变频器矢量控制原理、应用及要求

合集下载

变频器矢量控制原理

变频器矢量控制原理

变频器矢量控制原理
变频器矢量控制原理是一种用于控制三相异步电动机的方法。

它基于矢量算法,通过测量和处理电机的电流和转速信号,并将其转化为电机控制信号,实现对电机的精确控制。

变频器矢量控制的核心原理是将电机的转子电流和转速向量解耦,分别控制它们的大小和相位。

在传统的矢量控制算法中,主要包括转速闭环控制和电流闭环控制两个环节。

转速闭环控制主要通过测量电机的转速,并将其与期望转速进行比较,得到转速误差信号。

然后根据这个误差信号,通过PID控制算法计算得到控制电机转速的控制信号。

这个控制信号经过逆正切运算,转化为电机的转子电流矢量。

电流闭环控制主要通过测量电机相电流和直流母线电压,得到电流误差信号。

然后根据这个误差信号,通过PID控制算法计算得到控制电机电流的控制信号。

这个控制信号经过逆正切运算,转化为电机的转子电流矢量。

通过对转速和电流闭环控制的协调控制,变频器可以实现对电机的精确控制。

在变频器矢量控制中,可以通过改变电机转子电流矢量大小和相位角来改变电机的转矩和转速。

这样,可以实现电机的平滑启动、调速和制动等控制功能。

总之,变频器矢量控制是一种高级的电机控制方法,可以实现对电机的精确控制,提高电机的响应速度和控制精度。

它在工业生产和各种机械设备中得到广泛应用。

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析
矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。

