高中数学排列组合的应用-ppt课件

合集下载

2022年秋高中数学第六章计数原理6.2排列与组合6.2.3组合6.2.4组合数课件新人教A版选择性

2022年秋高中数学第六章计数原理6.2排列与组合6.2.3组合6.2.4组合数课件新人教A版选择性
2
区别,组合数为C10
=45.
3
(3)是组合问题,因为去开会的 3 个人之间没有顺序的区别,组合数为C10
=120.
(4)是排列问题,因为 3 个人担任哪一科的课代表是有区别的,排列数为
A310 =720.
规律方法 1.组合的特点是只选不排,即组合只是从n个不同的元素中取出
m(m≤n)个不同的元素.
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
知识点1 组合的相关概念
1.组合:一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个
不同元素中取出m个元素的一个组合.
可类比集合元素的无序性
2.相同组合:两个组合只要 元素相同
的.
,不论元素的顺序如何,都是相同
名师点睛
排列与组合的区别与联系
学以致用•随堂检测全达标
1.把三张游园票分给10个人中的3人,分法有(
A.A310 种
3
B.C10

3 3
C.C10
A10 种
D.30 种
答案 B
3
C
解析 三张票没区别,从10人中选3人即可,即 10 .
)
2
2.若A2 =3C-1
,则 n 的值为(
A.4
B.5
C.6
D.7
答案 C
2
解析 因为A2 =3C-1
提示 “组合”与“组合数”是两个不同的概念,组合是指“从n个不同的元素中
取出m(m≤n)个元素作为一组”,它不是一个数,而是具体的一组对象;组合
数是指“从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数”,它
是一个数.
知识点3 组合数的性质

排列、组合 和二项式定理幻灯片PPT

排列、组合 和二项式定理幻灯片PPT

组合
组合数的概念和推导 组合数公式 组合数性质
CnmCnnm C n m 1C n mC n m 1
kCnk nCnk1
C k k C k k 1 C k k 2 C n k C n k 1 1
计数综合问题
先选后排
7.从3名男生和3名女生中,选出3名分别担 任语文、数学、英语的课代表,要求至少 有1名女生,则选派方案共有( )
其中能被5整除的四位数共有

二维:有5有0,有5无0,无5有0
主元:个位为0,个位为5(再根据需要细 分,选0与不选0)
在6名内科医生和4名外科医生中,内科主 任和外科主任各一名,现在要组成人医疗 小组送医下乡,依下列条件各有多少种方 法:
既有内科医生又有外科医生(间接考察)
既有主任又有外科医生
排列数应用
组合 组合数
组合数应用
二项式定理
教学内容
不仅有着许多直接应用,还是学习概率理 论的准备知识,而且由于其思维方法的新 颖性与独特性,因此它也是培养学生思维 能力的不可多得的好素材;作为初中多项 式乘法公式的推广——二项式定理,不仅 使前面组合等知识的学习得到强化,而且 与后面概率中的二项分布有着密切联系。
排列、组合 和二项式定理 幻灯片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
知识结构
分类计数原理、分步计数原理
排列 排列数
3.展开式的每一项由若干个a和若干个b的乘积 构成,a和b的个数之和等于n,它可以表示为ankbk.

高中数学排列组合的应用-ppt课件

高中数学排列组合的应用-ppt课件
搞清限制条件的真正含义,做针对性文章!
例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。
若三个女孩要站在一起,有多少种不同的排法?
解:将三个女孩看作一人与四个男孩排队,有 种排法,而三个女孩之间有 种排法,所以不同的排法共有: (种)。
(3)非均匀、无序分组: 把n个不同的元素分成m组,第1组r1个元素,第2组 r2个元素,第3组r3个元素,……第m组rm个元素, 则共有 种分法. (其中r1+r2+r3+…+rm=n)
(4)非均匀、有序分组: 把n个不同的元素分成m组,第1组r1个元素,第2组 r2个元素,第3组r3个元素,……第m组rm个元素, 再分给m个人,则共有 种分法.(其中r1+r2+r3+…+rm=n)
(5)局部均匀分组: 把n个不同的元素分成m组,其中m1个组有r1个元 素, m2个组有r2个元素,…… mk个组有rk个元素, 则共有 种分法.(其中m1r1+m2r2+m3r3+…+mkrk=n)
如果每堆至多2本,至少1本,有多少种分法?
解法一:(特殊位置法)
第一步:从其余5位同学中找2人站排头和排尾,有 种;
第二步:剩下的全排列,有 种;
答:共有2400种不同的排列方法。
解法二:(特殊元素法)
第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有 种;
第二步:其余同学全排列,有 种;
答:共有2400种不同的排列方法。
2
如果一堆3本,其余各堆各1本,有多少种分法?
1
例4:有6本不同的书,分成4堆.
例5:从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?

