万有引力与航天知识点复习及习题
高中物理必修二《万有引力与航天》知识提纲典型习题,以及单元检测习题和答案..

必修二第六章万有引力与航天第六章 《万有引力与航天》知识纲要一、知识网络托勒密:地心说 人类对行 哥白尼:日心说 星运动规开普勒 第必定律(轨道定律)行星第二定律(面积定律) 律的认识第三定律(周期定律)运动定律万有引力定律的发现万有引力定律的内容万有引力定律F =Gm 1m2r 2引力常数的测定万有引力定律称量地球质量 M =gR2G万有引力的理论成就M=4 2r 3GT 22 3与航天 计算天体质量 r =R,M=4 RGT 2M=gR 2G人造地球卫星 4 2 r 3M=2GTMmv 2宇宙航行G r 2=mrmr2ma第一宇宙速度 7.9km/s三个宇宙速度第二宇宙速度 11.2km/s 地三宇宙速度 16.7km/s二、要点内容解说 1、计算重力加快度(1)在地球表面邻近的重力加快度,在忽视地球自转的状况下,可用万有引力定律来计算。
FM =6.67* 10 11 5.98 * 1024 =9.8(m/2引 =G2*s )=9.8N/kgR (6730* 103 ) 2即在地球表面邻近,物体的重力加快度g = 9.8m/ s 2 。
这一结果表示,在重力作用下,物体加快度大小与物体质量没关。
(2)即算地球上空距地面h 处的重力加快度 g ’。
有万有引力定律可得:GM又 g =GM ,∴ g' = R 2,∴ g ’= R) 2gg ’=R 2g(( R h) 2(R h) 2R h(3)计算随意天体表面的重力加快度 g ’。
有万有引力定律得:g ’=GM '( M ’为星球质量, R ’卫星球的半径) ,又 g =GM,∴ g' = M '( R )2。
R'2R 2gMR'注意:在地球表面物体遇到地球施与的万有引力与其重力是协力与分力的关系, 万有引力的 另一个重量给物体供给其与地球一同自转所需要的向心力。
因为这个向心力极少,我们能够忽视,所以在地球表面的物体 F 引=G2、天体运行的基本公式在宇宙空间, 行星和卫星运行所需的向心力, 均来自于中心天体的万有引力。
万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练知识梳理考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k T a =23。
其中k 值与太阳有关,与行星无关。
(4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。
当卫星绕行星旋转时,k Ta =23,但k 值不同,k 与行星有关,与卫星无关。
(5) 中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点规范练18 万有引力定律与航天—2023年人教版(天津)高中大一轮总复习课后习题

考点规范练18万有引力定律与航天一、单项选择题1.若取地球的第一宇宙速度为8 km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,这颗行星的“第一宇宙速度”约为()A.2 km/sB.4 km/sC.16 km/sD.32 km/s2.假设有一星球的密度与地球相同,但它表面处的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的()A.14B.4倍C.16倍D.64倍3.(2018·天津红桥二模)银河系的恒星中有一些是双星。
某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O做匀速圆周运动。
由天文观测得其周期为T,S1到O点的距离为r1,S1和S2的距离为r,已知引力常量为G。
由此可求出S2的质量为()A.4π2r2(r-r1)GT2B.4π2r2r1GT2C.4π2r3GT2D.4π2r13GT2二、多项选择题4.“轨道康复者”是“垃圾”卫星的救星,被称为“太空110”,它可在太空中给“垃圾”卫星补充能源,延长卫星的使用寿命。
假设“轨道康复者”的轨道半径为地球同步卫星轨道半径的15,其运动方向与地球自转方向一致,轨道平面与地球赤道平面重合,下列说法正确的是()A.“轨道康复者”的加速度是地球同步卫星加速度的25倍B.“轨道康复者”的速度是地球同步卫星速度的√5倍C.站在赤道上的人观察到“轨道康复者”向西运动D.“轨道康复者”可在高轨道上加速,以实现对低轨道上卫星的拯救5.(2019·全国Ⅰ卷)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示。
假设两星球均为质量均匀分布的球体。
已知星球M 的半径是星球N 的3倍,则( )A.M 与N 的密度相等B.Q 的质量是P 的3倍C.Q 下落过程中的最大动能是P 的4倍D.Q 下落过程中弹簧的最大压缩量是P 的4倍三、非选择题6.宇航员到达某星球后,试图通过相关测量估测该星球的半径。
万有引力与航天基本知识点回顾以及经典题型

专题-万有引力与航天一、基本概念行星的运动:1. 开普勒行星运动三大定律①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
推论:近日点速度比较快,远日点速度比较慢。
③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。
推广:对围绕同一中心天体运动的行星或卫星,上式均成立,K 取决于中心天体的质量。
万有引力:2、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 3、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。
即:122m m F Gr =②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用(1)万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。
