的机械咬合力 注意:钢筋表面的轻微锈蚀也增加它与混凝土的粘结力
(2)粘结应力分析 (以拉拔试验为例)
由试验可知: (1)最大粘结应力在离开端 部的某一位置出现,且随拔 出力的大小而变化,粘结应 力沿钢筋长度是曲线分布; d P (2)钢筋的埋入长度越长, 拔出力越大,但埋入长度过 大时,则其尾部的粘结应力 很小,基本不起作用; (3)粘结强度随混凝土强度 等级的提高而增大; (4)带肋钢筋的粘结强度高 于光圆钢筋,而在光圆钢筋 末端做弯钩大大提高拔出力
P
土的应变随时间继续增
长的现象被称为徐变。
二、混 凝 土
2. 混凝土的变形
长期荷载作用下混凝土的变形性能----影响徐变的因素
•应力: c<0.5fc,徐变变形与应力成正比----线性徐变 0.5fc<c<0.8fc,非线性徐变 c>0.8fc,造成混凝土破坏,不稳定 •加荷时混凝土的龄期,越早,徐变越大 •水泥用量越多,水灰比越大,徐变越大 •骨料越硬,徐变越小
解:1、直径为28mm>25mm,锚固长度需乘以修正系数取1.1;
2、 钢筋在锚固区的混凝土保护层厚度大于钢筋直径的3倍且配 有箍筋,锚固长度需乘以修正系数取0.8;
3、实配钢筋较多,需乘以1/1.05
故:
la lab 1.1 0.8
fy ft
d
1 360 0.14 32 663m m 1.05 2.04
纵向受力钢筋为HRB400级,直径为28mm,求纵 向受拉钢筋的锚固长度。
机械结构材料力学性能分析

机械结构材料力学性能分析引言:机械结构材料的力学性能分析是一项重要的工程技术,它对于机械结构的设计和制造具有决定性的影响。
本文将探讨机械结构材料力学性能分析的基本流程和方法,以及其中的一些关键因素。
1. 材料力学性能的概念和分类在机械结构材料力学性能分析中,力学性能包括强度、刚度、塑性和韧性等指标。
强度是材料抵抗外力破坏的能力,刚度则与材料对变形的抵抗能力有关。
塑性指材料在受力下能够产生持久的塑性变形,而韧性则是材料在破坏前能够吸收的能量。
这些性能指标的好坏直接影响着机械结构的可靠性和安全性。
2. 材料力学性能测试方法材料力学性能的测试方法多种多样,常见的包括拉伸试验、压缩试验、弯曲试验和冲击试验等。
拉伸试验是最常用的一种材料性能测试方法,通过施加拉力来测量材料的强度和刚度。
压缩试验和弯曲试验则用来测试材料的抗压和抗弯性能。
冲击试验则关注材料的韧性和吸能能力。
3. 材料力学性能的分析方法在材料力学性能分析中,常用的分析方法包括应力-应变分析、断裂力学和疲劳寿命分析等。
应力-应变分析是一种通过施加力和测量应变来评估材料性能的方法。
断裂力学则研究材料在受到外力作用下破裂的机理和分析方法。
疲劳寿命分析则关注材料在反复加载下的耐久性能。
4. 材料力学性能的影响因素材料力学性能受多种因素影响,包括材料的成分、组织结构、加工工艺和环境等。
例如,不同金属合金的强度和刚度常常取决于合金中添加的合金元素和热处理工艺。
材料的组织结构也会对力学性能产生重要影响,晶粒大小和晶界分布等因素均会影响材料的强度和塑性。
此外,环境因素如温湿度对材料性能的稳定性也有一定影响。
5. 机械结构材料力学性能分析的应用机械结构的设计和制造需要考虑材料力学性能的影响。
例如,在汽车制造中,车身结构需要具备足够的强度和刚度,以保证驾乘人员的安全。
同时,在航空航天领域,飞机材料需要满足一定的韧性和疲劳寿命,以应对复杂的工作环境和飞行载荷。
结论:机械结构材料的力学性能分析是一项重要的工程技术,它能够评估材料的强度、刚度、塑性和韧性等指标。
建筑结构材料的物理力学性能

6
中高强钢丝和钢绞线
中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线的为 1470 ~1860MPa;钢丝的直径3~9mm,外形有光面、刻痕和螺旋肋三 种。另有二股、三股和七股钢绞线,外接圆直径9.5~15.2 mm。 中高强钢丝和钢绞线均用于预应力混凝土结构。
多功能性 可以制得不同物理力学性质的混凝土,基本上能满足所有不同工
程的要求。
