万有引力与航天试题附答案

合集下载

物理万有引力与航天题20套(带答案)及解析

物理万有引力与航天题20套(带答案)及解析

物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ= 【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R = 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m rr T π= 解得:2rr T R gπ=2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R = 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.4.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。

万有引力测试题含答案

万有引力测试题含答案

万有引力与航天测试题(用时:60分钟 满分:100分)一、选择题(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,1~7小题只有一项符合题目要求,8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕两星球球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是 ( )A .双星相互间的万有引力增大B .双星做圆周运动的角速度不变C .双星做圆周运动的周期增大D .双星做圆周运动的速度增大2.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 D .GMh 2 3.假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的周期公转B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度4.如图1所示,A 为静止于地球赤道上的物体,B 为绕地球沿椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同,相对于地心,下列说法中正确的是( ) A .物体A 和卫星C 具有相同大小的线速度B .物体A 和卫星C 具有相同大小的加速度C .卫星B 在P 点的加速度与卫星C 在该点的加速度一定不相同D .可能出现在每天的某一时刻卫星B 在A 的正上方5.同步卫星位于赤道上方,相对地面静止不动.如果地球半径为R ,自转角速度为ω,地球表面的重力加速度为g .那么,同步卫星绕地球的运行速度为( )B .R ωg C. R 2ωgD .3R 2ωg 6.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中错误的是( )A .德国天文学家开普勒对他的导师——第谷观测的行星数据进行了多年研究,得出了开普勒三大行星运动定律B .英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了万有引力常量C .伽利略用“月—地检验”证实了万有引力定律的正确性D .牛顿认为在足够高的高山上以足够大的水平速度抛出一物体,物体就不会再落在地球上7.恒星演化发展到一定阶段,可能成为恒星世界的“侏儒”——中子星.中子星的半径较小,一般在7~20 km ,但它的密度大得惊人.若某中子星的半径为10 km ,密度为×1017 kg/m 3,那么该中子星上的第一宇宙速度约为( ) A . km/sB . km/sC .×104 km/s D .×104 km/s8.北京时间2005年7月4日下午1时52分(美国东部时间7月4日凌晨1时52分)探测器成功撞击“坦普尔一号”彗星,投入彗星的怀抱,实现了人类历史上第一次对彗星的“大对撞”,如图2所示.假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为年,则关于“坦普尔一号”彗星的下列说法中正确的是( )A .绕太阳运动的角速度不变B .近日点处线速度大于远日点处线速度C .近日点处加速度大于远日点处加速度D .其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数9.2013年6月11日17时38分,我国利用“神舟十号”飞船将聂海胜、张晓光、王亚平三名宇航员送入太空.设宇航员测出自己绕地球做匀速圆周运动的周期为T ,离地高度为H ,地球半径为R ,则根据T 、H 、R 和引力常量G ,能计算出的物理量是( )A .地球的质量B .地球的平均密度C .飞船所需的向心力 D .飞船线速度的大小10.迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1-581c ”却很值得我们期待.该行星的温度在0℃到40℃之间,质量是地球的6倍、直径是地球的倍,公转周期为13个地球日.“Gliese581”的质量是太阳质量的倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则( )A .在该行星和地球上发射卫星的第一宇宙速度相同B .如果人到了该行星,其体重是地球上的223倍C .该行星与“Gliese581”的距离是日地距离的13365倍D .该行星公转速度角速度比地球大 11.(12分) 已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如图所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的吸引力F 2的大小之比为多少?12.(12分)2007年10月24日18时,“嫦娥一号”卫星星箭成功分离,卫星进入绕地轨道.在绕地运行时,要经过三次近地变轨:12小时椭圆轨道①→24小时椭圆轨道②→48小时椭圆轨道③→地月转移轨道④.11月5日11时,当卫星经过距月球表面高度为h 的A 点时,再一次实施变轨,进入12小时椭圆轨道⑤,后又经过两次变轨,最后进入周期为T 的月球极月圆轨道⑦.如图4所示.已知月球半径为R .(1)请回答:“嫦娥一号”在完成三次近地变轨时需要加速还是减速?(2)写出月球表面重力加速度的表达式.13.(16分)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星-500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,质量是地球质量的19.已知地球表面的重力加速度是g ,地球的半径为R ,忽略火星以及地球自转的影响,求:(1)火星表面的重力加速度g ′的大小;(2)王跃登陆火星后,经测量发现火星上一昼夜的时间为t ,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?1 C2 B3 D4 D5 D6 C7 D8 BCD9 ABD10 BD11 由太阳对行星的引力满足F ∝m r2知太阳对地球的引力F 1=G Mm 1(a +b )2 太阳对月球的引力F 2=G Mm 2a 2 故F 1/F 2=m 1a 2m 2(a +b )2. 【答案】 m 1a 2m 2(a +b )212 (1)加速.(2)设月球表面的重力加速度为g 月,在月球表面有G Mm R 2=mg 月 卫星在极月圆轨道有G Mm (R +h )2=m (2πT)2(R +h ) 解得g 月=4π2(R +h )3T 2R 2. 【答案】 (1)加速 (2)4π2(R +h )3T 2R 2 13 (1)在地球表面,万有引力与重力相等,GMm 0R 2=m 0g 对火星GM ′m 0R ′2=m 0g ′联立解得g ′=49g . (2)火星的同步卫星做匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h ,则GM ′m 0(R ′+h )2=m 0(2πt)2(R ′+h ) 解出同步卫星离火星表面高度h =3gR 2t 236π2-12R . 【答案】 (1)49g (2)3gR 2t 236π2-12R。