忽略地球自转可得: 宇宙航行:4、人造卫星的运行规律32a k T =2MmF Gr =11226.6710/G N m kg -=⨯⋅2R MmG mg=rTm r m r v m r Mm G 222224πω===332T=2.GM GM GM r M v a G r r rωπ=== , , ,例.两颗人造卫星A 、B 绕地球作圆周运动,周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为( ) 5、宇宙速度第一宇宙速度:V 1=7.9km/s 第二宇宙速度:V 2=11.2km/s 第三宇宙速度:V 3=16.7km/s 注:(1)宇宙速度均指发射速度(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度6、地球同步卫星(通讯卫星)(1)运动周期与地球自转周期相同,且T=24h ;(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期; (3)同步卫星高度不变,运行速率不变(因为T 不变); (4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。
高考物理万有引力与航天答题技巧及练习题(含答案)含解析

高考物理万有引力与航天答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。
土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
【答案】()())(21?2?3?2GM GM R hR h R R h GMπ+++【解析】 【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2MmG mg R= 可得2GM g R=(2)由万有引力提供向心力:22()Mm mv G R h R h=++可得:GMv R h=+(3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:(2R h T R h GMπ+=+2.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求:(1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R =,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =3.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R= 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得7gRv =.4.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B r T GM=3)03t GM r ω∆=-【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GM= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.5.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用6.宇航员来到某星球表面做了如下实验:将一小钢球以v 0的初速度竖直向上抛出,测得小钢球上升离抛出点的最大高度为h (h 远小于星球半径),该星球为密度均匀的球体,引力常量为G ,求:(1)求该星球表面的重力加速度;(2)若该星球的半径R ,忽略星球的自转,求该星球的密度. 【答案】(1)(2)【解析】(1)根据速度-位移公式得:,得(2)在星球表面附近的重力等于万有引力,有及联立解得星球密度7.在某一星球上,宇航员在距离地面h 高度处以初速度v 0沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为x ,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 。
高考物理万有引力与航天解题技巧及练习题(含答案)含解析

高考物理万有引力与航天解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ= 【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R= 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m r r T π= 解得:2rr T R gπ=3.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.4.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】234()h R l Tgπ+=【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得312()h R T R gπ+=设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12Tl RT π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.5.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr=,化简可得万有引力常量G ; 在地球表面附近的物体受到重力等于万有引力2MmG mg R=,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr =解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m,在地球表面附近满足:2MmGmg R= 得地球的质量为: 2R gM G =地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.6.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
