太阳能电池组件特性与辐照度、温度等关系
太阳能光伏电池组件的性能评价与分析

太阳能光伏电池组件的性能评价与分析太阳能光伏电池是目前最广泛应用于太阳能光伏发电的一种技术。
它将太阳能转换成电能,是一种环保、清洁、可再生的能源,具有广泛的应用前景。
提高太阳能光伏电池组件的性能,是推动太阳能光伏发电技术发展和应用的关键。
性能评价标准太阳能光伏电池组件的性能评价标准主要有以下三个方面:1.电性能的评价标准太阳能光伏电池组件的电性能主要包括以下几个方面:峰值功率(P_max)、最大功率点(MPP)、短路电流(I_sc)、开路电压(V_oc)、填充因子(FF)等。
其中,峰值功率是太阳能光伏电池组件在标准测试条件(STC)下的输出电功率,通常以瓦(W)为单位。
最大功率点是太阳能光伏电池组件在某一辐照度和温度条件下能够输出的最大功率点,通常以电压(V)和电流(A)表示。
短路电流是电池在最大功率点下输出的电流,而开路电压是电池在最大功率点下输出的电压。
填充因子是包含电池的所有损耗对输出功率的影响之比。
2.光电性能的评价标准太阳能光伏电池组件的光电性能主要包括以下几个方面:光谱响应、量子效率、漏电流、暗电流等。
光谱响应是指光强度很弱时,太阳能光伏电池的输出电流与光的波长之间的关系。
量子效率是指对于能量等于光子能量的光,太阳能光伏电池的输出电流与此光的入射光强之间的关系。
漏电流是光伏电池在不输出电功率的情况下所流过的电流,它与空载时的电路电流相同。
暗电流是在光伏电池没有光照的情况下的电流,它与光伏电池材料的电子载流子的自发性结合有关。
3.机械性能的评价标准太阳能光伏电池组件的机械性能主要包括以下几个方面:耐压强度、抗风压强度、抗冻融性能、防护等级等。
耐压强度是指太阳能光伏电池组件承受一定的力量和压力后,不会出现破裂和损坏的能力。
抗风压强度是指太阳能光伏电池组件在面对大风时不会破损或倒塌的能力。
抗冻融性能是指太阳能光伏电池组件在面对低温冰冻和高温融化等条件下,不会出现裂缝和损坏的能力。
防护等级是指太阳能光伏电池组件的表面防护是否等级高、防震等级是否好等性能。
……太阳能电池影响因素

所有的太阳能电池组件标称的功率等参数都是在标准条件下测得的,这个标准条件就是组件温度25℃,光照为每平方米1000瓦,大气质量为AM1.5(从太阳表面放射出的光线,到达地球大气层时,会随着当地的纬度、时间与气象状况而改变。
也就是说,同一地点的直射日光,会随着四季不同的空气量而改变。
通过大气层的空气量称为空气质量即AM。
太阳光从天顶垂直通过大气层的空气量称为AM1,但在自然条件下,太阳光一般是倾斜通过大气层的,此时的空气量称为AM1.5。
)光谱特征,而一般太阳能电池都不是在此条件下工作的。
太阳能电池包括单晶硅、多晶硅、薄膜等类型,它们都是利用半导体的光伏效应发电的,其发电性能不可避免的受到结温的影响。
而结温又与环境温度、日照强度和通风情况有关在阳光的照射下,太阳能电池的结温会迅速升高。
特别是在阳光较强温度较高的夏季,组件的结温甚至高达70℃以上。
工作温度越高,非晶硅电池的优势越明显,非晶硅电池的年平均发电量比晶体硅电池多10%左右。
任何太阳能电站都是由若干组件串联,最后通过汇流并联而成。
设计组件串联,使其开路电压、工作电压等参数处于最佳值并与逆变器匹配。
要实现最佳匹配组件串联必须满足三个基本条件:第一,组件串联后的最大开路电压不能超过组件的最大系统电压(组件的安全电压,一般而言,大陆地区和欧洲地区规定此值为1000伏,北美地区为600伏);第二,组件的最大开路电压不能超过逆变器的最大允许电压;第三,组件串联的工作电压要在逆变器的工作电压的跟踪范围之内。
但是需要特别强调是上述三点内容都受温度和光照的影响。
太阳能电池的输出功率在达到25℃最佳工作温度后,会随着温度的上升而降低。
