万有引力与航天测试题含答案
(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。
万有引力与航天试题全集(含详细答案)

万有引力与航天试题全集(含答案)一、选择题:本大题共。
1、地球绕太阳运动的轨道是一椭圆,当地球从近日点向远日点运动时,地球运动的速度大小(地球运动中受到太阳的引力方向在地球与太阳的连线上,并且可认为这时地球只受到太阳的吸引力)()A.不断变大B.逐渐减小C.大小不变D.没有具体数值,无法判断2、对于开普勒第三定律的表达式=k的理解正确的是A.k与a3成正比B.k与T2成反比C.k值是与a和T无关的值D.k值只与中心天体有关3、苹果落向地球,而不是地球向上运动碰到苹果,下列论述中正确的是A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力而造成的C.苹果对地球的作用力和地球对苹果的作用力是相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都正确4、某球状行星具有均匀的密度ρ,若在赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星自转周期为(万有引力常量为G)A. B. C. D.5、关于开普勒第三定律的公式=k,下列说法中正确的是A.公式只适用于绕太阳做椭圆轨道运行的行星B.公式适用于所有围绕星球运行的行星(或卫星)C.式中的k值,对所有行星(或卫星)都相等D.式中的k值,对围绕不同星球运行的行星(或卫星)都相同6、根据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,测出了环中各层的线速度v的大小与该层至行星中心的距离R.则以下判断中正确的是A.若v与R成正比,则环是连续物B.若v与R成反比,则环是连续物C.若v2与R成反比,则环是卫星群D.若v2与R成正比,则环是卫星群7、关于太阳系中各行星的轨道,以下说法正确的是A.所有行星绕太阳运动的轨道都是椭圆B.有的行星绕太阳运动的轨道是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同8、类似于太阳与行星间的引力,地球和月球有相当大的万有引力,为什么它们不靠在一起,其原因是A.不仅地球对月球有万有引力,而且月球对地球也有万有引力,这两个力大小相等,方向相反,互相平衡B.地球对月球的引力还不算大C.不仅地球对月球有万有引力,而且太阳系里其他星球对月球也有万有引力,这些力的合力为零D.万有引力不断改变月球的运动方向,使得月球绕地球运动9、下列说法正确的是A.经典力学能够说明微观粒子的规律性B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动的问题C.相对论与量子力学的出现,表示经典力学已失去意义D.对于宏观物体的高速运动问题,经典力学仍能适用10、下面关于行星绕太阳运动的说法中正确的是A.离太阳越近的行星周期越大B.离太阳越远的行星周期越大C.离太阳越近的行星的向心加速度越大D.离太阳越近的行星受到太阳的引力越大11、可以发射一颗这样的人造地球卫星,使其圆轨道A.与地球表面上某一纬度线(非赤道)是共面同心圆B.与地球表面上某一经度线所决定的圆是共面同心圆[从太阳-恒星惯性系中看,某一经线构成的圆平面会随地球自转而不断改变方位,但卫星的极地轨道平面的方位却几乎不变——垂直于该平面过圆心的直线几乎总是指向同一方向,就像地轴的方向几乎总是指向北极星一样。
万有引力与航天--1--word答案

万有引力与航天(一)基础题1、发现万有引力定律和测出引力常量的科学家分别是( C )A .开普勒、卡文迪许B .牛顿、伽利略C .牛顿、卡文迪许D .开普勒、伽利略2、以下说法正确的是( B C )A 、经典力学理论普遍适用,大到天体,小到微观粒子B 、经典力学理论的成立具有一定的局限性C 、在经典力学中,物体的质量不随运动状态而改变D 、相对论与量子力学否定了经典力学理论3、关于行星绕太阳运动的下列说法中正确的是( D )A .所有行星都在同一椭圆轨道上绕太阳运动B .行星绕太阳运动时太阳位于行星轨道的中心处C .离太阳越近的行星运动周期越长D .所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等4、我国发射的“神州六号”载人飞船,与“神州五号”飞船相比,它在更高的轨道上绕地球做匀速圆周运动,如图所示,下列说法中正确的是( A C )A .