万有引力与航天习题(含答案)

1-4-1 万有引力与航天43个必须掌握的习题模型1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是( )A .卫星的轨道半径越大,它的运行速度越大B .卫星的轨道半径越大,它的运行速度越小C .卫星的质量一定时,轨道半径越大,它需要的向心力越大D .卫星的质量一定时,轨道半径越大,它需要的向心力越小2.甲、乙两颗人造地球卫星,质量相等,它们的轨道都是圆,若甲的运动周期比乙小,则( )A .甲距地面的高度比乙小B .甲的加速度一定比乙小C .甲的加速度一定比乙大D .甲的速度一定比乙大 3根据以上信息,关于地球及地球的两个邻居金星和火星(行星的运动可看作圆周运动),下列判断正 确的是( )A .金星运行的线速度最小,火星运行的线速度最大B .金星公转的向心加速度大于地球公转的向心加速度C .金星的公转周期一定比地球的公转周期小D .金星的主要大气成分是由CO 2组成的,所以可以判断气压一定很大4.如图1-4-1所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A 、B 、C 某时刻在同一条直线上,则( )A.经过一段时间,它们将同时回到原位置B.卫星C 受到的向心力最小C.卫星B 的周期比C 小D.卫星A 的角速度最大5.某天体半径是地球半径的K 倍,密度是地球的P 倍,则该天体表面的重力加速度是地球表面重力加速度的( )A .2P K 倍B .PK倍 C .KP 倍 D .K P 2倍6.A 、B 两颗行星,质量之比p M M BA =,半径之比q R RB A =,则两行星表面的重力加速度之比为( )A. qp B. 2pq C. 2qpD.pq7.人造卫星离地球表面距离等于地球半径R ,卫星以速度v 沿圆轨道运动,设地面上的重力加速度为g ,则( )A. gR v 4=B. gR v 2=C. gR v =D. 2gR v =8.已知地球半径为R ,地面重力加速度为g . 假设地球的自转加快,则赤道上的物体就可能克服地球引力而飘浮起来,则此时地球的自转周期为( )A.g R B. g R π2 C. Rgπ2 D. gRπ21 9.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .下列表达式中正确的是( )A .T =2πGM R /3B .T =2πGM R /33C .T =ρπG /D .T =ρπG /310.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常数为G ,那么该行星的平均密度为( )A. π32GTB. 23GT πC. π42GT D. 24GT π 11.地球公转的轨道半径是R 1,周期是T 1,月球绕地球运转的轨道半径是R 2,周期是T 2,则太阳质量与地球质量之比是 ( )A.22322131T R T R B.21322231T R T R C.21222221T R T R D.32223121T R T R12.地球表面重力加速度g 地、地球的半径R 地,地球的质量M 地,某飞船飞到火星上测得火星表面的重力加速度g 火、火星的半径R 火、由此可得火星的质量为( )A.地地地火火M R g R g 22B.地火火地地M R g R g 22C.地地地火火M R g R g 22 D.地地地火火M R g R g13.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k ,则地球与此天体的质量之比为 ( )A. 1B. kC. k 2D. 1/ k14.某星球的质量约为地球的9倍,半径约为地球的一半,若从地球上高h 处平抛一物体,射程为60m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为 A .10m B .15m C .90m D .360m 15以下说法正确的是( )A 、第一宇宙速度是物体在地面附近绕地球做匀速圆周运的速度B 、第一宇宙速度是使物体成为一颗人造卫星理论上最小发射速度C 、在地面附近发射卫星,如果发射速度大于7.9km/s ,而小于11.2km/s ,它绕地球运行的轨迹就是椭圆D 、紫金山天文台发现的“吴健雄星”直径为32km ,密度与地球相同,则该小行星的第一宇宙速度大小约为20m/s16土星外层上有一个环。
高中物理万有引力与航天技巧小结及练习题及解析

高中物理万有引力与航天技巧小结及练习题及解析一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-=解得t =2.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R= 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.3.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.地心说与日心说地心说认为地球是,太阳月球及其他星体均绕运动,后经人们观察是错误的。
日心说认为太阳是,地球和其他星体都绕________运动,实际上,太阳并非宇宙中心。
2.开普勒第一定律所有行星绕太阳运动的轨道都是,太阳处在的一个上。
3.开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等。
4.开普勒第三定律所有行星轨道半长轴的跟它的公转周期的比值都相等。