17种排列组合方法ppt课件

17种排列组合方法ppt课件
甲乙 丙丁
由分步计数原理可得共有 A55A22 A22 =480
种不同的排法
6
五.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞 蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共
个有元A素55 中种间,包第含二首步尾将两4舞个蹈空插位入共第有一种步排A好64 的不6
练习:从6个男同学和4个女同学中,选出3个男同学和 2个女同学,分别担任五项不同的工作,一共有多少 种不同的分配方法?
5
四.相邻元素捆绑策略 例2.7人站成一排 ,其中甲乙相邻且丙丁相邻, 共 有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元 素,同时丙丁也看成一个复合元素,再与其它元素进 行排列,同时对相邻元素内部进行自排.
个空隙中插入3个不亮的灯有__C__35 _种.
12
十二.元素相同问题隔板策略 例10.有10个三好学生名额,在分给7个班,每班至 少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排,相 邻名额之间形成9个空隙. 在9个空档中选6个 位置插个隔板,可把名额分成7份,对应地分给 7个班级,每一种插板方法对应一种分法共有
同的方法.由分步计数原理,节目的不同顺序
共有
A A55
4 6

相 独 独独相
7
六.固定顺序问题用除法策略 例4.7人排队,其中甲乙丙3人顺序一定,共有多少不 同的排法?
1除法:对于某几个元素顺序一定的排列问题,可 先把这几个元素与其他元素一起进行排列,然后 用总排列数除以这几个元素之间的全排列数,则 共有不同排法种数是: A77
A22
15
练习:某兴趣小组有9个人,现有3项不同的活动可以让

高中数学排列组合的应用-ppt课件(课堂教学)

高中数学排列组合的应用-ppt课件(课堂教学)

2、什么叫做从n个不同元素中取出m个元素的排列数?
从n个不同的元素中取出m(m≤n)个元素的所有排列的个
数,叫做从n个不同元素中取出m个元素的排列数.
用符号 Anm 表示
3、排列数的两个公式是什么?
Am n(n 1)(n 2)(n m 1)
n
Anm
(n
n! m)! (n,m∈学校N课堂*,m≤n)
⑵间接计算法
先抛开限制条件,计算出所有可能的排列数,再从 中减去不合题意的排列数,特别要注意:不能遗漏,也 不能重复. 即排除法.
搞清限制条件的真正含义,做针对性文章!
学校课堂
11
例2:七个家庭一起外出旅游,若其中四家是一 个男孩,三家是一个女孩,现将这七个小孩站 成一排照相留念。
若三个女孩要站在一起,有多少种不同的排法?
分析:可看作甲固定,其学余校课全堂 排列 A66 720
5
(4)7位同学站成一排,甲、乙只能站在 两端的排法共有多少种?
解:将问题分步
第一步:甲乙站两端有A22 种
第二步:其余5名同学全排列有A55 种
共有A22 A55=2400种
答:共有2400种不同的排列方法。
学校课堂
6
(5)7位同学站成一排,甲、乙不能站在 排头和排尾的排法共有多少种?
若三个女孩互不相邻,有多少种不同的排法?
插空法
解:先把四个男孩排成一排有A44种排法,在每一排 列中有五个空档(包括两端),再把三个女孩插入
空档中有A53种方法,所以共有: A44 A53 1440 (种)
排法。
学校课堂
15
例2:七个家庭一起外出旅游,若其中四家是一个男孩, 三家是一个女孩,现将这七个小孩站成一排照相留念。

排列组合ppt课件

排列组合ppt课件

排列的分类与计算方法
01
02
03
排列的定义
排列是指从给定个数的元 素中取出指定个数的元素 进行排序。
排列的分类
根据取出的元素是否重复 ,排列可分为重复排列和 不重复排列。
排列的计算方法
排列的计算公式为 nPr=n!/(n-r)!,其中n为 总元素个数,r为要取出的 元素个数。
组合的分类与计算方法
后再合并答案。
利用对称性
在某些问题中,可以利用对称性 来简化计算,例如在计算圆周率 时可以利用对称性来减少计算量