尤其是在炎热的夏季,高温条件下功率衰减的幅度会更大。
相比晶体硅太阳能电池来说,非晶硅薄膜电池由于具有良好的低温特性,所以更加适合在夏季高温的条件下工作,相比其它类型太阳能电池来说,同样功率的非晶硅薄膜电池能产生更多的年总发电量,这主要是非晶硅薄膜电池具有以下特性:1、低温度特性:通常来说,光伏组件的电性能参数都是在标准测试条件下测得的,标准测试条件(STC)包括:(光强:1000W/M2;频谱:1.5安培;组件温度:25℃)。
光伏组件标准测试条件的辐照度要求为

光伏组件标准测试条件的辐照度要求为根据你提供的主题,我将撰写一篇有关光伏组件标准测试条件中辐照度要求的文章。
文章将以知识文章格式进行撰写,以探讨这一主题,并会根据你的要求进行深度和广度兼具的评估和分析。
【主题】光伏组件标准测试条件的辐照度要求一、引言在当今世界,人们越来越意识到使用可再生能源的重要性。
太阳能作为可再生能源的重要组成部分,得到了广泛的应用。
然而,为了确保太阳能电池组件的性能和质量,我们需要了解光伏组件标准测试条件中对辐照度的要求。
二、光伏组件标准测试条件的定义1. 光伏组件标准测试条件,简称STC (Standard Test Conditions),是指在标准温度和辐照度条件下,对太阳能电池组件进行性能测试的条件。
通常,STC包括25°C的温度和1000W/m²的辐照度。
2. 在STC条件下进行测试可以使不同厂家生产的太阳能电池组件具有可比性,帮助用户更好地选择适合自己需求的产品。
三、对辐照度的要求1. 标准的辐照度要求根据国际电工委员会(IEC)的相关标准,光伏组件的标准测试条件中,辐照度要求是1000W/m²。
这意味着在太阳辐射强度为1000W/m²时,进行测试可以获得STC下的性能数据。
2. 辐照度对光伏组件性能的影响辐照度是指单位面积上接收到的太阳光的能量。
辐照度的变化会直接影响光伏组件的输出功率和效率。
在实际应用中,光伏组件面对的太阳辐射并不总是1000W/m²,因此了解在不同辐照度下的性能表现非常重要。
四、个人观点和理解作为一名太阳能技术从业者,我对光伏组件标准测试条件中辐照度要求的重要性深有体会。
充分了解STC条件下的辐照度要求,不仅有助于厂家生产出更高质量的产品,也可以帮助用户更准确地评估产品性能和选择合适的光伏组件。
五、总结光伏组件标准测试条件的辐照度要求是确保太阳能电池组件性能和质量的重要标准之一。
通过理解STC条件中对辐照度的要求,可以更好地评估光伏组件的性能。
太阳能电池组件特性与辐照度、温度等关系

太阳能电池组件把接收的光能转换成电能,其输出电流一电压的特性如图1所示。
这个特性也称为I-V曲线。
在图中标注的各点在标准状态下具有以下含义。
最大输出功率(Pm):最大输出工作电压(Vpm)×最大输出工作电流(IPM);开路电压(Voc):正负极间为开路状态时的电压;短路电流(1SC):正负极间为短路状态时流过的电流;最大输出工作电压(VPm):输出功率最大时的工作电压;最大输出工作电流(IPM):输出最大功率时的工作电流。
图中的最佳工作点是得到最大输出功率时的工作点,此时的最大输出功率Pm是IM和VM乘积。
这些具体的数值从表2.3中作为太阳能电池组件特性值可以了解到。
在实际的太阳能电池工作中,工作点与负载条件和辐射条件有关,所以工作点偏离最佳工作点。
图1太阳能电池组件的电流一电压特性作为太阳能电池组件的输出功率,与太阳光辐射照度、光源的种类及温度等各种自然条件有关。
因此评价太阳能电池组件输出特性时,基于模拟太阳光辐射照度和光谱分布的太阳光模拟装置的室内测试作为标准测试方法。
最近太阳能电池组件均用太阳光模拟装置测试,在如下所示的标准状态下进行试验,得出表图2所示的数据(注:对于辐射照度,因平时用日照强度来表示,所以也有用“日照强度”替代辐射照度的场合)。
