刀主要角度
十几把刀的刀锋角度有哪些选择?

十几把刀的刀锋角度有哪些选择?一、刀锋角度的重要性刀锋角度是影响刀具性能的关键因素之一。
不同的刀锋角度适用于不同的刀具和工作材料,正确选择刀锋角度有助于提高切削效率和刀具寿命。
二、常见的刀锋角度选择1. 锋角小的刀锋角度刀锋角度小于30度的刀具适用于切削硬度较高的工作材料,如金属和硬塑料。
小锋角能够集中切削力,减少切削阻力,提高切削效率。
同时,由于刀具的切削压力集中在小的刀锋区域,刀具磨损也相对较小,延长了刀具的使用寿命。
2. 锋角大的刀锋角度刀锋角度大于30度的刀具适用于切削软性材料,如木材和软塑料。
大锋角能够扩散切削力,减少切削压力,避免材料的过度压缩和变形。
此外,大锋角还能够提供更好的切削质量,减少切削表面的毛刺和破损。
3. 锋角中等的刀锋角度对于一些切削难度适中的工作材料,如一些常见的金属合金和工程塑料,中等大小的刀锋角度是较为合适的选择。
这种刀锋角度可以在保证切削力集中的同时,减少切削阻力和切削热量,并提高切削质量和刀具寿命。
4. 不同材料常用的刀锋角度除了刀具设计和加工要求外,不同工作材料的特性也会影响刀锋角度的选择。
例如,钻削金属时,常用的刀锋角度大约为118度;而钻削木材时,则常用的刀锋角度为90度,这是因为木材的纤维结构不同于金属。
5. 刀锋角度与切削力和切削质量的关系正确选择刀锋角度不仅能够降低切削力,提高切削效率,还能够改善切削质量。
合适的刀锋角度可以减少切削表面的毛刺和破损,提高切削精度和表面质量,适用于精密加工和高精度要求的工作。
总结:刀锋角度的选择是影响刀具性能的关键因素之一。
根据不同的刀具和工作材料,我们可以选择不同锋角大小的刀锋角度。
锋角小的刀锋角度适用于切削硬度较高的工作材料,锋角大的刀锋角度适用于切削软性材料,而中等大小的刀锋角度适用于一些切削难度适中的工作材料。
在选择刀锋角度时,我们也要考虑材料的特性以及刀具的设计和加工要求。
正确选择刀锋角度不仅能够提高切削效率和刀具寿命,还能够改善切削质量,满足精密加工和高精度要求的工作。
刀具几何角度45°切断刀主要角度标注

一、一面二角分析法
表示空间任意一个平面方位的定向角度只需两个,所以判断刀具切削部分需要标注的独立角度数量可用一面二角分析法确定。
即刀具需要标注的独立角度数量是刀面数量的二倍。
分析任何一种刀具,包括钻头、铣刀、等复杂刀具几何参数时,都可将复杂的刃形分为一个个切削刃,每个切削刃应有前、后两个刀面、每个刀面应标注两个独立角度。
例如用γo和λs 两角确定前面的方位,用αo、Кr两角可确定后面的方位,用Кr和λs两角可确定主切削刃的方位。
二、切断刀分析与标注
如图所示的切断刀有一条切削刃,两个刀尖、两条副切削刃组成。
其中两条副切削刃与主切
削刃同时处在一个前刀面上,因此,这把切断刀共有4个刀
面。
4×2=8,需要标注的独立角度共有8个。
习惯上标注左
切削刃上的主偏角、刃倾角,而右刃角度是派生角度。
因此,
切断刀各刀面的定向角是:
前面定向角:γo、λsL;后面定向角:αo、КrL;左
副后面定向角α`oL、КrL`;右副后面定向角α`oR、
КrR`
三、法平面参考系角度标
注
四、
其它参考系
1、假定工作平面参考系由P r、P f、P p三个平面组成。
其中:
(1) 假定进给平面P f 过切削刃选定点平行于假定进给运动方向并垂直于基面的平面。
(2) 假定切
深平面(背平面)P p过过切削刃选定点既垂直假定工作平面又垂直于基面的平面。
切割刀的磨刀角度

切割刀的磨刀角度磨刀角度的选择选择合适的磨刀角度可以提高切割刀的效果。