学会推理和猜测
在某些问题中,需要学会推理和 猜测,尝试不同的方法和思路,
以寻找正确的答案。
解题注意事项与易错点
注意细节
在解题过程中要注意细节,例如元素的重复、遗漏等问题,避免 出现错误。
组合的定义
组合是指从给定个数的元 素中取出指定个数的元素 进行组合,不考虑排序。
组合的分类
根据取出的元素是否重复 ,组合可分为重复组合和 不重复组合。
组合的计算方法
组合的计算公式为 nCr=n!/(r!(n-r)!),其中n 为总元素个数,r为要取出 的元素个数。
排列组合的复杂应用
排列与组合的应用
另一个应用是解决组合问题,例如,在从n个不同元素中 选出m个元素的所有组合的问题中,可以使用排列组合的 方法来解决。
排列组合在物理中的应用
排列组合在物理中也有着广泛的应用,其中最常见的是在量子力学和统计物理中 。例如,在量子力学中,波函数的对称性和反对称性可以通过排列组合来描述。
在统计物理中,分子和原子的分布和运动可以通过排列组合来描述。例如,在理 想气体中,分子的分布和运动可以通过组合数学的方法来描述。

排列组合问题17种方法ppt课件

排列组合问题17种方法ppt课件

C
6 9














30
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素 排成一排的n-1个空隙中,所有分法数为
C m 1 n 1
31
练习题
1. 10个相同的球装5个盒中,每盒至少一 有多少装法?
C4 9
2 .x+y+z+w=100求这个方程组的自然数解 的组数
A
5 5
A A A
2 4
1 4
5 5
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
前排
后排
20
练习题
有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并 且这2人不左右相邻,那么不同排法的种数是______
346
21
重排问题求幂策略
把6名实习生分配到7个车间实习,共有 多少种不同的分法
解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.
7
把第二名实习生分配
到车间也有7种分法,
依此类推,由分步计
7 6 数原理共有 种不同的排法
允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上的排列数为 种
一个盒子装1个 (6)每个盒子至少1个
25
练习题 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192

数学:1.2.2《组合》PPT课件(新人教A版-选修2-3)

数学:1.2.2《组合》PPT课件(新人教A版-选修2-3)