“神州六号”的速度较小B .“神州六号”的加速度大小与“神州五号”的相等C .“神州六号”的周期更长D .“神州六号”的周期与“神州五号”的相同5、对于万有引力定律的表达式221rm m G F =, 下面说法中正确的是( A C )A 、公式中G 为引力常量,它是由实验测得的,而不是人为规定的B 、当r 趋近于零时,万有引力趋近于无穷大C 、m 1与m 2受到的引力总是大小相等的,而与m 1,m 2是否相等无关D 、m 1与m 2受到的引力总是大小相等,方向相反的,是一对平衡力6、一个行星,其半径是地球半径的3倍,质量是地球的25倍,则它表面的引力加速度是地球表面重力加速度的( C )A .6倍B .4倍C .25/9倍D .12倍中等题7、地球表面重力加速度为g ,地球半径为R ,引力常量为G ,下式关于地球密度的估算式正确的是( A )A .RG g πρ43=B .G R g 243πρ=C .RG g =ρD .2GR g =ρ8、地球质量为M.半径为R.自转角速度为ω,地面重力加速度为g ,万有引力恒量为G ,同步卫星的质量为m ,轨道半径为r ,则下面表示同步卫星的线速度的式子中正确的有:(A D )A.v =ω rB.v =3GM ωC.v =GM 2r D.v =R g r 9某科学家估测一个密度约为3105.1⨯kg/m 3的液态星球是否存在,他的主要根据之一就是它自转的周期,假若它存在,其自转周期的最小值接近于( A )(万有引力恒量111067.6-⨯=G Nm 2/kg 2)A .104sB .105sC .2×104sD . 3×104s10、经长期观测人们在宇宙中已经发现了“双星系统”。
高一物理万有引力与航天试题答案及解析

高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。
3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。
高中物理万有引力与航天题20套(带答案)含解析

高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。
万有引力与航天习题(含答案)

1-4-1 万有引力与航天43个必须掌握的习题模型1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是( )A .卫星的轨道半径越大,它的运行速度越大B .卫星的轨道半径越大,它的运行速度越小C .卫星的质量一定时,轨道半径越大,它需要的向心力越大D .卫星的质量一定时,轨道半径越大,它需要的向心力越小2.甲、乙两颗人造地球卫星,质量相等,它们的轨道都是圆,若甲的运动周期比乙小,则( )A .甲距地面的高度比乙小B .甲的加速度一定比乙小C .甲的加速度一定比乙大D .甲的速度一定比乙大 3根据以上信息,关于地球及地球的两个邻居金星和火星(行星的运动可看作圆周运动),下列判断正 确的是( )A .金星运行的线速度最小,火星运行的线速度最大B .金星公转的向心加速度大于地球公转的向心加速度C .金星的公转周期一定比地球的公转周期小D .金星的主要大气成分是由CO 2组成的,所以可以判断气压一定很大4.如图1-4-1所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A 、B 、C 某时刻在同一条直线上,则( )A.经过一段时间,它们将同时回到原位置B.卫星C 受到的向心力最小C.卫星B 的周期比C 小D.卫星A 的角速度最大5.某天体半径是地球半径的K 倍,密度是地球的P 倍,则该天体表面的重力加速度是地球表面重力加速度的( )A .2P K 倍B .PK倍 C .KP 倍 D .K P 2倍6.A 、B 两颗行星,质量之比p M M BA =,半径之比q R RB A =,则两行星表面的重力加速度之比为( )A. qp B. 2pq C. 2qpD.pq7.人造卫星离地球表面距离等于地球半径R ,卫星以速度v 沿圆轨道运动,设地面上的重力加速度为g ,则( )A. gR v 4=B. gR v 2=C. gR v =D. 2gR v =8.已知地球半径为R ,地面重力加速度为g . 假设地球的自转加快,则赤道上的物体就可能克服地球引力而飘浮起来,则此时地球的自转周期为( )A.g R B. g R π2 C. Rgπ2 D. gRπ21 9.