标准状态:太阳能电池组件表面温度,25℃,光谱分布AMI.5,辐射照度1000W/m2。
图2辐射照度依赖特性和辐射照度---最大输出功率特性这里AM是Air Mass(气团)的缩写。
它表示太阳光线射入地面所通过的大气量,也是假设正上方(太阳光线垂直)的日照射为AM=1时,用其倍率表示的参数。
如AM-1.5是光的通过距离为1.5倍,相当于太阳光线与地面夹角为42。
如果AM变大,像早晨和傍晚那样短波长的光被大气吸收,则红光变多;如果AM变小,则蓝光增多。
太阳能电池因其种类、构成的材料和制造方法不同,对光的波长灵敏度不同,所以必须测光谱分量(光谱分布)。
光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素光伏发电是指利用光电转换原理将太阳能转化为电能的一种技术。
光伏发电量的计算是评估光伏发电系统性能的重要指标之一、在本文中,我将介绍光伏发电量的计算方法,并讨论影响光伏发电系统综合效率的因素。
理论计算方法通常采用太阳辐射和经纬度等数据来估算太阳辐照度,再根据光伏电池的工作原理计算出光伏发电量。
常用的理论计算方法有:1. Pvsyst软件:Pvsyst是一种专业的太阳能电池分析软件,可以根据用户输入的地理位置、光伏组件参数、倾角和朝向等参数来计算出光伏发电量。
2. Pvgis软件:Pvgis是由欧盟委员会开发的一个太阳能电池分析工具,可以提供全球范围内的太阳辐照度和光伏发电量数据。
实际计算方法需要获取光伏电池的实际工作参数以及运行数据来进行计算。
常用的实际计算方法有:1.年发电量计算:通过监测系统的实际发电功率和运行时间,可以计算出光伏发电系统的年发电量。
年发电量计算一般采用以下公式:年发电量(kWh)=日发电量(kWh)×3652.月发电量计算:通过监测系统每月的发电功率和运行时间,可以计算出光伏发电系统的月发电量。
月发电量计算一般采用以下公式:月发电量(kWh)=日发电量(kWh)×当月天数影响光伏发电系统综合效率的因素众多1.太阳辐照度:太阳辐照度是影响光伏发电量的最重要因素之一、太阳辐照度越高,光伏电池的发电量就越高。
2.温度:温度是影响光伏发电效率的重要因素之一、高温会使光伏电池的电子能级提高,从而降低光伏电池的发电效率。
3.光伏电池的质量和性能:光伏电池的质量和性能也会直接影响光伏发电系统的综合效率。
优质的光伏电池具有更高的光电转换效率和更长的使用寿命。
4.光伏组件的倾角和朝向:光伏组件的倾角和朝向也会影响光伏发电系统的综合效率。
合适的倾角和朝向可以最大程度地利用太阳能。
5.阴影遮挡:阴影遮挡是影响光伏发电系统效率的重要因素之一、即使只有一个光伏电池模块被阴影遮挡,整个光伏发电系统的发电量也会降低。
如何计算太阳能电池组件功率

如何计算太阳能电池组件功率太阳能电池组件功率是指光照照射到太阳能电池组件表面时,太阳能电池组件转换为电能的能力。
计算太阳能电池组件功率需要考虑多个因素,包括太阳能电池组件的关键参数和光照条件等。
太阳能电池组件的关键参数包括开路电压(Voc)、短路电流(Isc)、最大功率电压(Vmp)和最大功率电流(Imp)。
这些参数可以在厂商提供的太阳能电池组件规格表中找到。
计算太阳能电池组件的功率可以使用以下公式:P = Vmp * Imp其中,P是太阳能电池组件的功率,Vmp是最大功率点的电压,Imp是最大功率点的电流。
实际上,太阳能电池组件的功率受到光照强度和温度等外界因素的影响。
为了更准确地计算太阳能电池组件的功率,可以使用以下公式:P = Voc * Isc * FF其中,FF是填充因子(Fill Factor),是一个介于0和1之间的系数,表示太阳能电池组件内电流的流失情况。
填充因子是用来考虑电池内阻、接触电阻和非均匀场等因素的。
