《应用一元一次方程—“希望工程”义演》一元一次方程PPT教学课件

合集下载

应用一元一次方程ppt课件

应用一元一次方程ppt课件
解:(1)不可能,假设出售1 000张票所得票款是6 930元,
设售出的学生票为x张,则售出的成人票为(1000-x)张.
由题意得 5x+8(1 000-x)=6 930,
解得

x≈356 .

∴票的张数是正整数,所以所得票款不可能是6 930元.
方法总结:应用一元一次方程解决实际问题时,除了要检验方程的解是
成人票款+学生票款=6 950元.②
成人票8元/人,
学生票5元/人
二、新知探究
某文艺团体为“希望工程”募捐组织了一场义演,共售票1 000张,筹
得票款6 950元.售出成人票与学生票各多少张?
解:设售出的儿童票为x张,填写下表:
学生
票数/张
x
票款/元
5x
成人
1 000-x
8(1 000-x)
根据等量关系②,可列出方程
644-356=288.
答:所得票款可能是6 932元.其中成人票比学生票多售出288张.
二、新知探究
跟踪练习
地点
某校组织150名学生参观历史博物馆和民俗展览
馆,每一名学生只能参加其中一项活动,共支付 历史博物馆
票款2000元,票价信息右表所示:
民俗展览馆
(1)请问参观历史博物馆和民俗展览馆的人数各是多少人;
实际问题
抽象
寻找等量关系
解方程
解释
实际问题的解
数学问题(一元一次方程)
验证
数学问题的解(一
元一次方程的解)
六、作业布置
习题5.8
原有人数
调人员分配人数
现有人数
甲处
乙处
27
19
x
27+x

应用一元一次方程——“希望工程”义演课件-【经典教育教学资料】

应用一元一次方程——“希望工程”义演课件-【经典教育教学资料】
0.7x+x+2x+4.7x=2100 解得 x=250
故 0.7x=175,2x=500,4.7x=1175 答:需要甲种草药175克,乙种草药250克, 丙种草药500克,丁种草药1175克.
课堂小结
课后作业
1.必做题:教材P149 习题5.8 第2题 2.选做题:教材P149 习题5.8 第3题
方法一 解:设买了单价为18元的书x本,则买了单价 为10元的书为(10-x)本,根据题意得: 18x+10 (10-x)=172 解得x=9 故10-x=1 答:小彬买了18元的书9本,10元的书1本.
方法二
解:设买单价为18元的书花的钱为x元,则买
了单价为10元的书花的钱是(172-x)元,根据
发现我的生命
1 .探索生命的意义 探索生命意义,是人类生命的原动力之一 。只有人类才可能驾驭自己的生活,选择 自己的人生道路。
2 .生命是独特的,生命的意义是具体的 每个人的生活不尽相同,我们都是在自
探究与分享
发现我的生命
3 .生命的意义需要自己发现和创造 我想要过怎样的生活?我该如何
创造我想要的生活?通过认真地审ຫໍສະໝຸດ 这些问题,我们会更加明晰生命的意
成人票款+学生票款= 69350元 ②
设售出的学生票为x张,根据等量关系②,
可列出方程:
5x+(1000-x)8=6930
解得x=356
2 3
不符合题意,所以售出1000张票款不可能是6930元.
做一做
小彬用172元钱买了两 种书,共10本,单价分别为 18元、10元.每种书小彬各 买了多少本?
分析 等量关系: 单价为10元的书的数量+单价为18元书的数量=10本 单价为10元的书花的钱+单价为18元书花的钱=172元 有两种等量关系,则可有两种列方程的方法.

《应用一元一次方程-“希望工程”义演》课件3

《应用一元一次方程-“希望工程”义演》课件3

想一想 A B
如果票价不变,那么售出1000张票所 得票款可能是 69320 元吗?为什么?
1 成人票数+学生票数=售出的票数 1000张 2 成人票款+学生票款=所得票款 69302 元
a
设售出的学生票为x张,
根据等量关系2,可列出方程:
A
_5_x_+__8_×__(_10__0_0_-_x_)=__6_9_3_0____
请同学们列表分析题中的等量关系
2.李白街上走,提壶去买酒; 遇店加一倍,见花喝一斗; 三遇店和花,喝完壶中酒; 试问酒壶中,原有多少酒?
酒花 酒



2X 2X-1 2(2X-1) 2(2X-1)-1 ?
?
解:设原来有X斗酒,根据题意得,
2〔2(2X-1)-1〕-1=0 解这个方程得,
X=7/8 答:原来有7/8斗酒
数学书
语文书
册数(册)
x
90-x
总厚度(厘米) 0.8x
1.2×(90-x)
解: 设这层书架上摆放了数学书x册,
则根据等量关系2,可列方程:
0.8x+1.2(90-x)=88
0.8x+108-1.2x=88
-0.4x=-20
解得x=50
90-50=40
答:这层书架上摆放了50本数学书、40本语文书.
1.“上有三十五头”的意思是什么?“下有九十四足”呢?
2.题目中包含哪些等量关系?
等量关系: 鸡头总数 + 兔头总数 =35