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .下列表达式中正确的是( )A .T =2πGM R /3B .T =2πGM R /33C .T =ρπG /D .T =ρπG /310.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常数为G ,那么该行星的平均密度为( )A. π32GTB. 23GT πC. π42GT D. 24GT π 11.地球公转的轨道半径是R 1,周期是T 1,月球绕地球运转的轨道半径是R 2,周期是T 2,则太阳质量与地球质量之比是 ( )A.22322131T R T R B.21322231T R T R C.21222221T R T R D.32223121T R T R12.地球表面重力加速度g 地、地球的半径R 地,地球的质量M 地,某飞船飞到火星上测得火星表面的重力加速度g 火、火星的半径R 火、由此可得火星的质量为( )A.地地地火火M R g R g 22B.地火火地地M R g R g 22C.地地地火火M R g R g 22 D.地地地火火M R g R g13.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k ,则地球与此天体的质量之比为 ( )A. 1B. kC. k 2D. 1/ k14.某星球的质量约为地球的9倍,半径约为地球的一半,若从地球上高h 处平抛一物体,射程为60m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为 A .10m B .15m C .90m D .360m 15以下说法正确的是( )A 、第一宇宙速度是物体在地面附近绕地球做匀速圆周运的速度B 、第一宇宙速度是使物体成为一颗人造卫星理论上最小发射速度C 、在地面附近发射卫星,如果发射速度大于7.9km/s ,而小于11.2km/s ,它绕地球运行的轨迹就是椭圆D 、紫金山天文台发现的“吴健雄星”直径为32km ,密度与地球相同,则该小行星的第一宇宙速度大小约为20m/s16土星外层上有一个环。
物理万有引力与航天题20套(带答案)及解析

物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《万有引力与航天》单元测试一、选择题1.星球上的物体脱离星球引力所需的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( ) B.16gr C.13gr gr解析:由题意v 1=g ′r = 16gr ,v 2=2v 1= 13gr ,所以C 项正确.答案:C2.太阳能电池是将太阳能通过特殊的半导体材料转化为电能,在能量的利用中,它有许多优点,但也存在着一些问题,如受到季节、昼夜及阴晴等气象条件的限制.为了能尽量地解决这些问题,可设想把太阳能电池送到太空中并通过一定的方式让地面上的固定接收站接收电能,太阳能电池应该置于( )A .地球的同步卫星轨道B .地球大气层上的任一处C .地球与月亮的引力平衡点D .地球与太阳的引力平衡点解析:太阳能电池必须与地面固定接收站相对静止,即与地球的自转同步.答案:A3.据媒体报道,“嫦娥”一号卫星绕月工作轨道为圆轨道,轨道距月球表面的高度为200 km ,运行周期为127 min.若要求出月球的质量,除上述信息外,只需要再知道( )A .引力常量和“嫦娥”一号的质量B .引力常量和月球对“嫦娥”一号的吸引力C .引力常量和地球表面的重力加速度D .引力常量和月球表面的重力加速度解析:对“嫦娥”一号有GMmR +h2=m 4π2T2(R +h ),月球的质量为M =4π2GT2(R +h )3,在月球表面g =G M R2,故选项D 正确.答案:D4.地球同步卫星轨道半径约为地球半径的倍,设月球密度与地球相同,则绕月心在月球表面附近做圆周运动的探月探测器的运行周期约为( )A .1 hB . hC . hD .24 h解析:因月球密度与地球的相同,根据ρ=m 4πR 3/3,可知m 地m 月=R 3地R 3月,又Gm 地m 卫地2=m 卫4π2T 2卫×地,Gm 月m 探R 2月=m 探4π2T 2探R 月,已知T 卫=24 h ,联立解得T 探≈ h.答案:B 5.