以下是一些常见的磨刀角度选择:1. 倾角(bevel angle):倾角是指刀刃的斜面与刀背之间的夹角。
一般来说,较小的倾角可以提供更尖锐的切割,但刀刃会更薄,容易损坏。
较大的倾角则可以提供更坚固的刀刃,但切割效果可能会打折扣。
选择适当的倾角要考虑材料的硬度和切割需求。
2. 冲刃(relief angle):冲刃是指刀刃斜面与工件接触的角度。
较大的冲刃角度可以降低刀刃与工件的摩擦,减少切割时的热量和切割力,从而减轻刀具磨损。
然而,过大的冲刃角度可能导致切割质量下降。
冲刃角度的选择要综合考虑工件材料和切割表面质量的要求。
3. 前角(rake angle):前角是指切削刃面与工件表面接触的角度。
较小的前角可以提高切削性能和切削质量,但也会增加刀具磨损和加工力。
较大的前角则可以减少磨损,但可能会降低切割效果。
选择合适的前角要综合考虑切削材料和切削力的平衡。
4. 周角(side angle):周角是指刀刃侧面与工件切削方向之间的夹角。
周角的选择会影响刀具的清除能力和刀刃的强度。
较小的周角可以增加清除能力,减轻切屑堆积,但会使刀刃变薄,降低强度和刚度。
较大的周角则可以提高刀刃强度,但可能会减弱清除能力。
周角的选择要综合考虑清除要求和刀具强度的平衡。
磨刀角度的调整调整切割刀的磨刀角度可以实现更好的切割效果。
以下是一些常见的角度调整方法:1. 砂轮磨削:使用合适的砂轮对切割刀进行磨削,调整倾角、冲刃角、前角和周角。
确保砂轮选用合适的粒度和颗粒强度,以获得需要的刀刃形状和质量。
2. 使用磨刀机:磨刀机可以提供更精确和一致的角度磨削。
根据切割需求和材料特性,在磨刀机上调整磨刀角度,确保刀具的切割效果和寿命。
3. 定期检查和校准:定期检查切割刀的磨刀角度,以确保其处于良好状态。
根据需要进行调整和校准,以维持切割质量和刀具寿命。
总之,选择合适的磨刀角度和进行角度调整对于切割刀的切割效果和寿命至关重要。
如何合理的选取车刀的几何角度

如何合理的选取车刀的几何角度
1、前角γ0(在正交面的上测量的前刀面与基面之间的夹角)。
它表示前刀面的倾斜程度。
前角越大,刀刃越锋利,切削时就越省力。
但前角过大会削弱刀头强度,影响刀具的寿命。
前角的选取决定于工件材料、刀具材料和加工性质。
硬质合金车刀γ0通常取-5º~+25º。
2、后角α0。
在正交平面上测量的主后刀面与切削平面之间的夹角。
它表示主后刀面的倾斜程度。
后角的作用主要是减少刀具与加工表面之间的摩擦,后角越大,摩擦越小,但后角过大会削弱切削刃的强度及耐用度。
一般取α0为60~120。
3、主偏角k r。
主切削刃在基面上的投影与进给方向之间的夹角。
主偏角能影响主切削刃和刀头受力情况及散热情况。
加工强度、硬度较高的材料时,应选较小的主偏角,以提高刀具的耐用度。
加工细长工件时,应选较大的主偏角,以减少径向切削力引起工件的变形和振动。
一般取k r为300~900。
4、副偏角k r'。
副切削刃在基面上的投影与进给反方向之间的夹角。
副偏角的作用是减少副切削刃与工件已加工表面之间的摩擦。
副偏角越大,摩擦越小。
但k r过大,又会增大已加工表面的粗糙度。
一般取k r为50~150。
车刀的几何角度:。
刀具几何角度的基本定义与标注和工作角度

思考: 若刀尖低于工件中心,刀具工作前、
后角将如何变化?
3 .纵向进给运动对工作角度的影响
<1> 纵向进给影响
扳动小拖板车 外锥面时,由于 刀具进给方向 与工件轴线偏 了μ,引起工作 主偏角减小,工 作副偏角增大
<2> 横向进给影响
圆周切线 方向
切削刃的工作 前角增加,工作 后角减少.