可加工性 可以按照工程结构的要求,浇筑成不同形状和尺寸的整体结构或
预制构件。
和钢筋的兼容性 钢筋等有牢固的粘结力,与钢材有基本相同的线膨胀系数,能制
作钢筋混凝土结构和构件。
低能耗性 能源消耗较烧结砖及金属材料低,能耗大约是钢材的1/90。
有在春秋战国时期就已兴修水利如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程所55在1400年前由料石修建的现存河北赵县的安济桥这是世界上最早的单孔敞肩式石拱桥桥长5082m宽约9m为拱上开洞既可节约石材且可减轻洪水期的水压力它无论在材料使用结构受力艺术造型和经济上都达到了相当高的成就该桥已被美国土木工程学会选入世界第12个土木工程里程碑
3.1 建筑钢材
钢材在建筑工程中与其它结构材料相比所具有的特性: 1.轻质高强 2.韧性好、抗冲击能力强、抗拉强度高 3.可焊接、铆接、易于装配 4.外表轻巧、华美、具有光泽 5.易腐 6.耐火性差
1
1、建筑结构常用的钢材类别
(1)结构钢材种类:
碳素钢
按含碳量不同可分为:
低碳钢(含碳量少于0.25%) 中碳钢(含碳量在0.25%~0.6%) 高碳钢(含碳量在0.6%~1.4%)
第三章 结构材料的力学性能及指标

第一节 结构材料基本要求
塑性:材料在外力作用下产生变形,当外力去除后,
有一部分变形不能恢复,这种性质称为材料的塑性。 弹性变形与塑性变形的区别:前者为可逆变形,后 者为不可逆变形。 材料塑性性能是决定结构或构件是否安全可靠的重要 参数之一,可以通过测量材料伸长取断面收缩率或冷弯 性能来确定材料的塑性性能。
第一节 结构材料基本要求
一、结构材料力学性能的基本要求
工程结构对材料力学性能的要求是通过力学性能指标 来实现的,而力学性能指标又是通过实验方法测定的。 结构材料主要力学性能指标有:强度、弹性、塑性、 冲击韧性与冷脆性、徐变和松弛等。
第一节 结构材料基本要求
(一)强度
强度是材料抵抗破坏能力的指标。
二、其他要求
结构材料不仅要满足强度、弹性、塑性等力学性能方
面的要求,还有满足其他的一些基本要求:
1.协同工作性能
材料的协同工作性能是指两种或两种以上的材料或杆 件可以融合成一体,共同参与受力和变形,而不会轻易 分开的性能。 如钢材的可焊性、钢筋和混凝土之间的共同工作性能
以及砌块与砂浆之间的粘结性能等。
能完全恢复到原始形状的性质称为弹性。这种外力消失 后瞬间恢复的变形称为弹性变形。
弹性模量:是反映材料受力时抵抗弹性变形的能力,
即材料的刚度,它是钢材在静荷载作用下计算结构变形 的一个重要指标。 在弹性范围内,弹性模量为常数,其值等于应力与应 变的比值,即:Es=σ/ε 弹性模量越大,材料的刚度越大,即越不容易变形。
第一节 结构材料基本要求
(三)冲击韧性
冲击韧性是指钢材抗冲击而不破坏的能力。
冲击韧性与材料的塑性有关,但是又不等同于塑性,
它是强度和塑性的综合指标。
材料的冲击韧性与其内在质量、宏观缺陷和微观组成
混凝土结构材料的力学性能

02 混凝土的力学性能
抗压性能
抗压强度
混凝土抗压强度是衡量其抵抗压 力的能力,通常以MPa(兆帕)
为单位表示。
抗压弹性模量
混凝土的抗压弹性模量反映了 其抵抗压力变形的能力,是结 构设计中的重要参数。
抗压韧性
混凝土的抗压韧性是指在承受 压力时抵抗破裂的能力,与材 料的微观结构和制作工艺有关 。
抗压疲劳性能
水工建筑
水工建筑主要包括水库、水电站、堤坝等水利设施,需要承 受较大的水压力和冲刷力。
混凝土结构材料具有较好的抗渗性能和耐久性,能够满足水 工建筑的要求,提高水利设施的稳定性和安全性。
05 混凝土的未来发展
高性能混凝土
总结词
具有高强度、高耐久性和高工作性能 的混凝土材料。
详细描述
高性能混凝土通过优化原材料、配合 比和制备工艺,显著提高了混凝土的 力学性能、耐久性和工作性能,能够 满足各种复杂工程结构的需要。
混凝土在反复承受压力作用下 抵抗疲劳破坏的能力,对于长 期承受动态载荷的结构非常重
要。
抗拉性能
抗拉强度
混凝土的抗拉强度是指其抵抗拉伸应 力的能力,通常远低于抗压强度。