图1在同一轨道平面上绕地球做匀速圆周运动的卫星A 、B 、C ,某时刻恰好在同一过地心的直线上,如图1所示,当卫星B 经过一个周期时( )A .各卫星角速度相等,因而三星仍在一直线上B .A 超前于B ,C 落后于B C .A 超前于B ,C 超前于BD .A 、C 都落后于B解析:由G Mmr 2=mrω2,可知,ω=GMr 3可见选项A 错误;由T =2π/ω,即T ∝r 3可知,选项B 正确,选项C 、D 错误.答案:B6.由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动.对于这些做匀速圆周运动的物体,以下说法正确的是( )A .向心力都指向地心B .速度等于第一宇宙速度C .加速度等于重力加速度D .周期与地球自转的周期相等 解析:图6本题重点考查了地球上的物体做匀速圆周运动的知识.由于地球上的物体随着地球的自转做圆周运动,则其周期与地球的自转周期相同,D 正确,不同纬度处的物体的轨道平面是不相同的,如图6,m 处的物体的向心力指向O ′点,选项A 错误;由于第一宇宙速度是围绕地球运行时,轨道半径最小时的速度,即在地表处围绕地球运行的卫星的速度,则选项B 错误;由图1可知,向心力只是万有引力的一个分量,另一个分量是重力,因此加速度不等于重力加速度,选项C 错误.答案:D7.图3“嫦娥”一号探月卫星沿地月转移轨道到达月球,在距月球表面200 km的P点进行第一次“刹车制动”后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,如图3所示.之后,卫星在P点经过几次“刹车制动”,最终在距月球表面200 km的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T1、T2、T3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ的周期,用a1、a2、a3分别表示卫星沿三个轨道运动到P点的加速度,则下面说法正确的是( )A.T1>T2>T3B.T1<T2<T3C.a1>a2>a3D.a1<a2<a3解析:卫星沿椭圆轨道运动时,周期的平方与半长轴的立方成正比,故T1>T2>T3,A项正确,B项错误.不管沿哪一轨道运动到P点,卫星所受月球的引力都相等,由牛顿第二定律得a1=a2=a3,故CD 项均错误.答案:A8未发射的卫星放在地球赤道上随地球自转时的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动时的线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。
则v1、v2、v3和a1、a2、a3的大小关系是()A.v2>v3>v l a2>a3>a l B.v3>v2>v1 a2>a3>a lC.v2>v3=v1 a2=a1>a3 D.v2>v3>v l a3>a2>a1答案 A9.在“神舟”七号载人飞船顺利进入环绕轨道后,人们注意到这样一个电视画面,翟志刚放开了手中的飞行手册,绿色的封面和白色的书页在失重的太空中飘浮起来.假设这时宇航员手中有一铅球,下面说法正确的是( )A.宇航员可以毫不费力地拿着铅球B.快速运动的铅球撞到宇航员,宇航员可以毫不费力将其抓住C.快速运动的铅球撞到宇航员,宇航员仍然能感受到很大的撞击力D.投出铅球,宇航员可以观察到铅球做匀速直线运动解析:飞船中的铅球也处于完全失重状态,故宇航员可以毫不费力地拿着铅球,A项正确;宇航员接住快速运动的铅球过程中,铅球的速度发生了较大改变,故根据牛顿第二定律可知宇航员对铅球有较大的力的作用,故B项错,C项正确;投出铅球后,处于完全失重状态下的铅球相对于同状态下的宇航员做匀速直线运动,D项正确.答案:ACD10.2008年9月25日21时10分“神舟”七号载人飞船发射升空,进入预定轨道绕地球自西向东做匀速圆周运动,运行轨道距地面343 km.绕行过程中,宇航员进行了一系列科学实验,实现了我国宇宙航行的首次太空行走.在返回过程中,9月28日17时30分返回舱主降落伞打开,17时38分安全着陆.下列说法正确的是( )A.飞船做圆周运动的圆心与地心重合B.载人飞船轨道高度小于地球同步卫星的轨道高度C.载人飞船绕地球做匀速圆周运动的速度略大于第一宇宙速度7.9 km/sD.