2.刀具工作角度定义 刀具工作角度的定义与标注角度类似,它是前、后面与工作参考系平面 的夹角.
2 刀具安装对工作角度的影响
<1>刀杆中心与进给方向不垂直:如图 Κre、Κreˊ变化
由上图可以看出:当刀杆中心逆时针偏转一角度θ后,其Κre增大 Κreˊ减小.
<2>刀具装刀高低对工作角度的影响
车外圆:Ve方向变化—>Pre变—>若 刀尖高于工件中心, 如上图 则:工作角度γoe增大,αoe减小 即:γoe=γo+θo
5. 正交平面参考系中角度定义与标注
<1> 在正交平面内测量
①前角γo = ∠Aγ与 Pr :Aγ 在Pr之上—>负,Aγ在Pr之 下—>正
前角γo立体图示
前角γo正负图示
② 后角αo =∠Aα与 Ps (一般无负)
后角αo立体图示 后角αo正负图示
<2> 在基面内测量
主偏角Κ =∠"S 在基面上的投影"与Vf 副偏角Κr′ =∠"S′在基面上的投影"与"Vf 的反向"
2. 正交平面参考系<pr-ps-po>
基面Pγ: Pγ⊥Vc 、 ∥刀具安装面〔车刀 切削平面 Ps: 与 S相切 且 ⊥Pγ 正交平面Po: Po⊥Pγ⊥Ps
刀具标注角度

⼑具标注⾓度2)后⾓αo -- 后⼑⾯与切削平⾯之间的夹⾓。
若通过选定点的切削平⾯位于楔形⼑体的实体之外,后⾓为正值;反之为负值。
3)楔⾓βo -- 前⼑⾯与主后⼑⾯之间的夹⾓。
显然有:βo + γo +αo = 90°。
在基⾯P r中测量的⾓度:4)主偏⾓k r -- 主切削刃在基⾯上的投影与假定进给⽅向之间的夹⾓。
5)副偏⾓k'r -- 副切削刃在基⾯上的投影与假定进给反⽅向之间的夹⾓。
6)⼑尖⾓εr -- 主切削刃与副切削刃在基⾯上投影之间的夹⾓。
显然有: k r+k'r +εr = 180°。
在切削平⾯P s中测量的⾓度:7)刃倾⾓λs -- 主切削刃与基⾯之间的夹⾓。
当⼑尖是主切削刃上最低点时,刃倾⾓定为负值;当⼑尖是主切削刃上最⾼点时,则刃倾⾓为正值,如图2-62 所⽰。
图2-62 刃倾⾓当λs = 0°时,主切削刃与切削速度垂直,称之为直⾓切削或正切削。
⽽λs≠ 0°的切削称为斜⾓切削或斜切削。
λs的正或负会改变切屑流出的⽅向。
在副正交平⾯中测量的⾓度8)副后⾓α'o -- 副后⼑⾯与切削平⾯之间的夹⾓;9)副前⾓γ'o -- 前⼑⾯与基⾯之间的夹⾓。
实际上,当γo、λs 、k r及k'r为已定值,且主、副切削刃处于共同的前⼑⾯时,γ'o也已被确定了。
另外,βo及εr是派⽣⾓。
因此,外圆车⼑的标注⾓度只有六个是独⽴的:γo、αo、k r、 k'r、λs与α'o,外圆表⾯的加⼯路线1粗车→半精车→精车:应⽤最⼴,满⾜IT≥IT7,▽≥0.8外圆可以加⼯2粗车→半精车→粗磨→精磨:⽤于有淬⽕要求IT≥IT6,▽≥0.16 的⿊⾊⾦属。
3粗车→半精车→精车→⾦刚⽯车:⽤于有⾊⾦属、不宜采⽤磨削加⼯的外⽤表⾯。
4.粗车→半精车→粗磨→精磨→研磨、超精加⼯、砂带磨、镜⾯磨、或抛光在2的基础上进⼀步精加⼯。
车刀的角度如何确定
车刀属于单锋刀具,因车削工作物形状不同而有很多型式,但它各部位的名称及作用却是相同的。
一支良好的车刀必须具有刚性良好的刀柄及锋利的刀锋两大部份。