填充因子的计算可以使用以下公式:FF = (Vmp / Voc) * (Imp / Isc)在计算太阳能电池组件功率时,还需要考虑光照强度。
光照强度通常用太阳辐照度(Solar Irradiance)来表示,单位为W/m²。
太阳辐照度可以在气象站或光照数据网站上获取。
太阳辐照度与太阳能电池组件功率的关系可以用以下公式表示:P=P0*G/G0其中,P是太阳能电池组件在给定光照强度下的功率,P0是太阳能电池组件名义功率,G是实际光照强度,G0是标准光照强度。
标准光照强度通常为1000W/m²。
在实际计算中,还需要考虑太阳能电池组件的温度。
太阳能电池组件的温度影响其电压和电流的变化,进而影响功率的计算。
太阳能电池组件的温度可以使用以下公式进行计算:Tc=Ta+(NOCT-20)*(G/G0)其中,Tc是太阳能电池组件的温度,Ta是环境温度,NOCT是太阳能电池组件的名义操作细胞温度。
电池组件结构设计与参数指标分析

电池组件结构设计与参数指标分析在生产电池组件之前,就要对电池组件的外型尺寸、输出功率以及电池片的排列布局等进行设计,这种设计在业内就叫太阳能电池组件的板型设计。
电池组件板型设计的过程是一个对电池组件的外型尺寸、输出功率、电池片排列布局等因素综合考虑的过程。
设计者既要了解电池片的性能参数,还要了解电池组件的生产工艺过程和用户的使用需求,做到电池组件尺寸合理,电池片排布紫凑美观。
组件的板形设计一般从两个方向入手。
一是根据现有电池片的功率和尺寸确定组件的功率和尺寸大小;二是根据组件尺寸和功率要求选择电池片的尺寸和功率。
电池组件不论功率大小,一般都是由36片、72片、54片和60片等几种串联形式组成。
常见的排布方法有4片×9片、6片×6片、6片×12片、6片×9片和6片×10片等。
下面就以36片串联形式的电池组件为例介绍电池组件的板型设计方法。
例如,要生产一块20W 的太阳能电池组件,现在手头有单片功率为2.2~2.3W的125mm×125mm单晶硅电池片,需要确定板型和组件尺寸。
根据电池片情况,首先确定选用2.3W的电池片9片(组件功率为2.3W×9-20.7W,符合设计要求,设计时组件功率误差在±5%以内可视为合格),并将其4等分切割成36小片,电池片排列可采用4片×9片或6片×6片的形式,如图3-7所示。
图中电池片与电池片中的间隙根据板型大小取2~ 3mm;上边距根据板型大小一般取35~50mm;下边距根据板型大小一般取20~35mm;左右边距根据板型大小一般取10~20mm。
这些尺寸都确定以后,就确定了玻璃的长宽尺寸。
假如上述板型都按最小间隙和边距尺寸选取,则4×9板型的玻璃尺寸长为633.5mm,取整为635mm,宽为276mm;6×6板型的玻璃尺寸长为440mm,宽为405mm。
光伏组件发电效率影响因素分析

光伏组件发电效率影响因素分析摘要:2021年,全国风电、光伏发电发电量占全社会用电量的比重达到11%左右,后续逐年提高,确保2025年非化石能源消费占一次能源消费的比重达到20%左右。
可见,我国非化石能源尤其是以光伏、风电为代表的新能源将成为未来能源增长的中坚力量。
太阳能发电系统中,光伏组件俗称太阳能电池板,是系统中的核心部分,也是系统中价值最高的部分。
其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。
太阳能电池受阳光激发,引起电子转移,从而发电。
受阳光激发的波长取决于半导体的种类。
现今市场,主要使用最多的是结晶硅和薄膜硅电池片,其光电转换效率一般不到20%。
所以这是提高系统转换效率的重要方向。