在返回舱降落伞打开后至着地前宇航员处于失重状态解析:飞船做圆周运动的向心力由地球对飞船的万有引力提供,故“两心”(轨道圆心和地心)重合,A项正确;根据万有引力提供向心力可知:GMmR+h2=mv2R+h以及GMmR2=mg计算可知:飞船线速度约为7.8 km/s,C项错;卫星离地面高度343 km远小于同步卫星离地高度×104 km,B项正确;在返回舱降落伞打开后至着地前,宇航员减速向下运动,加速度方向向上,故处于超重状态,D项错.答案:AB11图2如图2所示,有A、B两颗行星绕同一恒星O做圆周运动,运转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星第一次相遇(即相距最近),则( )A.经过时间t=T1+T2两行星将第二次相遇B.经过时间t=T1T2T2-T1两行星将第二次相遇C.经过时间t=T1+T22两行星第一次相距最远D.经过时间t=T1T22T2-T1两行星第一次相距最远解析:根据天体运动知识可知T2>T1,第二次相遇经历时间为t,则有2πT 1t -2πT 2t =2π,解得:t =2π/⎝ ⎛⎭⎪⎫2πT 1-2πT 2=T 1T 2T 2-T 1,所以选项B 正确;从第一次相遇到第一次相距最远所用时间为t ′,两行星转过的角度差为π即2πT 1t ′-2πT 2t ′=π解得:t ′=2π/⎝⎛⎭⎪⎫2πT 1-2πT 2=T 1T 22T 2-T 1,所以选项D 正确.答案:BD12.两颗人造卫星绕地球做匀速圆周运动,它们的质量之比为m A :m B =1:2,轨道半径之比r A :r B =3:1,则下列说法正确的是( )A .它们的线速度之比为v A :vB =1:3 B .它们的向心加速度之比为a A :a B =1:9C .它们的向心力之比为F A :F B =1:18D .它们的周期之比为T A :T B =3:1 答案:ABC13一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为v 3T 2πGB .行星的质量为4π2v 3GT2C .行星运动的轨道半径为vT2πD .行星运动的加速度为2πvT解析:考查万有引力定律在天文学上的应用.意在考查学生的分析综合能力.因v =ωr =2πr T ,所以r =vT 2π,C 正确;结合万有引力定律公式GMmr2=mv2r,可解得恒星的质量M=v3T2πG,A正确;因不知行星和恒星之间的万有引力的大小,所以行星的质量无法计算,B错误;行星的加速度a=ω2r=4π2T2×vT2π=2πvT,D正确.答案:ACD14.我国发射的“亚洲一号”通信卫星的质量为m,如果地球半径为R,自转角速度为ω,地球表面重力加速度为g,则“亚洲一号”卫星( )A.受到地球的引力为m 3ω4R2gB.受到地球引力为mgC.运行速度v=3ωR2gD.距地面高度为h=3R2gω2-R解析:通信卫星的特点是卫星的周期与地球自转相同,角速度也相同,由向心力等于万有引力得F=GMmR+h2=mω2(R+h),解之得R+h=3GMω2,h=3GMω2-R,又由公式G MmR2=mg,得GM=R2g,所以v=ω(R+h)=3ωR2g,选项C正确;h=3R2gω2-R,故选项D正确;又由F=mω2(R+h)得F=mω2(R+h )=m 3ω4R 2g ,所以选项A 正确,而选项B 错误.答案:ACD15为了探测X 星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2的圆轨道上运动,此时登陆舱的质量为m 2,则( )A .X 星球的质量为M =4π2r 31GT 21B .X 星球表面的重力加速度为g x =4π2r 1T 21C .登陆舱在r 1与r 2轨道上运动时的速度大小之比为v 1v 2=m 1r 2m 2r 1 D .登陆舱在半径为r 2轨道上做圆周运动的周期为T 2=T 1r 32r 31解析:本题考查万有引力的应用,意在考查考生综合分析和推理的能力.探测飞船做圆周运动时有G Mm 1r 21=m 1(2πT 1)2r 1,解得M =4π2r 31GT 21,选项A 正确;因为星球半径未知,所以选项B 错误;根据G Mm r 2=m v 2r,得v =GM r ,所以v 1v 2= r 2r 1,选项C 错;根据开普勒第三定律r 31T 21=r 32T 22得选项D 正确. 答案:AD 三、计算题16.(10分)一卫星绕某行星做匀速圆周运动.已知行星表面的重力加速度为g 行,行星的质量M 与卫星的质量m 之比M /m =81,行星的半径R 行与卫星的半径R 卫之比R 行/R 卫=,行星与卫星之间的距离r 与行星的半径R 行之比r /R 行=60.