车刀的刀刃角度,直接影响车削效果,不同的车刀材质及工件材料、刀刃的角度亦不相同。
车床用车刀具有四个重要角度,即前间隙角、边间隙角、后斜角及边斜角。
1)前间隙角自刀鼻往下向刀内倾斜的角度为前间隙角,因有前间隙角,工作面和刀尖下形成一空间,使切削作用集中于刀鼻。
若此角度太小,刀具将在表面上摩擦,而产生粗糙面,角度太大,刀具容易发生震颤,使刀鼻碎裂无法光制。
装上具有倾斜中刀把的车刀磨前间隙角时,需考虑刀把倾斜角度。
高速钢车刀此角度约8~10度之间,碳化物车刀则在6~8度之间。
2)边间隙角刀侧面自切削边向刀内倾斜的角度为边间隙角。
边间隙角使工作物面和刀侧面形成一空间使切削作用集中于切削边提高切削效率。
高速钢车刀此角度约10~12度之间。
3)后斜角从刀顶面自刀鼻向刀柄倾斜的角度为后斜角。
此角度主要是在引导排屑及减少排屑阻力。
切削一般金属,高速钢车刀一般为8~16度,而碳化物车刀为负倾角或零度。
4)边斜角从刀顶面自切削边向另一边倾斜,此倾斜面和水平面所成角度为边斜角。
此角度是使切屑脱离工作物的角度,使排屑容易并获得有效之车削。
切削一般金属,高速钢车刀此角度大约为10~14度,而碳化物车刀可为正倾角也可为负倾角。
5)刀端角刀刃前端与刀柄垂直之角度。
此角度的作用为保持刀刃前端与工件有一间隙避免刀刃与工件磨擦或擦伤已加工之表面。
6)切边角刀刃前端与刀柄垂直之角度,其作用为改变切层的厚度。
同时切边角亦可改变车刀受力方向,减少进刀阻力,增加刀具寿命,因此一般粗车时,宜采用切边角较大之车刀,以减少进刀阻力,增加切削速度。
7)刀鼻半径刀刃最高点之刀口圆弧半径。
刀鼻半径大强度大,用于大的切削深度,但容易产生高频振动。
铣刀的角度
铣刀的角度有前角、后角、主偏角、副偏角、刃倾角等。
为满足不同的加工需要,有多种角度组合型式。
各种角度中最主要的是主偏角和前角(制造厂的产品样本中对刀具的主偏角和前角一般都有明确说明)。
①主偏角κr主偏角为切削刃与切削平面的夹角,如图6-27所示。
铣刀的主偏角有90°、88°、75°、70°、60°、45°等几种。
主偏角对径向切削力和切削深度影响很大。
径向切削力的大小直接影响切削功率和刀具的抗振性能。
铣刀的主偏角越小,其径向切削力越小,抗振性也越好,但切削深度也随之减小。
90°主偏角,在铣削带凸肩的平面时选用,一般不用于单纯的平面加工。
该类刀具通用性好(即可加工台阶面,又可加工平面),在单件、小批量加工中选用。
由于该类刀具的径向切削力等于切削力,进给抗力大,易振动,因而要求机床具有较大功率和足够的刚性。
在加工带凸肩的平面时,也可选用88°主偏角的铣刀,较之90°主偏角铣刀,其切削性能有一定改善。
60°~75°主偏角,适用于平面铣削的粗加工。
由于径向切削力明显减小(特别是60°时),其抗振性有较大改善,切削平稳、轻快,在平面加工中应优先选用。
75°主偏角铣刀为通用型刀具,适用范围较广;60°主偏角铣刀主要用于镗铣床、加工中心上的粗铣和半精铣加工。
45°主偏角,此类铣刀的径向切削力大幅度减小,约等于轴向切削力,切削载荷分布在较长的切削刃上,具有很好的抗振性,适用于镗铣床主轴悬伸较长的加工场合。
用该类刀具加工平面时,刀片破损率低,耐用度高;在加工铸铁件时,工件边缘不易产生崩刃。