鸡足总数 + 兔足总数 =94

解法分析一:
解法分析二:
等量关系: 鸡头总数 + 兔头总数 =35

北师大版七年级上册数学《应用一元一次方程―“希望工程”义演》一元一次方程PPT课件

北师大版七年级上册数学《应用一元一次方程―“希望工程”义演》一元一次方程PPT课件
x=10
22-x=12 答:应安排10名工人生产螺钉,12名工人生产螺母.
课程讲授
1 分配问题
分配问题解题思路: 1.利用分配问题中物品之间具有的数量关系作为列方程的依据; 2.利用分配问题中的套数不变作为列方程的依据.
课程讲授
1 分配问题
练一练:学校购买40套课桌椅(一把椅子配一张桌子),
总价为2800元,若每把椅子20元,则每张桌子多少元?设
x+0.25 x=60.
解方程,得
x=48.
设亏损25%的衣服进价是 y元, 依题意得
y-0.25y=60.
解方程,得
y=80.
课程讲授
1 销售问题
两件衣服总成本:
x+y=48+80=128 (元).
因为120-128=-8(元) 所以卖这两件衣服共亏损了8元.
60元
60元
课程讲授
1 销售问题
销售问题解题思路: 1.销售问题中的常见数量关系:(1)利润=售价-成本(进价); (2)利润率=利润成本×100%;(3)利润=成本×利润率;(4) 售价=标价×折扣数10;(5)售价=成本+利润=成本×(1+利润 率). 2.折扣数表示现价是原价的十分之几.
随堂练习
解:设用x张白铁皮制盒身,根据题意有: 16x×2=(150-x)×43, 解得x=86, 所以150-x=64.
答:用86张白铁皮制作盒身,64张制作盒底, 做出的盒身与盒底正好配套.
随堂练习
4.一项工作,甲队单独做要12天完成,乙队单独做要8天完成. 现甲队先做3天后,乙队来支援,那么两队合做几天后完成 这项工作的三分之二?
A.不赚不赔 B.赔了100元 C.赚了100元 D.赚了360元

北师大版七年级数学上册55《“希望工程”义演 》课件

北师大版七年级数学上册55《“希望工程”义演 》课件

四、总结归纳(师生总结,互助评价)
1.两个未知量,两个等量关系,如何列方程;
2.寻找中间量;
3.学会用表格分析数量间的关系.
4.读课本第148页的“议一议”,进一步 熟悉用一元一次方程解决实际问题的一 般步骤。
五、巩固反馈(当堂检测,评价反馈)
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个 劳动力,由于各村人口数不等,只有按2:3:6的比 例摊派才较合理,则三个村庄各派多少个劳动力?
的内容。然后师徒交流预习收
获,并按照自己的理解修正自
想己一的想:解如答果。票价不变,那么售出1000张票
所得的票款可能是6930元吗?
二、互助探究(师生合作,评价学习)
初三·1班举办了一次集邮展览,展出的邮票数 若以平均每 人3张则多24张,以平均每人4张 则少26,这个班级有多少学生? 一共展出了多 少张邮票?
第五章 一元一次方程
学科网
5. 应用一元一次方程 —— “希望工程”义演
审—— 通过审题找出等量关系; 设—— 设出合理的未知数(直接或间接),注意单位名称; 列—— 依据找到的等量关系,列出方程; 解—— 求出方程的解(对间接设的未知数切记继续求解); 检—— 检验求出的值是否为方程的解,并检验是否符合实际问题 答—— 注意单位名称.
温馨分提析:示列:表1、本题包学含生哪人数些等邮票量张数关系?
2、怎方案样1 恰x当设“3未x+知24数”,

方案2
x
4x-26
等量关系:邮票出总方张程数相?等
解:设这个班有学生x人, 据题意得 3x+24=4x-26. 解,得 x=50,
此时,3x+24=150+24=174(张). 答:共有学生50人,邮票174张.

5.5 应用一元一次方程希望工程义演 课件5(北师大版七年级上)

5.5 应用一元一次方程希望工程义演 课件5(北师大版七年级上)