小结:至多至少问题常用分类的或排除法. 小结:至多至少问题常用分类的或排除法.
从数字1,2,5,7中任选两个 例2 从数字 中任选两个 (1) 可以得到多少个不同的和 6个 可以得到多少个不同的和? (2)可以得到多少个不同的差 12个 可以得到多少个不同的差? 可以得到多少个不同的差 有不同的英文书5本 不同的中文书 不同的中文书7本 练习 有不同的英文书 本,不同的中文书 本, 从中选出两本书. 从中选出两本书 (1)若其中一本为中文书 一本为英文书 若其中一本为中文书,一本为英文书 若其中一本为中文书 一本为英文书. 问共有多少种选法? 问共有多少种选法 35种 (2)若不限条件 问共有多少种选法 若不限条件,问共有多少种选法 若不限条件 问共有多少种选法? 66种
练一练
1.写出从 写出从a,b,c,d 四个元素中任取三个元素的所有 写出从 组合
c a b b c c d d d
abc , abd , acd ,bcd .
组合 abc abd acd bcd abc acb abd adb
排列 bac bca bad bda cad cda cbd cdb cab cba dab dba dac dca dbc dcb
3 4 3
4
3
43 34 33
3
概念讲解
组合数公式
排列与组合是有区别的,但它们又有联系. 排列与组合是有区别的,但它们又有联系. 一般地,求从n个不同元素中取出 个不同元素中取出m个元素的 一般地,求从 个不同元素中取出 个元素的 排列数,可以分为以下2步 排列数,可以分为以下 步: 先求出从这n个不同元素中取出 个不同元素中取出m个 第1步,先求出从这 个不同元素中取出 个 m 元素的组合数 C. n 2步 求每一个组合中m个元素的全排列数 第2步,求每一个组合中m个元素的全排列数 An . m m m An = Cn ⋅ Am 根据分步计数原理,得到: 根据分步计数原理,得到:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、掌握优先处理元素(位置)法
二、掌握捆绑法
三、掌握插空法
四、隔板法
五、分组分配问题:
1、是否均匀;
2、是否有组别。
复习引入:
1、什么叫做从n个不同元素中取出m个元素的一个排列? 从n个不同元素中取出m(m≤n)个元素,按照一定的 顺序排成一列,叫做从n个不同元素中取出m个元素的 一个排列. 2、什么叫做从n个不同元素中取出m个元素的排列数? 从n个不同的元素中取出m(m≤n)个元素的所有排列的个 数,叫做从n个不同元素中取出m个元素的排列数. m 用符号 An 表示
CCC 90 15 A 6
(2)如果分成一堆1本,一堆2本,一堆3 本,有多少种分法?
2 6
2 4 3 3
2 2
C C C 60
1 6 2 5 3 3
分组分配问题主要有分组后有分配对象(即 组本身有序)的均分与不均分问题及分组后无分 配对象(即组本身无序)的均分与不均分问题四种 类型,常见的情形有以下几种:
2、一般情况下应遵循先取元素,后排列的原则;
3、对于某些特殊问题要能熟练使用相应方法解 决,如:隔板法、均匀分组(局部均匀分组) 等问题.
课堂小结:
基本的解题方法:
⑴ 有特殊元素或特殊位置的排列问题,通常是先排特 殊元素或特殊位置,称为优先处理特殊元素(位置) 法(优先法);
⑵ 某些元素要求必须相邻时,可以先将这些元素看作 一个元素,与其他元素排列后,再考虑相邻元素的内 部排列,这种方法称为“捆绑法”;
【总结归纳】
⑴直接计算法
一般地,对于有限制条件的排列问题,有以下两种方法:
排列的限制条件一般是:某些特殊位置和特殊元素. 解决的办法是“特事特办”,对于这些特殊位置和元素, 实行优先考虑,即特殊元素预置法、特殊位置预置法. ⑵间接计算法
先抛开限制条件,计算出所有可能的排列数,再从 中减去不合题意的排列数,特别要注意:不能遗漏,也 不能重复. 即排除法.
C 20
3 6
变式2:将7只相同的小球全部放入4个不同盒 子,每盒可空,不同的放法有多少种?
C 120
3 10
课堂练习:
7 A . A7 4 3 B . A4 A3 2 3 2 C . A2 A3 A2 2 3 3 D . A4 A3 A3
1、4个学生和3个老师排成一排照相,老师不能排两端, 且老师必须排在一起的不同排法种数是( D ) 2、计划展出10幅不同的画,其中1幅水彩画,4幅油画, 5幅国画,排成一行陈列,要求同一品种的画必须连在 一起,那么不同的陈列方式有( B ) 3 4 5 4 5 B . A A.A4 A5 3A 4A 5 2 4 5 1 4 5 D.A2 A4 A5 C.A3 A4 A5 3、在7名运动员中选出4名组成接力队,参加4×100米 接力赛,那么甲、乙两人都不跑中间两棒的安排方法 有多少种?
(1)均匀、无序分组:
总 结:
把n个不同的元素分成无序的m组,每组r个元素,
C C 则共有
r n
r n r
C A
(2)均匀、有序分组:
则共有C
r n
r n 2 r m m
C
r r
种分法.(其中mr=n)
把n个不同的元素分成有序的m组,每组r个元素,
C
r n r
C
r n 2 r
C
r r 种分法.(其中mr=n)
4、将四个小球分给两人,一人三个, 一人一个,有多少分法? 8种