②前角γ铣刀的前角可分解为径向前角γf[图6-28(a)]和轴向前角γp[图6-28(b)],径向前角γf主要影响切削功率;轴向前角γp则影响切屑的形成和轴向力的方向,当γp为正值时切屑即飞离加工面。
刀具角度分析
在不影响摩擦和不产生振动的情况下,可选用较小的副偏角。外圆车刀的副偏角一般为。
补充
当工艺系统刚性较差或使用有尺寸精度要求的刀具时,应取小的后角。工件材料的强度、硬度大,后角应取最小值。
补充
减少刀具后刀面与工件表面的摩擦并配合前角改变切削刃的强度与锋利程度。
刃倾角的选择:
选用刃倾角时主要根据切削条件和系统刚性。精切时,;粗切时,。Байду номын сангаас艺系统刚性不足时,选正值刃倾角。
补充
主偏角与副偏角的功用及选择:
主偏角主要影响切削层截面的形状和几何参数,影响背向力与进给力的比例以及刀具的使用寿命,并与副偏角一起影响已加工表面的表面粗糙度。副偏角越小,则工件表面的残留面积越小,表面粗糙度Ra值越小。
加工工艺系统刚性不足时,应选用较大的主偏角。
粗加工时,一般选用较大的主偏角,以利于减少振动,延长刀具的使用寿命。
选用原则:
工件材料的强度、硬度低,塑性大,前角应取大些可减少切屑变形,降低切削温度。加工脆性材料时,应该选取较小的前角,因变形小,刀具与切屑接触面积小。
刀具材料的强度和韧性好,应选取较大的前角,如高速钢刀具可采用较大的前角。
粗切时,为增强切削刃的强度,应取小值。工艺系统刚性较差时,应取大值。
补充
。
后角的功用及选择原则:
功用:增大后角能减小后刀面与过度表面间的摩擦,还可以减小切削刃圆弧半径,使刃口锋利。但后角过大会减小切削刃的强度和散热能力。
选用原则:
后角主要根据切削层公称厚度选取。
粗切时,进给量大,切削公称厚度大,可取最小值;精切时,进给量小,切削公称厚度小,应取最大值,可以延长刀具使用寿命和提高已加工表面质量。
刀具(厨刀小刀)刃角测量
刀具刃角测量
一把好用的刀必需锋利持久耐用,这取决要有好的钢材和处理工艺,刃角是影响锋利度的重要因素。
刃角越小,刃部越尖,切入阻力也越小,锋利度也越高。
一,刀具常规开刃角度(以下指是双边角度,单边除2) 34度:一般是西式刀厨刀或菜刀的角度,国际标准(ISO8442)不超40度, 日系刀大多在30度左右。
40度:可提供一相当锐利的刃面,一般用作随身小刀。
50度:兼具刀刃锐利及持续性的开刃角度。
一般野外用刀多为此角度。
60度:刺刀或野外用刀使用,不易变钝,易于研磨是其优点。
二,生产工厂如何控制刃角。
老式的砂轮机定好角度开出的刃肯定能达到标准,但这种方法锋利度谁用谁知道在此就不多说了。
当前最普及的是湿式开刃法,采取湿式方法开刃是保证刃口不发生相变的工艺保证。
但好坏取决开刃工人的水平,开刃角度难以标准 ,一批产品出现30-50度大幅偏差也是常态。
解决这个问题必需加强品控,配备专业的测量工具是刀具生产工厂提升品质必不可少的利器。
三,如何选择刃角测量仪
随着国内刀具厂家慢慢地从以前的普通产品走向高端产品。
然而重要性作用的刃角测量方面存在瓶颈, LH公司刃角测量仪可以满足工厂的检测需要提高产品质量。
LH产品设计上除了精准外还考虑实用,耐用和完美的外观。
用现在流行的来说就是:
高端大气上档次,实用耐用更给力!