(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析

(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。

已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。

【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。

【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。

高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)

高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。

第六章《万有引力与航天》测试题(含详细解答)

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。

)1.第一次通过实验比较准确的测出引力常量的科学家是( )A . 牛顿B . 伽利略C .胡克D . 卡文迪许2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度;B .b 、c 的向心加速度大小相等,且大于a 的向心加速度;C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ;D .a 卫星由于某种原因,轨道半径变小,其线速度将变大3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速C.在与空间站同一高度轨道上加速D.不论什么轨道,只要加速就行4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( )A .卫星在轨道3上的速率大于在轨道1上的速率。

B .卫星在轨道3上的角速度小于在轨道1上的角速度。

C .卫星在轨道1上经过Q 点时的速度大于它在轨道2上经过Q 点时的速度。

D .卫星在轨道2上经过P 点时的加速度等于它在轨道3ba c 地球图1上经过P 点时的加速度5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是( )A.宇航员仍受重力的作用B.宇航员受力平衡C.宇航员受的重力正好充当向心力D.宇航员不受任何作用力6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2)( ) A .1sB .91s C .181s D .361s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( )A 放在赤道地面上的万有引力不变B 放在两极地面上的物体的重力不变C 放在赤道地面上物体的重力减小D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( )A.零B.无穷大C.2GMm R D.无法确定9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式122m m F Gr ,下列说法正确的是( )和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物体“飘” 起来,则地球的转速应为原来转速的( )A ga 倍 Bg aa+倍 Cg aa-倍 Dga倍11.关于地球同步通讯卫星,下列说法中正确的是()A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间12.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心二.填空题(每题6分,共12分。

(完整word版)万有引力与航天试题全集(含详细答案)

(完整word版)万有引力与航天试题全集(含详细答案)

万有引力与航天试题全集(含答案)一、选择题:本大题共。

1、地球绕太阳运动的轨道是一椭圆,当地球从近日点向远日点运动时,地球运动的速度大小(地球运动中受到太阳的引力方向在地球与太阳的连线上,并且可认为这时地球只受到太阳的吸引力)()A。

不断变大B。

逐渐减小 C.大小不变 D。

没有具体数值,无法判断2、对于开普勒第三定律的表达式=k的理解正确的是A.k与a3成正比B.k与T2成反比C.k值是与a和T无关的值D.k值只与中心天体有关3、苹果落向地球,而不是地球向上运动碰到苹果,下列论述中正确的是A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果的引力大造成的B.由于地球对苹果有引力,而苹果对地球没有引力而造成的C。

苹果对地球的作用力和地球对苹果的作用力是相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都正确4、某球状行星具有均匀的密度ρ,若在赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星自转周期为(万有引力常量为G)A. B.C。