抗拉弹性模量
混凝土的抗拉弹性模量反映了其抵抗 拉伸变形的能力,是结构设计中的重 要参数。
抗拉韧性
混凝土的抗拉韧性是指在承受拉伸应 力时抵抗开裂和断裂的能力。
智能混凝土
总结词
具有自感知、自适应和自修复功能的混凝土材料。
详细描述
智能混凝土通过在混凝土中添加智能纤维、传感器和特殊添加剂,使其具备感 知外部应力的能力,并能够根据应力变化自适应调整内部结构,同时具有自修 复损伤的能力,提高了混凝土结构的智能化水平。
再生混凝土
结构材料的力学性能及选用

n26 1(0fcu 5)0当 ,n2时, n2取
c fc
c
fc 110c
n
o
0
0 0 .0 0 0 .5 2 fc u 5 1 0 50
c u
u 0 .00 fc 3 u 5 3 0 1 5 0
侧向受约束时混凝土的变形特点
c fcc
fc 非约束混凝土
Ec Esec
o
c0 2c0 sp cc
立方体抗压强度标准值fcuk
标准试块:150×150 ×150mm
非标准试块:100×100 ×100 ,换算系数:0.95 200×200 ×200 ,换算系数:1.05
§立方体抗压强度标准值是确定混凝土强度等级的标准。
我国规范的混凝土强度等级有:C15,C20,C25,C30,
C35,C40,C45,C50,C55,C60,C65,C70,C75,
结构材料的力学性能及选用
(优选)结构材料的力学性能 及选用
屈服强度: σB ,是钢筋关键性的强度指标。
对于有明显屈服点的钢材,由于钢材的屈服将产生明 显的、不可恢复的塑性变形,从而导致构件可能在钢材尚 未进入强化阶段就产生过大的变形和裂缝,因此在正常使 用情况下,构件中的钢材应力应小于其屈服强度。
特征值:
概率 密度
强度 标准值
强度 平均值
强度标准值 = 强度平均值 - 2×均方差
材料强度
2、塑性指标
伸长率:反映钢材塑性性能的指标。
5 ,10
l
l0 l0
伸长率越大,则钢材的塑性越好。
冷弯性能:反映钢材在常温下的塑性 加工性能的指标。
用弯心直径和弯曲角度来表示。
二、钢材的冷加工和热处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、钢材的种类 及选用
1、混凝土结构对钢筋的要求
①应具有较高的强度和良好的塑性;
②便于加工和焊接;
③并应与混凝土之间具有足够的粘接力。
钢筋
热轧钢筋 冷拉钢筋 钢筋按加工 方法不同分类
热处理钢筋
冷轧钢筋(冷轧带肋钢筋、冷轧扭钢筋) 冷拔低碳 消除应力钢丝 钢绞线
显屈服点钢材与无明显屈服点钢材两类
一、钢材的力学性能
P
A
• 钢材拉伸试验 的标准试件
l
P A l l
P
低碳钢和低合金钢(含碳量和低碳钢相同)
一次拉伸时的应力-应变曲线见图。
把ƒy取为计算构件的强度标准,以ƒu作为材料的强度储备。
fu fy
b a a’ c d
e f
a´为比例极限
对于没有明显屈服点的 钢材,以残余变形为 0.2%时的应力作为名义 屈服点,其值约等于极限 强度85%。
注意:钢材在一次压缩或剪切所表现出来的应 力-应变变化规律基本上与一次拉伸试验时相似, 压缩时的各强度指标也取用拉伸时的数据,只是 剪切时的强度指标数值比拉伸时的小。
由力学性能不同分成:
软钢:有明显屈服台阶的钢筋(热轧钢筋、 冷拉钢筋)
HPB235级钢筋:光圆钢筋,公称直径范围为8~ 20mm,推荐直径为8、10、12、16、20mm。实际工 程中只用作板、基础和荷载不大的梁、柱的受力主筋、箍 筋以及其他构造钢筋。 HRB335级钢筋:月牙纹钢筋,公称直径范围为6~ 50mm,推荐直径为6、8、10、12、16、20、25、32、 40和50mm。是混凝土结构的辅助钢筋,实际工程中也 主要用作结构构件中的受力主筋。
三、钢材的种类 及选用
钢筋按在结构
普通钢筋
中是否施加预
应力分类 钢丝(热处理 钢筋)
光面钢筋 钢筋按外形分类
带肋钢筋