即:1.行星以太阳为圆心做匀速圆周运动需要,设行星质量为m,线速度为v,行星到太阳的距离为r,则行星绕太阳做匀速圆周运动的向心力F n=。
若行星绕太阳运动的周期为T,则v 与T的关系是所以F n还可以表示为2.根据牛顿第三定律,太阳对行星的引力与行星对太阳的引力应性质相同,大小,方向,规律相同,是一对____________________。
3.太阳与行星间的引力大小与、成正比,与成反比。
用公式表示F=4.只要能验证月球公转的向心加速度是地面附近的物体下落时的加速度的 ,就能够证明月球绕地球运动的力与使得苹果下落的力是同一种力.5.221 r mmGF 是的数学表达式,此式中G叫做,其数值为,牛顿发现上述定律后,英国科学家第一次较准确地测出了G的值.6. 1.天体之间的作用力主要是 .7. 2.忽略地球的自转,地面处物体的重力地球与物体间的万有引力,可列出公式方程为从而可求出地球质量M=8. 3.根据行星(或卫星)的运动学物理量,表示出行星(或卫星)的向心力F= ,而向心力是由来提供的,根据向心力公式和可列方程 ,即可求出中心天体的质量M=9. 4.太阳系九大行星中, 和是根据万有引力定律发现的.10.地球对周围的物体由_____________的作用,因而抛出的物体要.但是抛出的初速度越大,物体就会飞得越.如果没有,当速度足够大时,物体就不会落到地面上,将围绕地球运转,成为一颗绕地球运动的.11.第一宇宙速度的表达式是,如果地面附近物体与地球间的万有引力近似等于重力,则第一宇宙速度还可表示为,其值为.12.要使人造卫星绕地球运行,它进入地面附近的轨道速度必需等于或大于__________km/s,并且小于km/s;要使卫星脱离地球引力不再绕地球运行,成为人造行星,必须使它的速度等于或大于km/s;要想使它飞到太阳系以外的地方去,它的速度必须等于或大于km/s.一、开普勒三大定律:1、20XX年7月4日,美国宇航局的“深度撞击”计划在距离地球1.3亿千米处实施,上演了一幕“炮打彗星”的景象,目标是“坦普尔一号”彗星。
假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其轨道周期为5.74年,则关于“坦普尔一号”彗星的下列说法中正确的是()A.绕太阳运动的角速度不变B.近日点处线速度大于远地点处线速度C.近日点处线速度等于远地点处线速度D.其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数2、设行星绕恒星的运动轨道是圆,则其运行周期T的平方与其运行轨道半径R的三次方之比为常数,即T2 / R3= K。
那么K的大小()A.只与行星的质量有关B.只与恒星的质量有关C.与恒星和行星的质量都有关D.与恒星的质量及行星的速率有关3、一颗小行星环绕太阳作匀速圆周运动,其轨道半径是地球公转半径的4倍,则这颗小行星的运转周期是年。
4、飞船沿半径为R的圆轨道运动,其周期为T,如果飞船要返回地面,可在轨道上的某一点A处减速,将速度降低到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆与地面的B点相切,实现着陆,如图所示。
如果地球半径为R0,求飞船由A点运动到B点的时间。
二、万有引力定律1、在物理学发展的过程中许多物理学家的科学研究推动了人类文明的进程。
在对以下几位物理学家所做科学贡献的叙述中,正确的说法是( )A.英国物理学家卡文迪许用实验的方法测出引力常量GB.牛顿通过计算首先发现了海王星和冥王星C.爱因斯坦建立了相对论,相对论物理学否定了经典物理学D.开普勒经过多年的天文观测和记录,提出了“日心说”的观点2、已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( )A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度3、下面关于万有引力的说法中正确的是( )A.万有引力是普遍存在于宇宙空间中所有具有质量的物体之间的相互作用B.重力和引力是两种不同性质的力C.当两物体间有另一质量不可忽略的物体存在时,则这两个物体间万有引力将增大D.当两个物体间距为零时,万有引力将无穷大4、第一次通过实验比较准确的测出引力常量的科学家是()A. 牛顿B. 伽利略C.胡克D. 卡文迪许5、计算一个天体的质量,需要知道绕着该天体做匀速圆周运动的另一星球的条件是( )A. 质量和运转周期 B 运转周期和轨道半径C 运转速度和轨道半径D 运转速度和质量6、假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A .根据公式v=ωr 可知,卫星运动的线速度将增加到原来的2倍B .根据公式F=mv 2/r 可知,卫星所需向心力减小到原来的1/2C .根据公式F=GMm /r 2可知,地球提供的向心力将减小到原来的1/4D .根据上述B 和C 27、某星球的质量约为地球的9倍,半径为地球的一半,若从地球上高h 处平抛一物体,射程为60m ,则在该星球上以同样高度、以同样初速度平抛同一物体,射程为多少?8、宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。
(取地球表面重力加速度g =10 m/s 2,空气阻力不计)⑴求该星球表面附近的重力加速度g /;⑵已知该星球的半径与地球半径之比为R 星:R 地=1:4,求该星球的质量与地球质量之比M 星:M 地。
9、地球表面的重力加速度为g 0,物体在距地面上方3R 处(R 为地球半径)的重力加速度为g ,那么两个加速度之比g /g 0等于 ( )A.1:1B.1:4C.1:9D.1:1610、某物体在地面上受到的重力为160N ,将它置于宇宙飞船中,当宇宙飞船以g a 21=的加速度匀加速上升时,上升到某高度时物体所受的支持力为90N ,求此宇宙飞船离地面的高度。
(取地球半径=地R 6.4×103km ,地球表面处重力加速度=g 10m/s 2)11、某物体质量为m=16 kg ,将它放置在卫星中。