基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。

早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。

无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。

实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。

它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

变频器矢量控制

变频器矢量控制

变频器矢量控制在工业自动化领域,变频器是一种重要的设备,广泛应用于电机控制和能源节约等方面。

其中,矢量控制是变频器的一种重要控制方式,它通过精确的电机控制实现了更高效、更稳定的运行。

一、矢量控制的原理和特点矢量控制是一种基于电流的控制方式,它通过分析电机电流的大小和方向来实现对电机的控制。

与传统的频率控制相比,矢量控制具有以下几个特点:1.高精度的转矩控制:矢量控制能够精确地控制电机的转矩输出,无论在低速或高速运行时都能提供较为准确的转矩响应。

这对于需要精确控制转矩的应用场景非常重要。

2.宽速度范围的控制:矢量控制可以实现宽速度范围的无级调速。

无论是低速运行还是高速运行,都可以得到较为稳定的输出。

这对于大部分工业应用来说都是非常关键的。

3.良好的动态性能:矢量控制具有快速的动态响应特点,能够在瞬态变化时快速调整电机输出。

这使得在工业生产中的速度要求较高的应用中,矢量控制展现出了很好的优势。

4.较高的效率和能耗节约:矢量控制通过对电机的精确控制,可以使电机运行在最佳工作点上,从而提高电机的效率,降低能耗。

在能耗节约方面,矢量控制也具有很大的潜力。

二、矢量控制的实现方法矢量控制的实现首先需要获取电机的转速和转矩反馈,以及电机的电流反馈。

然后,将这些反馈信号输入到控制器中,通过控制器对电机的电流大小和方向进行调节。

具体的实现方法有以下几种:1.直接转矩控制(DTC):直接转矩控制是一种基于电机转矩和电流的控制方法,它通过直接控制电机的转矩和磁场实现对电机的控制。

这种方法具有快速动态响应和精确控制的特点,但在低速和零速运行时存在一定的困难。

2.间接转矩控制(FOC):间接转矩控制是一种基于电机磁链和电流的控制方法,它通过控制电机的磁链大小和方向来实现对电机的转矩控制。

这种方法相对于直接转矩控制在低速和零速运行时更为稳定,但对控制器的要求更高。

3.空间矢量调制(SVM):空间矢量调制是一种通过改变电压波形的方式来控制电机的方法。

矢量控制在电机转速调节中的应用

矢量控制在电机转速调节中的应用

矢量控制在电机转速调节中的应用矢量控制是一种在电机转速调节中广泛应用的技术。

它通过对电机的电流和磁场进行精确控制,使得电机在各种工作负载下都能够稳定运行。

本文将介绍矢量控制的原理、优势以及在电机转速调节中的应用。

一、矢量控制原理矢量控制是通过控制电机的电流和磁场实现对转速、转矩的精确控制。

它基于电机的磁链方程,通过电流和转矩之间的控制关系来实现精确的调节。

在矢量控制中,电机系统可以分为磁场定向和转子定向两种控制方法。

磁场定向是通过控制转子电流和电机电压,使电机产生一个与磁场相对的旋转磁场,进而使转子旋转。

转子定向则是通过控制电机电流和磁场,实现对转子位置和角度的精确控制。

二、矢量控制的优势1. 精确控制能力:矢量控制能够实现对电机转速和转矩的精确控制,使得电机在各种工作负载下都能够保持恒定的转速和转矩输出。

2. 高响应速度:矢量控制器通过精确控制电流和磁场,能够实现电机的快速启动和停止,响应速度高,能够适应各种复杂的工作环境和工作要求。

3. 高效能和节能:矢量控制可有效减小电机的功率损耗,提高电机的能效。

通过精确控制转矩和转速,使得电机在工作时能够以最佳状态运行,从而实现节能减排。

三、1. 工业自动化:在工业自动化领域,矢量控制常用于变频器控制系统。

通过精确控制电机的转速和转矩,可以适应不同的负载情况和工艺要求,实现高效的生产和运作。

2. 电动车辆:矢量控制在电动车辆中的应用越来越广泛。

通过精确控制电机的转速和扭矩,可以提高电动车辆的动力性能和能量利用率,延长电池寿命。

3. 电梯系统:矢量控制也常用于电梯系统中。

通过精确控制电机的转速和转矩,可以实现电梯的平稳运行和准确的楼层停靠,提高乘坐舒适性和安全性。

4. 空调和风机系统:矢量控制在空调和风机系统中也得到了广泛应用。

通过精确控制电机的转速和转矩,可以实现空调和风机的高效运行,提高空气循环效率,降低能耗。

总结:矢量控制在电机转速调节中的应用日益重要。

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用

变频器矢量控制的优点及应用矢量控制原理--应用采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。

由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器。

鉴于电机参数有可能发生变化,会影响变频器对电机的控制性能,并根据辨识结果调整控制算法中的有关参数,从而对普通的异步电动机进行有效的矢量控制。

异步电动机矢量控制变频调速系统的开发,使异步电动机的调速可获得和直流电动机相媲美的高精度和快速响应性能。

异步电动机的机械结构又比直流电动机简单、坚固,且转子无碳刷滑环等电气接触点,故应用前景十分广阔。

现将其优点和应用范围综述如下:1、矢量控制系统的优点:动态的速响应直流电动机受整流的限制,过高的di/dt是不容许的。

异步电动机只受逆变器容量的限制,强迫电流的倍数可取得很高,故速度响应快,一般可达到毫秒级,在快速性方面已超过直流电动机。

低频转矩增大一般通用变频器(VVVF控制)在低频时转矩常低于额定转矩,在5Hz以下不能带满负载工作。

而矢鱿控制变频器由于能保持磁通恒定,转矩与it呈线性关系,故在极低频时也能使电动机的转矩高于额定转矩。

控制的灵活性直流电动机常根据不同的负载对象,选用他励、串励、复励等形式。

它们各有不同的控制特点和机械特性。

而在异步电动机矢量控制系统中,可使同一台电动机输出不同的特性。

在系统内用不同的函数发生器作为磁通调节器,即可获得他励或串励直流电动机的机械特性。

使用矢量控制,可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。

对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。

变频器矢量控制与VF控制

变频器矢量控制与VF控制

变频器矢量控制与VF控制矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。

矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

矢量控制理论模型如下图矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。

1、无反馈矢量控制。

无反馈矢量控制方式优点是:a)、使用方便,用户不需要增加任何附加器件。

b)、机械特性较硬。

机械特性由于V/F控制方式,且不会发生电机磁路饱和问题,调试方便(个人观点,请大家批评指正) 缺点是 :调速范围和动态响应能力不及有反馈控制方式;2、有反馈矢量控制方式。

有反馈矢量控制方式的主要优点是: a)、调速性能优于无反馈矢量控制方式及V/F控制。

缺点: 需要在电机上安装测速装置(大多为旋转编码器),电机变频改造比较麻烦,成本也高。

故有反馈矢量控制一般应用场合为:a)、要求有较大调速范围的场合(如:具有铣、磨功能的龙门刨床) ; b)、对动态响应性能要求较高的场合 ;c)、对安全运行要求较高场合。

矢量控制的适用范围:a)、矢量控制只能用于一台变频器控制一台电机。

当一台变频器控制多台电机时,矢量控制无效;b)、电机容量与变频器要求配置的电机容量之间,最多只能相差一个档次。

(如:变频器要求配置电机容量为7.5KW,那么实际电机最小容量为5.5KW,对于3.7kw电机就不行了);c)、电机磁极数一般以2、4、6极为宜,极数较多时建议查阅变频器说明书;d)、力矩电机、深槽电机、双鼠笼电机等特殊电机不能用矢量控制功能。