三、钢材的种类及选用 1)普通钢筋 普通钢筋指用于钢筋混凝土结构中的钢筋和 预应力混凝土结构中的非预应力钢筋。 用于钢筋混凝土结构的热轧钢筋分为 HPB235、 HRB335、HRB400和RRB400四 个 级别。 《混凝土规范》规定,普通钢筋宜采用 HRB400级和HRB335级钢筋。
HRB400级钢筋:月牙纹钢筋,公称直径范围和推荐 直径同HRB335钢筋。是混凝土结构的主导钢筋,实际工
3.1 建筑钢材
含碳量低于2%的铁碳合金称为钢; 含碳量高于2%的铁碳合金称为生铁。 钢经轧制或加工的钢筋、钢丝、钢绞线、 钢板及各种型钢,统称为钢材。
一、钢材的力学性能
钢筋的力学性能:强度、变形(弹性和塑
性变形)
单向拉伸试验是确定钢筋性能的主要手段 应力应变(-) 曲线可将钢材分为有明
硬钢:无明显屈服台阶的钢筋(钢丝、热 处理钢筋)
• 钢筋力学性能指标:
屈服强度、抗拉强度、伸长率、冷弯性能。
1、钢材的强度:包括屈服强度与抗拉强度两项指标。
对于有明显屈服台阶的软钢取屈服强度 fy 作为
强度设计依据。同时,要求屈服强度与抗拉强度
的比值不大于0.8。 对于无明显屈服台阶的硬钢取条件屈服强度 0.2
作为强度设计依据。
条件屈服极限 取相应于残余应变 = 0.2%时的应力 0.2作为 名义屈服点。常取 0.2=0.85 fsu。
2、钢筋的塑性:指钢材破坏前产生变形的能力。 伸长率:
l2 l1 100% l1 5 l1 5d 10 l1 10d
弯心直径
冷弯性能:
冷弯角度
冷弯性能
钢筋冷弯试验
冷弯性能合格是鉴定钢材在弯曲状态下的塑性应变能 力和钢材质量的综合指标。
冷弯试验不仅能直接检验钢材的弯曲变形能力或塑性
性能,还能暴露钢材内部的冶金缺陷,如硫、磷偏析和硫 化物与氧化物的掺杂情况,这些都将降低钢材的冷弯性能。
国家标准《钢筋混凝土用热轧带肋钢筋》
GB1499-98对混凝土结构用钢筋的机械性
大纲及要求
3.教学重点与难点:
(1)重点: 钢筋的形式、品种和级别,钢筋的强度、变形和弹 性模量,钢筋的冷加工、弯钩和接头及钢筋混凝土 的粘结。 混凝土的强度—立方强度、等级,轴心抗压、抗拉、 弯曲抗压和疲劳强度; 混凝土的变形—混凝土在短期和长期荷载下的变形, 混凝土的弹性模量、徐变、收缩和膨胀; (2)难点:混凝土的强度、混凝土的疲劳强度、钢 筋的强度。
本章主要内容
建筑钢材√ 混凝土 钢筋与混凝土的粘结作用
大纲及要求
1.教学目的和要求:
(1)掌握钢筋和混凝土的强度指标及规范取值; (2)掌握混凝土的变形指标、钢筋和混凝土粘 结原理。
2. 教学内容:
(1)钢筋混凝土材料的一般概念; (2)钢筋的力学性能; (3)混凝土材料的组成及力学性能; (4)钢筋与混凝土的粘结性能。
能作出规定: 对于有明显流幅的钢筋,其主要指标为: 屈服强度、抗拉强度、伸长率、冷弯性能 对于没有明显流幅的钢筋,其主要指标为: 抗拉强度、伸长率、冷弯性能
二、钢材的冷加工和热处理
冷加工的方法:冷拉、冷拔 冷加工的目的:改变钢材内部结构,提高
钢材强度,节约钢筋。但冷加工后会使钢筋 的塑性降低。
o
oa为弹性阶段 b为屈服上限 c为屈服下限,即屈服强度 fy cd为屈服台阶 de为强化阶段 e为极限抗拉强度 fu
ef为颈缩阶段
有明显屈服点的钢筋
(N/mm2) 0.2
e 2)无明显屈服点的钢 材 没有明显的屈服点和 屈服台阶钢材的应力-应 变曲线见图 o
0.2%
0.2-条件屈服强度
c' c
冷拉控制应力 冷拉无率
(b)
(a)
d1 d1
P
d2
d2
冷拉时,可采用冷拉控制应力和冷拉率控制。 冷拉后可提高钢材的抗拉强度,但其屈服
台阶变短。即冷拉可提高钢材的抗拉强度,
但不能提高钢筋的抗压强度。 冷拔时,可同时提高钢材的抗拉和抗压强度。
塑性降低很多。 目前我国强度高、性能好的钢筋及钢丝、钢
冷加工对钢材性能的影响:冷拉只能提高
钢筋的抗拉强度,而不能提高钢筋的抗压强 度;冷拔可同时提高钢筋的抗拉强度和抗压 强度。
二、钢材的冷加工和热处理
热处理是对某些特定型号的热轧钢 进行淬火和回火处理。钢筋热处理后 强度有很大提高而塑性降低不多。
钢筋冷拉
(N/mm2)
d' b
冷拉时效
钢筋冷拔
d