D.5、关于开普勒第三定律的公式=k,下列说法中正确的是A。

公式只适用于绕太阳做椭圆轨道运行的行星 B.公式适用于所有围绕星球运行的行星(或卫星)C。

式中的k值,对所有行星(或卫星)都相等D。

式中的k值,对围绕不同星球运行的行星(或卫星)都相同6、根据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,测出了环中各层的线速度v的大小与该层至行星中心的距离R。

则以下判断中正确的是A。

若v与R成正比,则环是连续物B。

若v与R成反比,则环是连续物C。

若v2与R成反比,则环是卫星群D。

若v2与R成正比,则环是卫星群7、关于太阳系中各行星的轨道,以下说法正确的是A。

所有行星绕太阳运动的轨道都是椭圆 B.有的行星绕太阳运动的轨道是圆C。

不同行星绕太阳运动的椭圆轨道的半长轴是不同的D。

不同的行星绕太阳运动的轨道各不相同8、类似于太阳与行星间的引力,地球和月球有相当大的万有引力,为什么它们不靠在一起,其原因是A。

万有引力与航天试题附答案

万有引力与航天试题附答案

万有引力与航天单元测试题一、选择题1.关于日心说被人们接受的原因就是 ( )A.太阳总就是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球就是围绕太阳运转的2.有关开普勒关于行星运动的描述,下列说法中正确的就是( )A.所有的行星绕太阳运动的轨道都就是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都就是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道就是不同的3.关于万有引力定律的适用范围,下列说法中正确的就是( )A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其她形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的就是( )A.地球公转的周期及半径B.月球绕地球运行的周期与运行的半径C.人造卫星绕地球运行的周期与速率D.地球半径与同步卫星离地面的高度5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度与周期变化情况就是( )A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大6.一个行星,其半径比地球的半径大2倍,质量就是地球的25倍,则它表面的重力加速度就是地球表面重力加速度的( )A.6倍B.4倍C.25/9倍D.12倍7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A.根据公式v=ωr可知,卫星运动的线速度将增加到原来的2倍B.根据公式F=mv2/r可知,卫星所需向心力减小到原来的1/2C.根据公式F=GMm/r2可知,地球提供的向心力将减小到原来的1/4D.根据上述B与C中给出的公式,8.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的就是()A.跳高运动员的成绩会更好B.用弹簧秤称体重时,体重数值变得更大C.从相同高度由静止降落的棒球落地的时间会更短些D.用手投出的篮球,水平方向的分速度变化更慢9.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因就是( )A.由于太空垃圾受到地球引力减小而导致做近心运动B.由于太空垃圾受到地球引力增大而导致做近心运动C.由于太空垃圾受到空气阻力而导致做近心运动D.地球引力提供了太空垃圾做匀速圆周运动所需的向心力,故产生向心运动的结果与空气阻力无关10.“东方一号”人造地球卫星A与“华卫二号”人造卫星B,它们的质量之比为m A:m B=1:2,它们的轨道半径之比为2:1,则下面的结论中正确的就是( )A.它们受到地球的引力之比为F A:F B=1:1B.它们的运行速度大小之比为v A:v B=1:22:1C.它们的运行周期之比为T A:T B=23:1D.它们的运行角速度之比为ωA:ωB=211.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v1、加速度为a1;发射升空后在近地轨道上做匀速圆周运动,线速度为v2、加速度为a2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v3、加速度为a3。