关键词:光伏组件;发电效率1 国内外研究背景及现状太阳能光伏发电目前主要由三种应用形式,一是在开阔地域建设的大规模大规模并网光伏电站,直接将太阳光转化为电能传输到电网;二是城市屋顶并网光伏系统,这些系统的容量较小,产生的电能可以先满足户用,有多余电量可以输入电网,当光伏系统发电量不足以支持户用需求时,由电网向户用系统供电;三是离网光伏系统,应用非常广泛,可以为没有架设电网的海岛、偏远山村、游牧家庭供电,满足基本用电需求,还可以为无人值守的通讯基站、航标灯、路灯、交通指挥信号灯等供电。
西班牙的M.C.Alonso-Garcia对光伏组件的匹配及阴影对发电效率的影响开展了实验研究,提出光伏组件匹配系数,得出光伏组件经过串并联组成阵列后的发电量比单个组件发电量之和少0.24%;得出当光伏板被遮挡一半时,最理想的情况下功率损失19%,当全部被遮挡时,功率可损失79%。
希腊的E.Skoplaki和A.G.Boudouvis等人研究光伏组件工作温度对发电效率及发电量的影响,提出了光伏组件运行温度方程式,以及包含光伏组件温度、环境温度、风速、太阳辐射量和组件安装参数的光伏发电效率方程式。
根据Yellott的研究,光伏组件优化倾角可以根据春秋两季进行调整,夏季优化角为当地纬度减去20°,冬季优化角为当地纬度加上20°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能电池组件把接收的光能转换成电能,其输出电流一电压的特性如图1所示。
这个特性也称为I-V曲线。
在图中标注的各点在标准状态下具有以下含义。
最大输出功率(Pm):最大输出工作电压(Vpm)×最大输出工作电流(IPM);
开路电压(Voc):正负极间为开路状态时的电压;
短路电流(1SC):正负极间为短路状态时流过的电流;
最大输出工作电压(VPm):输出功率最大时的工作电压;
最大输出工作电流(IPM):输出最大功率时的工作电流。
图中的最佳工作点是得到最大输出功率时的工作点,此时的最大输出功率Pm是IM和VM乘积。
这些具体的数值从表2.3中作为太阳能电池组件特性值可以了解到。
在实际的太阳能电池工作中,工作点与负载条件和辐射条件有关,所以工作点偏离最佳工作点。
图1太阳能电池组件的电流一电压特性
作为太阳能电池组件的输出功率,与太阳光辐射照度、光源的种类及温度等各种自然条件有关。
因此评价太阳能电池组件输出特性时,基于模拟太阳光辐射照度和光谱分布的太阳光模拟装置的室内测试作为标准测试方法。
最近太阳能电池组件均用太阳光模拟装置测试,在如下所示的标准状态下进行试验,得出表图2所示的数据
(注:对于辐射照度,因平时用日照强度来表示,所以也有用“日照强度”替代辐射照度的场合)。
标准状态:太阳能电池组件表面温度,25℃,光谱分布AMI.5,辐射照度1000W/m2。
图2辐射照度依赖特性和辐射照度---最大输出功率特性
这里AM是Air Mass(气团)的缩写。
它表示太阳光线射入地面所通过的大气量,也是假设正上方(太阳光线垂直)的日照射为AM=1时,用其倍率表示的参数。
如AM-1.5是光的通过距离为1.5倍,相当于太阳光线与地面夹角为42。
如果AM变大,像早晨和傍晚
那样短波长的光被大气吸收,则红光变多;如果AM变小,则蓝光增多。
太阳能电池因其种类、构成的材料和制造方法不同,对光的波长灵敏度不同,所以必须测光谱分量(光谱分布)。
太阳能电池组件,如果其表面温度变高,输出功率下降,呈现负的温度特性。
晴天受到辐射的组件表面的温度比外界气温高20—40℃,所以此时组件的输出功率比标准状态的输出功率低。
图3温度依赖特性和温度一最大输出功率特性
另外,由于季节和温度的变化输出功率也在变化。
如果辐射照度相同,冬季比夏季输出功率大。
辐射特性和温度特性如图2.2和图.3所示。
由图可见,组件温度不变、辐射照度变化的场合,短路电流(lsc-)与辐射照度成正比,与之伴随最大输出功率(Pm)与辐射照度大致成正比。
当辐射照度不变、组件温度上升时,开路电压(Voc)和最大输出功率(Pm)也下降。