设卫星表面的重力加速度为g卫,则在行星表面有G Mmr2=mg 卫,经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的三千六百分之一,上述结果是否正确?若正确,列式证明;若错误,求出正确结果.答案:所得的结果是错误的.上式中的g 卫并不是卫星表面的重力加速度,而是卫星绕行星做匀速圆周运动的向心加速度.正确解法是:卫星表面 G mR 2卫=g 卫,① 行星表面 G M R 2行=g 行,②由①②得:(R 行R 卫)2m M =g 卫g 行,g 卫=0.16 g 行.所以它们之间的正确关系应为g 卫=0.16 g 行.17.(10分)火星质量是地球质量的倍,半径是地球半径的倍,火星被认为是除地球之外最可能有水(有生命)的星球.在经历了亿公里星际旅行的美国火星探测器“勇气”号成功在火星表面上着陆,据介绍,“勇气”号在进入火星大气层之前的速度大约是声速的倍,为了保证“勇气”号安全着陆,科学家给它配备了隔热舱、降落伞、减速火箭和气囊等.进入火星大气层后,先后在不同的时刻,探测器上的降落伞打开,气囊开始充气、减速火箭点火.当探测器在着陆前3 s 时,探测器的速度减为零,此时,降落伞的绳子被切断,探测器自由落下,求探测器自由下落的高度.假设地球和火星均为球体,由于火星的气压只有地球的大气压强的1%,则探测器所受阻力可忽略不计.(取地球表面的重力加速度g =10 m/s 2)解析:设地球质量为M 地,火星质量为M 火,地球半径为R 地,火星半径为R 火,地球表面处的重力加速度为g 地,火星表面处的重力加速度为g 火,根据万有引力定律:物体在地球表面上时有G M 地·mR 2地=mg 地,①同理,物体在火星表面上时有G M 火·mR 2火=mg 火, ②由①÷②得:g 火g 地=M 火M 地⎝ ⎛⎭⎪⎫R 地R 火2=110×22=,g 火=×g 地=4 m/s 2,由题意知,探测器在着陆前3 s 时开始做自由落体运动,设探测器自由下落的高度为h ,则h =12g 火t 2=12×4×32 m =18 m.答案:18 m18.(10分)宇宙中存在一些离其他恒星较远的、由质量相等的三颗星ABC 组成的三星系统,通常可忽略其他星体对它们的引力作用.稳定的三星系统存在的构成形式有四种设想:第一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运动.第二种是三颗星位于等腰直角三角形的三个顶点上,并以三边中线的交点为圆心做圆周运动.第三种是三颗星位于等腰直角三角形的三个顶点,并以斜边中心为圆心做圆周运动.第四种是三颗星位于同一直线上,两颗星围绕中央星在同一圆轨道上运行.(1)试判断稳定的三星系统可能存在的构成形式为________.(填写图形下面的序号)(2)设每个星体的质量均为m .星体的运动周期为T ,根据你所选择的形式求出星体A 与B 和B 与C 之间的距离应为多少?解析:(1)可能存在的构成形式为AD.(2)A :设星体间距离为R ,星体距圆心的距离为r .F 向心=2F 万·cos30°,F 万=Gm 2R 2,F向心=m ⎝ ⎛⎭⎪⎫2πT 2r , r =R 2/cos30°=R3,所以R = 33GmT 24π2. 图5D :设星体间距离为R ,F 向心=F 万AB +F 万AC .F 万AB =Gm 2R 2,F 万AC =Gm 22R 2,F 向心=m ⎝ ⎛⎭⎪⎫2πT 2R , 所以R = 35GmT 216π2.答案:(1)AD (2) 33GmT 24π2 (3) 35GmT 216π219(12分)晴天晚上,人能看见卫星的条件是卫星被太阳照着且在人的视野之内,一个可看成漫反射体的人造地球卫星的圆形轨道与赤道共面,卫星自西向东运动,春分期间太阳垂直射向赤道,赤道上某处的人在日落后8小时时在西边的地平线附近恰能看到它,之后极快地变暗而看不到了,已知地球的半径R 地=×106 m .地面上的重力加速度为10 m/s 2.估算:(答案要求精确到两位有效数字)(1)卫星轨道离地面的高度;(2)卫星的速度大小.答案:(1)根据题意作出如图9所示图9由题意得∠AOA′=120°,∠BOA=60°由此得卫星的轨道半径r=2R地,①卫星距地面的高度h=R地=×106 m,②(2)由万有引力提供向心力得GMmr2=mv2r,③由于地球表面的重力加速度g=GMR2地,④由③④得v=gR2地r=gR地2=10××1062m/s≈×103 m/s.。