高考物理万有引力与航天题20套(带答案)含解析

高考物理万有引力与航天题20套(带答案)含解析

高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(2)02V hR L (3)0()2()L R H R H T RV hπ++=【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL= (2)012v GMv RG hR R L===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:()()2L R H R H T Rv hπ++=3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gt π;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=7.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.8.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22324gR T h R π= 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v gR =.(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =, 解得:22324gR T h R π=- .9.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力与航天单元测试题一、选择题1.关于日心说被人们接受的原因是( )A.太阳总是从东面升起,从西面落下B.若以地球为中心来研究的运动有很多无法解决的问题C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单D.地球是围绕太阳运转的2.有关开普勒关于行星运动的描述,下列说法中正确的是( )A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等D.不同的行星绕太阳运动的椭圆轨道是不同的3.关于万有引力定律的适用范围,下列说法中正确的是( )A.只适用于天体,不适用于地面物体B.只适用于球形物体,不适用于其他形状的物体C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( )A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( )A.6倍B.4倍C.25/9倍D.12倍7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )A .根据公式v=ωr 可知,卫星运动的线速度将增加到原来的2倍B .根据公式F=mv 2/r 可知,卫星所需向心力减小到原来的1/2C .根据公式F=GMm /r 2可知,地球提供的向心力将减小到原来的1/4D .根据上述B 和C /28.假设在质量与地球质量相同,半径为地球半径两倍的天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法正确的是( )A .跳高运动员的成绩会更好B .用弹簧秤称体重时,体重数值变得更大C .从相同高度由静止降落的棒球落地的时间会更短些D .用手投出的篮球,水平方向的分速度变化更慢9.在地球大气层外有很多太空垃圾绕地球做匀速圆周运动,每到太阳活动期,由于受太阳的影响,地球大气层的厚度开始增加,使得部分垃圾进入大气层.开始做靠近地球的近心运动,产生这一结果的初始原因是( )A .由于太空垃圾受到地球引力减小而导致做近心运动B .由于太空垃圾受到地球引力增大而导致做近心运动C .由于太空垃圾受到空气阻力而导致做近心运动D 地球引力提供了太空垃圾做匀速圆周运动所需的向心力故产生向心运动的结果与空气阻力无关10.“东方一号”人造地球卫星A 和“华卫二号”人造卫星B ,它们的质量之比为m A :m B =1:2,它们的轨道半径之比为2:1,则下面的结论中正确的是( )A .它们受到地球的引力之比为F A :FB =1:1 B .它们的运行速度大小之比为v A :v B =1:2C .它们的运行周期之比为T A :T B =22:1D .它们的运行角速度之比为ωA :ωB =23:111.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的线速度为v 1、加速度为a 1;发射升空后在近地轨道上做匀速圆周运动,线速度为v 2、加速度为a 2;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,运动的线速度为v 3、加速度为a 3。

则v 1、v 2、v 3的大小关系和a 1、a 2、a 3的大小关系是( )A .v 2>v 3>v 1;a 2<a 3<a 1B .v 2>v 3< v 1;a 2>a 3>a 1C .v 2>v 3>v 1;a 2>a 3>a 1D .v 3> v 2>v 1;a 2>a 3>a 112.发射地球同步卫星要经过三个阶段:先将卫星发射至近地圆轨道1,然后使其沿椭圆轨道2运行,最后将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,如图1所示.当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( ) A .卫星在轨道1上经过Q 点时的加速度等于它在轨道2 上经过Q 点时的加速度 B .卫星在轨道1上经过Q 点时的动能等于它在轨道2上经过Q 点时的动能C .卫星在轨道3上的动能小于它在轨道1上的动能D .卫星在轨道3上的引力势能小于它在轨道1上的引力势能 二、填空题13.地球绕太阳运行的轨道半长轴为1.50×1011m ,周期为365天;月球绕地球运行的轨道半长轴为3.8×l 08m ,周期为27.3天;则对于绕太阳运动的行星R 3/T 2的值为________,对于绕地球运动的卫星R 3/T 2的值为________。

14.木星到太阳的距离约等于地球到太阳距离的5.2倍,如果地球在轨道上的公转速度为30km/s ,则木星在其轨道上公转的速度等于________。

15.如图2,有A 、B 两颗行星绕同一恒星O 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星第一次相遇(即两颗行星相距最近),则经过时间t 1=_______时两行星第二次相遇,经过时间t 2=_______时两行星第一次相距最远。

16.把火星和地球视为质量均匀分布的球,它们绕太阳做圆周运动,已知火星和地球绕太阳运动的周期之比为T 1/T 2,火星和地球各自表面处的重力加速度之比为g l /g 2,火星和地球半径之比为r l /r 2。