//(个人观点,请大家批评指正)V/F控制:如果电机电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。

变频器矢量控制说明介绍

变频器矢量控制说明介绍

变频器的V/F控制与矢量控制U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。

但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。

另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。

因此人们又研究出矢量控制变频调速。

矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。

其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。

通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。

矢量控制方法的提出具有划时代的意义。

然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

V/F控制与矢量都是恒转矩控制。

U/F相对转矩可能变化大一些。

而矢量是根据需要的转矩来调节的,相对不好控制一些。

对普通用途。

两者一样1、矢量控制方式——矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。

变频器矢量控制原理

变频器矢量控制原理

变频器矢量控制原理知识矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。

基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。

早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。

无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。

实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。

它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。

由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器,并需使用厂商指定的变频器专用电动机进行控制,否则难以达到理想的控制效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器矢量控制原理、应用及要求
早在上世纪七十年代就有工程师提出了矢量控制理论,解决了交流电机转矩控制的问题。

但对于变频器矢量控制原理是什么,很多人就不知道了,下面环球自动化网小编就为大家带来变频器矢量控制原理及应用详细分析。

变频器矢量控制原理:矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

矢量控制变频调速的具体步骤:1)将交流电机等效为直流电机:将交流电机的三相定子电流ia、ib、ic通过三相-二相变换转换为静止坐标系下的交流电流ia1、ib1;2)对速度、磁场两个分量进行独立控制:将静止坐标系下的交流电流ia1、ib1通过磁场定向旋转变换转换为旋转坐标系下的直流电流im1、it1,其中,im1即等效为直流电动机的励磁电流,it1即等效为与转矩成正比的电枢电流;3)对直流电机进行变频调速控
制:根据直流电动机的控制方法求得直流电动机的控制量;4)坐标反变换还原为对交流电机的控制:根据上述一二步骤的坐标变换进行相应的坐标反变换,将直流电流转换为交流电流,再转换为三相定子电流以完成对交流电动机的矢量控制。

变频器矢量控制实现:矢量控制基本理念旋转地只留绕组
磁场无论是在绕组的结构上,还是在控制的方式上,都和直流电动机最相似。

设想,有两个相互垂直的支流绕组同处于一个旋转体中,通入的是直流电流,它们都由变频器给定信号分解而来的。

经过直交变换将两个直流信号变为两相交
流信号;在经二相、三相变换得到三相交流控制信号;结论只
要控制直流信号中的任意一个,就可以控制三相交流控制信号,也就控制了交流变频器的交流输出。

通过上述变换,将交流电机控制近似为直流电机控制变频器矢量控制模式要求:1)一台变频器只能带一台电动机。

2)电动机的极数要按说明书的要求,一般以4极电动机为最佳。

3)电动机容量与变频器的容量相当,最多差一个等级。

如:根据变频器的容量应选配11 kW的电动机,使用矢量控制时,电动机的容量可是11 kW或7.5 kW,再小就不行了。

4)变频器与电动机
间的连接线不能过长,一般应在30 m以内。

如果超过30 m,需要在连接好电缆后,进行离线自动调整,以重新测定电动机的相关参数。

现在大部分的新型通用变频器都有了矢量控制功能,如何选择使用这种功能,多用下面两种方法:1)在
矢量控制功能中,选择“用”或“不用”。

2)在选择矢量控制后,还需要输入电动机的容量、极数、额定电流、额定电压、额定功率等。

由于矢量控制是以电动机的基本运行数据为依据,因此电动机的运行数据就显得很重要。

如果使用的电动机符合变频器的要求,且变频器容量和电动机容量相吻合,变频器就会自动搜寻电动机的参数,否则就需重新测定。

很多类型的变频器为了方便测量电动机的参数都设计安排了电动
机参数自动测定功能。

通过该功能可准确测定电动机的参数,且提供给变频器的记忆单元,以便在矢量控制中使用。

在使用矢量控制时,一些需要注意的问题如下:1)使用矢量控制时,可以选择是否需要速度反馈。

对于无反馈的矢量控制,尽管存在对电动机的转速估算精度稍差,其动态响应较慢的弱点,但其静态特性已很完美。

如果对拖动系统的动态特性无特殊要求,一般可以不选用速度反馈。

2)频率显示以给定频率为好。

矢量控制在改善电动机机械特性时,最终是通过改变变频器的输出频率来完成的。

在矢量控制的过程中,其输出频率会经常跳动,因此实际使用时频率显示以显示“给定频率”为好。

相关文档
最新文档