若分成的m组是有组别的, 只需在原来的分组基础上再
A
m m
例3:有6本不同的书,分成3堆. (1)如果每堆2本,有多少种分法?
分析:这与例2不同,区别在于把 6本不同的书分给甲、 乙、丙3人,每人2本,相当于把6本不同的书先分成3 堆,再把分得的3堆分给甲、乙、丙3人.
分析:问题相当于把30个相同的球放入6个不同盒 子(盒子不能空的)有几种放法?这类问题可用“隔 板法”处理. 5
C29 118755
小结:把n个相同元素分成m份,每份至少1 个元素,问有多少种不同分法的问题可以 采用“隔板法”.共有: m 1
Cn 1
变式1:将7只相同的小球全部放入4个不同 盒子,每盒至少1球的放法有多少种?
CCCC 20 3 2 1 3 20 或C 6 20 3 A3 6
3 6 1 3 1 2 1 1
(4)如果每堆至多2本,至少1本,有多少 种分法?
C C C C 15 6 2 1 45 A A 2 2
2 6 2 1 4 2 2 2 2 2 1 1
例5:从6个学校中选出30名学生参加数学竞 赛,每校至少有1人,这样有几种选法?
C C C C A
2 5 1 3 1 2 3 3
1 1
C
2 5
练习3:9件不同的玩具,按下列方案有几种分法? 1.甲得2件,乙得3件,丙得4件,有多少种分法? 2.一人得2件,一人得3件,一人得4件,有多少种 分法? 3.每人3件,有多少种分法? 4.平均分成三堆,有多少种分法? 5.分为2、2、2、3四堆,有多少种分法?
3、排列数的两个公式是什么?
An n(n 1)(n 2) (n m 1)
m
n! A ( n , m ∈ N* , m≤n ) (n m)!
m n
组合定义:一般地说,从 n 个不同元素中,任取 m
(m≤n) 个元素并成一组,叫做从 n 个不同元素中取 出 m 个元素的一个组合。
例2:七个家庭一起外出旅游,若其中四家是一个男孩, 三家是一个女孩,现将这七个小孩站成一排照相留念。
甲、乙两人的两边必须有其他人,有多少种不 同的排法?
插空法
5 解:先把其余五人排成一排有A5 种排法,在每一排 列中有四个空档(不包括两端),再把甲、乙插入 5 2 2 A4 1440 (种) 空档中有A4 种方法,所以共有: A5 排法。
C C
r1 n
r1 n r1
C
A A A
r1 r2 n ( m1 1 ) r1 n mr1 mk m1 m2 m1 m2 mk
C
C
rk rk
种分法.(其中m1r1+m2r2+m3r3+…+mkrk=n)
例4:有6本不同的书,分成4堆. (3)如果一堆3本,其余各堆各1本,有多 少种分法?
捆绑法:
对于相邻问题,常常先将要相邻的元素 捆绑在一起,视作为一个元素,与其余 元素全排列,再松绑后它们之间进行全 排列.这种方法就是捆绑法.
例2:七个家庭一起外出旅游,若其中四家是一个男孩, 三家是一个女孩,现将这七个小孩站成一排照相留念。 若三个女孩互不相邻,有多少种不同的排法?
插空法
4 解:先把四个男孩排成一排有A4 种排法,在每一排 列中有五个空档(包括两端),再把三个女孩插入 4 3 3 A5 1440 (种) 空档中有A5 种方法,所以共有: A4 排法。
r2个元素,第3组r3个元素,……第m组rm个元素,
再分给m个人,则共有 C
r1 n
C
r2 n r1
C
r3 n r1 r2
C A
rm rm
m m
种分法.(其中r1+r2+r3+…+rm=n)
(5)局部均匀分组: 把n个不同的元素分成m组,其中m1个组有r1个元
素, m2个组有r2个元素,…… mk个组有rk个元素, 则共有
分析:根据分步计数原理
7 5040 分析:问题可以看作7个元素的全排列. A7
7 6 5 4 3 2 1 7! 5040
(3)7位同学站成一排,其中甲站在中间 的位置,共有多少种不同的排法?
分析:可看作甲固定,其余全排列
A 720
6 6
(4)7位同学站成一排,甲、乙只能站在 两端的排法共有多少种?
n! n(n-1) (n- m+1) C = = 组合数公式: m!(n- m)! m!
m n
m n-m C = C 组合数的两个性质:(1) n n
m m m-1 (2)Cn+1 = Cn + Cn
例 1:
(1)7位同学站成一排,共有多少种 不同的 排法?
(2)7位同学站成两排(前3后4),共有多少 种不同的排法?
5 5 种;
共有A A =2400种
2 5 5 5
答:共有2400种不同的排列方法。
解法二:(特殊元素法)
第一步:将甲乙安排在除排头和排尾的5个 2 位置中的两个位置上,有 A5 种; 第二步:其余同学全排列,有 A
2 5 共有A5 A5=2400种
5 种; 5
答:共有2400种不同的排列方法。
(3)非均匀、无序分组:
把n个不同的元素分成m组,第1组r1个元素,第2组
r2个元素,第3组r3个元素,……第m组rm个元素,
则共有C
r1 n
C
r2 n r1
C
r3 n r1 r2
C
rm rm 种分法.
(其中r1+r2+r3+…+rm=n) (4)非均匀、有序分组: 把n个不同的元素分成m组,第1组r1个元素,第2组
例2:七个家庭一起外出旅游,若其中四家是一个男孩, 三家是一个女孩,现将这七个小孩站成一排照相留念。
男生、女生相间排列,有多少种不同的排法?
插空法
4 解:先把四个男孩排成一排有A4 种排法,在每一排 列中有五个空档(包括两端),再把三个女孩插入 4 3 3 A3 144 (种) 空档中有A3 种方法,所以共有: A4 排法。
⑶ 某些元素不相邻排列时,可以先排其他元素,再将 这些不相邻元素插入空挡,这种方法称为“插空法” ; ⑷ 在处理排列问题时,一般可采用直接和间接两种 思维形式,从而寻求有效的解题途径,这是学好排列 问题的根基.
相关文档
最新文档