6950 — y = 1000 + 8 5 解方程,得 y = 1750 1750÷5 = 350 1000 — 350 = 650
y 元,根据题意,得 y
答:成人票售出650张,学生票售出350张。
某文艺团体为“希望工程”募捐组织 了一场义演,共售出了1000张票,筹得 票款6950元。成人票与学生票各售出了 多少张?
某文艺团体为“希望工程”募捐组织 了一场义演,共售出了1000张票,筹得 票款6950元。成人票与学生票各售出了 多少张? 营销问题。 1、应用题的类型:
8 5
想一想
学生 成人
2、计算公式: 总价=单价×数量。 3、相等关系: 成人票数+学生票数=1000张。 成人票款+学生票款=6950元。 4、若设售出的学生票为 张,可列表如下: 总价(元) 单价(元/张) 数量(张) 5 5 8 1000 — 8(1000 — )
x
x
x
x
x
解法1:设售出的学生票为
8(1000 —
解方程,得 1000 —
x张,根据题意,得 x )+ 5 x= 6950
x = 350
x = 1000—350=650
答:成人票售出650张,学生票售出350张。
某文艺团体为“希望工程”募捐组织 了一场义演,共售出了1000张票,筹得 票款6950元。成人票与学生票各售出了 多少张? 营销问题。 1、应用题的类型:
8 5
老师现在把上面的这道题 改动一个数字,你能悟出什么?
想不通啊,有点迷糊!
某文艺团体为“希望工程”募捐组织 了一场义演,共售出了1000张票,筹得 票款6930元。成人票与学生票各售出了 多少张?
我明白了!

数学:4.3_一元一次方程的应用-“希望工程”义演课件(鲁教版五四学制六年级上册)[1]

数学:4.3_一元一次方程的应用-“希望工程”义演课件(鲁教版五四学制六年级上册)[1]

能力提升
1、一艘船货舱容积2000立方米,可 载重500吨,现有甲、乙两种货物待装, 已知甲种货物每吨的体积为7立方米,乙 种货物每吨的体积为2立方米,两种货物 各应装多少吨最合理(不计货物之间的 空隙) 2、某厂生产一批西装,每2米布可以裁 上衣3件,或裁裤子4条,现有花呢240 米,为了使上衣和裤子配套,裁上衣和 裤子应该各用花呢多少米?
做一做
儿童票数+成人票数=1000
设所得的儿童票款为 y元,则可得:
儿童 票数/张 票款/元
y 5
成人
6950 y 8
y
6950-y
y 6950 y 1000 5 8
议一议 某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张 票,筹得票款6950元,成人票和儿童票各售出多少张? 成人票款+儿童票款=6950元 设所得的成人票款为 y 元,
1000张票中包括哪两种票呢?
6950元中包括哪两种票款呢?
成人票数+学生票数=1000张 成人票款+学生票款=6950元
设售出的学生票为x张,则可得: 学生 成人 票数/张 x 1000 -x 票款/元
5x
8(1000-x)
解:设售出的学生票为x张,则成
人票(1000-x)张,由题意得:
5x ( 8 1000 x) 6950
试一试
某文艺团体为“希望工程”募捐组 织了一场义演, 成人票比儿童票多300张
筹得票款 6950 元,成人票和儿童票各 售出多少张? 将这问题中的“共售1000张票”改为“成人 票比儿童票多300张”,成人票和儿童票共 售出多少张?
随堂练习
1.小彬用172元钱买了两种书为“希望工 程”募捐,共10本,单价分别为18元、 10元,每种书小明各买了多少本? 2、小刚及中外邮票共145张,其中中国邮 票的张数比外国邮票的张数的2倍少5张, 则小刚有中国邮票和外国邮票各多少张?

5.5 应用一元一次方程--“希望工程”义演

5.5 应用一元一次方程--“希望工程”义演

1.两个未知量,两个等量关系,如何列方程; 2.寻找中间量; 3.学会用表格分析数量间的关系.
1:甲、乙、丙三个村庄合修一条水渠,计划需要176个 劳动力,由于各村人口数不等,只有按2:3:6的比 例摊派才较合理,则三个村庄各派多少个劳动力?
• 2:某校组织活动,共有100人参加,要把 参加活动的人
等量关系:邮票总张数相等
解:设这个班有学生x人, 据题意得 3x+24=4x-26. 解,得 x=50, 此时,3x+24=150+24=174(张). 答:共有学生50人,邮票174张.
练习2:某工厂三个车间共有180人,第二车间人数是第一车间 人数的3倍还多1人,第三车间人数是第一车间人数的 一半还少1人,三个车间各有多少人?
分析:本题中存在2个等量关系:
总票数=成人总票数+学生总票数;
总票款=成人总票款+学生总票款.
方法1分析:列表
学生
票数(张)
x
票款(元)
5x
成人 1000-x 8(1000-x)
(方法1)解:设学生票为x张, 据题意得 5x+8(1000-x) =6950. 解,得 x=350. 此时,1000-x = 1000-350 = 650(张). 答:售出成人票650张,学生票350张.
(2)成人票款共得6400元,学生票款共得2500元, 成人票和学生票共卖出多少张?
分析:票数=总票款÷票价.
解:64800

2500 5

800

500

1300
(元).
答:成人票和学生票共卖出1300元.
例1:某文艺团体为“希望工程”募捐义演, 成人票8元,学生票5元.
(3)如果本次义演共售出1000张票,筹得票 款6950元,成人票与学生票各售出多少张?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档