在卫星以a=5 m/s 2的加速度随火箭加速上升的过程中,当物体与卫星中的支持物的相互挤压力为90 N 时,( 已知地球半径R=6 400 km,地球表面的重力加速度g= 10 m/s 2 )求:(1)此高度处的重力加速度g ′为多少?(2)卫星距地面的高度h 为多少?三、人造地球卫星专题1、一颗人造地球卫星距地面的高度为h,设地球半径为R ,卫星运动周期为T ,地球表面处的重力加速度为g,则该同步卫星的线速度的大小应该为 ( )A .g R h )(+B .2π(h+R )/TC .)/(2R h g R +D .Rg2、两颗人造地球卫星,它们的质量之比为m 1:m 2=1:2,它们的轨道半径之比为R 1:R 2=1:3,那么它们所受的向心力之比F 1:F 2=______;它们的向心加速度之比a 1:a 2=________。
3、已知地球半径为R ,地球自转角速度为ω,地球表面的重力加速度为g ,则在赤道上空,一颗相对地面静止的同步通讯卫星离地面的高度为 (用已知三个量表示)。
3.地球半径为R ,地面重力加速度为g ,地球自转周期为T ,地球同步卫星离地面的高度为h ,则地球同步卫星的线速度大小为( )4、 “东方一号”人造地球卫星A 和“华卫二号”人造卫星B ,它们的质量之比为m A :m B =1:2,它们的轨道半径之比为2:1,则下面的结论中正确的是( )A .它们受到地球的引力之比为F A :FB =1:1B .它们的运行速度大小之比为v A :v B =1:2C .它们的运行周期之比为T A :T B =22:1D .它们的运行角速度之比为ωA :ωB =23:15、两颗人造地球卫星,都绕地球作圆周运动,它们的质量相等,轨道半径之比r 1 /r 2=1/2,则它们的速度大小之比v 1/v 2等于( )A. 2B.C. 1/2D. 46、两行星A 和B 各有一颗卫星a 和b ,卫星的圆轨道接近各自行星表面,如果两行星质量之比M A :M B =2 : 1,两行星半径之比R A :R B =1 : 2,则两个卫星周期之比T a :T b 为 ( )A .1 : 4B .1 : 2C .1 : 1D .4 : 17、两颗人造卫星A 、B 绕地球作圆周运动, 周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为 ( )A .RA :RB =4:1 , v A :v B =1:2 B .R A :R B =4:1 , v A :v B =2:1C .R A :R B =1:4 , v A :v B =2:1D .R A :R B =1:4 ,v A :v B =1:28.三颗人造地球卫星A 、B 、C 在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A = m B > m C ,则三个卫星( )A. 线速度大小的关系是v A >v B =v CB. 周期关系是T A <T B =T CC. 向心力大小的关系是F A >F B >F CD. 向心加速度大小的关系是a A >a B >a C9.人造地球卫星在运行中,由于受到稀薄大气的阻力作用,其运动轨道半径会逐渐减小,在此进程中,以下说法中正确的是( )A 卫星的速率将增大B 卫星的周期将增大C 卫星的向心加速度将增大 D. 卫星的向心力将减小四、共线问题1、如图2,有A 、B 两颗行星绕同一恒星O 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星第一次相遇(即两颗行星相距最近),则经过时间t 1=_______时两行星第二次相遇,经过时间t 2=_______时两行星第一次相距最远。
五、第一宇宙速度的计算1、我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。
设该卫星的轨道是圆形的,且贴近月球表面。
已知月球的质量为地球质量的1/80,月球的半径约为地球半径的1/4,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为A 、0.4 km/sB 、1.8 km/sC 、11 km/sD 、36 km/s2、已知地球质量为M ,引力常量为G ,地球半径为R ,用以上各量表示,在地球表面附近运行的人造卫星的第一宇宙速度v = .3.关于宇宙速度,下列说法正确的是( )A .第一宇宙速度是能使人造地球卫星绕地球飞行的最小发射速度B .第一宇宙速度是人造地球卫星绕地球飞行的最小速度C .第二宇宙速度是卫星在椭圆轨道上运行时近地点的速度D .第三宇宙速度是发射人造地球卫星的最小速度4.宇航员在一个半径为R 的星球上,以速度v 0竖直上抛一个物体 ,经过t 秒后物体落回原抛物点,如果宇航员想把这个物体沿星球表面水平抛出,而使它不再落回星球,则抛出速度至少应是( )六、空间站接轨问题1、宇宙飞船和空间站在同轨道上运动,若飞船想与前面的空间站对接,为了追上轨道空间站,飞船可采取的办法有( )A.飞船加速直到追上空间站完成对接B.飞船从原轨道减速至一个较低轨道,再加速追上空间站对接C.飞船从原轨道加速至一个较低轨道,再减速追上空间站对接D.无论飞船采取什么措施,均不能与空间站对接七、双星系统1、天文学上把两个相距较近,由于彼此的引力作用而沿各自的轨道互相环绕旋转的恒星系统称为“双星”系统,设一双星系统中的两个子星保持距离不变,共同绕着连线上的某一点以不同的半径做匀速圆周运动,则 ( )A.两子星的线速度的大小一定相等B.两子星的角速度的大小一定相等C.两子星受到的向心力的大小一定相等D.两子星的向心加速度的大小一定相等2.两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如图所示,以下说法正确的是( )A .它们的角速度相同B .它们的线速度与质量成反比C .它们的向心力与质量成正比D .它们的轨道半径与质量成正比3、在天体运动中,将两颗彼此相距较近的行星称为双星。