则火星和地球绕太阳运动的动能之比为E 1/E 2= 。

三、计算题17.太阳系中除了有九大行星外,还有许多围绕太阳运行的小行星,其中一颗名叫“谷神”的小行星,质量为1.00×1021kg ,它运行的轨道半径是地球的2.77倍,试求出它绕太阳一周所需要的时间是多少年?318.某星球的质量约为地球的9倍,半径为地球的一半,若从地球上高h 处平抛一物体,射程为60m ,则在该星球上以同样高度、以同样初速度平抛同一物体,射程为多少?19.“伽利略”号木星探测器从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围,此后要在2年内绕木星运行11圈,对木星及其卫星进行考察,最后进入木星大气层烧毁.设这11圈都是绕木星在同一个圆周上运行,试求探测器绕木星运行的轨道半径和速率(已知木星质量为1.9×1027kg)20.宇宙飞船在一颗直径2.2km ,平均密度3102.2⨯kg/m 3的小行星上着路,这颗小行星在缓慢地自转,宇航员计划用2.0小时的时间在这颗小行星表面沿着赤道步行一圈,通过计算说明这计划是否能够实现?(引力常量11107.6-⨯=G 2m N ⋅/kg 2)21.用不同的方法估算银河系的质量,所得结果也不相同。

以下是诸多估算方法中的一种。

根据观测结果估计,从银河系中心到距离为R =3×109R 0(R 0表示地球轨道半径)的范围内集中了质量M 1=1.5×1011M 0(M 0表示太阳的质量)。

在上面所指的范围内星体运转的周期为T =3.75×108年。

求银河系“隐藏”的质量,即在半径为R 的球体内未被观察到的物质的质量,计算中可以认为银河系的质量都集中在其中心。

22.A 、B 两颗人造卫星绕地球做圆周运动,它们的圆轨道在同一平面内,周期之比是12T T 若两颗卫星最近距离等于地球半径R ,求这两颗卫星的周期各是多少?从两颗卫星相距最近开始计时到两颗卫星相距最远至少经过多少时间?已知在地面附近绕地球做圆周运动的卫星的周期为T 0。

【参考答案】一、选择题1.C 2.ACD 3.D 4.BC 5.D 6.C 7.CD 8.A 9.C 10.BC 11.C 12.AC 二、填空题13.3.4×1018;1.0×1013 14.13km/s提示:由开普勒第三定律322322()2R R T v R v R R T R v v ππ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦木木木木木地地地地地木地得22 5.2R v v R ==木地木地解得13v km s =木13km/s15.2121T T T T - )(22121T T T T -提示:经过一段时间两行星再次相遇,则两行星转过的角度之差应该是2K π;当两行星相距最远时,则两行星转过的角度之差应该是(2K+1)π,而行星转过的角度为θ=2πTt,由此列式即可求得。

16.32)(1222212121T T g r g r E E =解析:设火星、地球和太阳的质量分别为1m 、2m 和M ,火星和地球到太阳的距离分别为1R 和2R ,火星和地球绕太阳运动的速度分别为1V 和2V ,根据万有引力定律和牛顿定律可知1211g r m G=, ① 2222g r m G = ② 21111211211)2(T R m R V m R M m G π== ③22222222222)2(T R m R V m R M m G π==④联立上式解得,动能之比: 32)(1222212121T T g r g r E E =三、计算题 17.4.60年解:设地球公转半径为R 0,周期为T 0,由开普勒第三定律320032R T R T= ①012.77R R =② T 0=1年 ③联立①、②、③三式解得T =4.60年18.10m解:物体做平抛运动,水平位移x =v 0t ,竖直位移212y gt =,重力等于万有引力,2Mmmg G R=,解得x v =其中h 、v 0、G相同,所以16x x ===星地,1106x x m ==星地10m19.r =4.7×109m,v =5.2×103m/s 解:由题意可知探测器运行周期为236524360011T s ⨯⨯⨯=s ①万有引力提供向心力,即222M G r r T π⎛⎫= ⎪⎝⎭,整理得2324GMT r π= ②其中M 为木星质量,两式联立,解得r =4.7×109m .又由2rv Tπ= 解得v =5.2×103m/s20.该计划不能实现。

解: 若飞船绕行星表面旋转时的周期为T ,则有:R T m R GMm 2224π= ① ρπ⋅=334R M ② 由①②得:22.23==ρπG T h 宇航员行走一圈所用时间比绕行星表面旋转一周时间还要长,所以该计划不能实现。

相关文档
最新文档