六合科技阳江总代理 QQ 3576153415。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.车刀分:外圆车刀、端面车刀、切断刀、内孔车刀、螺纹车刀。
2.车刀的角度有:前角、后角、副后角、刃倾角、主偏角、副偏角。
(1)前角γ0:前刀面与基面的夹角,在主剖面中测量。
前角的大小影响切削刃锋利程度及强度。
增大前角可使刃口锋利,切削力减小,切削温度降低,但过大的前角,会使刃口强度降低,容易造成刃口损坏。
取值范围为:-8°到+15°。
选择前角的一般原则是:前角数值的大小与刀具切削部分材料、被加工材料、工作条件等都有关系。
刀具切削部分材料性脆、强度低时,前角应取小值。
工件材料强度和硬度低时,可选取较大前角。
在重切削和有冲击的工作条件时,前角只能取较小值,有时甚至取负值。
一般是在保证刀具刃口强度的条件下,尽量选用大前角。
如硬质合金车刀加工钢材料时前角值可选5°-15°。
(2)主后角α0: 主后刀面与切削平面间的夹角,在主剖面中测量。
其作用为减小后刀面与工件之间的摩擦。
它也和前角一样影响刃口的强度和锋利程度。
选择原则与前角相似,一般为0到8°。
(3)主偏角κr: 主切削刃与进给方向间的夹角,在基面中测量。
其作用体现在影响切削刃工作长度、吃刀抗力、刀尖强度和散热条件。
主偏角越小,吃刀抗力越大,切削刃工作长度越长,散热条件越好。
选择原则是:工件粗大刚性好时,可取小值;车细长轴时为了减少径向切削抗力,以免工件弯曲,宜选取较大的值。
常用在15°到90°之间。
(4)副偏角κ'r: 副切削刃与进给反方向间的夹角,在基面中测量。
其作用是影响已加工表面的粗糙度,减小副偏角可使被加工表面光洁。
选择原则是:精加工时,为提高已加工表面的质量,应选取较小的值,一般为5到10°。
(5)刃倾角λs :主切削刃与基面间的夹角,在主切削平面中测量。
主要作用是影响切屑流动方向和刀尖的强度。
以刀柄底面为基准,主切削刃与刀柄底面平行时,λs =0,切屑沿垂直于主切削刃的方向流出。
当刀尖为切削刃最低点时,λs为负值,切屑流向已加工表面。
当刀尖为主切削刃最高点时,λs为正值,切屑流向待加工表面。
一般刃倾角λs取-5°到+10°。
精加工时,为避免切屑划伤已加工表面,应取正值或零。
粗加工或切削较硬的材料时,为提高刀头强度可取负值。
车刀几何角度是指车刀切削部分各几何要素之间,或它们与参考平面之间构成的两面角或线、面之间的夹角。
它们分别决定着车刀的切削刃和各刀面的空间位置。
根据“一面二角”理论可知,车刀的独立标注角度有六个,它们分别是:确定车刀主切削刃位置的主偏角Kr和刃倾角λs;确定车刀前刀面Ar与后刀面Aa的前角ro和后角ao;确定副切削刃及副后刀面Aa′的副偏角Kr′和副后角ao′。
这些几何角度对车削过程影响很大,其中尤其以主偏角Kr、前角ro、后角ao和刃倾角λs的影响更为突出,科学合理地选择车刀的几何角度,对车削工艺的顺利实施起着决定性作用。
下面就从车刀几何角度对切削力、切削热和刀具的耐用度的影响分析着手,本着使切削轻便、质量稳定,延长刀具使用寿命的宗旨,确定科学的车刀几何角度的一般性原则。
一、车刀几何角度对切削力的影响在金属切削时,刀具切入工件,将多余材料从工件上切除会产生强烈的力的作用,这些力统称为切削力。
切削力主要来源于被加工材料在发生弹性和塑性变形时的抗力和刀具与切屑及工件表面之间的摩擦作用。
根据切削力产生的作用效果的不同,可将切削力分解成三个相互垂直方向的分力。
它们分别是:主切削力Fz,进给抗力Fx和切深抗力Fy,其中Fz是切削总力Fr沿主运动切向分解而得,是计算车刀强度,设计机床零件,确定机床功率的主要依据;Fx也叫轴向力,它是Fr沿工件轴向的分力,是设计进给机构,计算车刀进给功率所必需的;Fy也叫径向力,它是Fr沿着工件径向的分力,它不消耗机床功率,但是当机床或工艺系统刚度不足时,易引起振动。
1、前角ro对切削力的影响前角ro增大,剪切角Φ随着增大,金属塑性变形减小,变形系数ξ减小,沿前刀面的摩擦力减小,因此切削力减小。
但对于脆性材料而言,前角ro的变化则不会对车削力产生较大的影响,这是因为脆性材料在车削时,切屑变形和加工硬化都很小,变形抗力自然会随之减小。
同时,实验还证明,前角ro的增大,对切削分力Fx、Fy的影响程度也不一样,当主偏角Kr较大时,对Fx的影响较明显,而当主偏角Kr较小时,则对Fy的降低幅度更大些。
2、主偏角Kr对切削力的影响主偏角Kr的改变,使得切削面积的形状和切削分力Fxy的作用方向改变,从而使切削力也随之变化。
实验证明,主偏角Kr增大,切削厚度也随之增大,切削变厚,切削层的变形减小,因此主切削力也随之减小,如图3所示。
但当Kr增大到60°-75°后,Fz又随着Kr的增大而有所回升,这是因为此时刀尖圆弧所占的切削工作比例增大,使切屑变形和排屑阻力增大,又使主切削力Fz增大。
根据切削力分解公式:Fy=FxycosKr;Fx=FxysinKr可知,主偏角Kr增大,使Fy减小,Fx增大,这有利于减轻工件的变形和系统的振动。
因此,在工程上我们往往采用较大主偏角的车刀切削细长轴类零件,来减小径向分力Fy。
3、刃倾角λs对切削力的影响刃倾角λs对主切削力Fz影响很小,但对进给抗力Fx和切深抗力Fy的影响较大。
当λs减小时,使刀具受到的正压力的方向发生了变化,从而改变了切削合力Fr及其分力Fxy的作用方向,使Fy增大,Fx减小。
由此可见,从切削力角度分析,切削时不宜选用过大的负刃倾角,否则会增大Fy的作用而产生振动。
二、车刀几何角度对切削热的影响车削过程所消耗的能量,除了极少部分用以形成新表面和潜藏能以外,绝大部分都转换为热能,以切削热的形式表现出来,使工艺系统的温度升高。
分析可知,车削时热量主要来源于切屑的变形功和前、后刀面的摩擦功。
这些热量产生后又将通过切屑、工件、刀具和周围介质传出,使产热与散热达到动态平衡状态,此时工艺系统的切削温度就是稳态切削温度。
影响切削热与切削温度的因素很多,这里分析车刀几何角度对其产生的影响。
1、前角ro对切削温度的影响前角增大,使切削力下降,切屑的变形和工艺系统的摩擦减轻,使产生的切削热减少,从而降低了切削温度。
事实上,切削温度的高低不仅取决于工艺系统产生热量的多少,还受工艺系统散热条件的影响。
实验证明,当车工的前角增大到16°左右时,由于车刀的楔角减少后使刀具的散热条件变差,切削温度反而有一些回升。
2、主偏角Kr对切削温度的影响主偏角Kr减小时,使切削宽度增大,切削厚度减小,切削变形和摩擦减轻,同时,切削宽度增大后,散热条件改善,又有利于降低切削温度。
因此,当工艺系统刚性足够时,采用小的主偏角切削,是降低切削温度、提高刀具的耐用度的一个重要措施,尤其是切削难加工材料时效果更显著。
三、车刀几何角度对刀具耐用度的影响车刀在切削加工过程中,受切屑和工件表面的摩擦,使用一段时间后,它就会钝化,从而失去其切削的能力,这时就要对刀具进行重磨或更换刀片。
刀具的耐用度就是用来衡量刀具连续切削时间长短的参量。
它是指刀具从开始使用至达到磨损限度为止所用的切削时间,它是衡量刀具切削性能的重要指标。
由于刀具几何角度对耐用度的影响较大,合理选择刀具几何角度,可以大幅度提高刀具的耐用度,因此刀具的耐用度也是衡量刀具几何角度先进与否的重要标志。
1、前角ro对刀具耐用度的影响适当增大前角,有利于减少切削力,降低切削温度,使刀具的耐用度提高。
但是,如果前角增大到一定值以后,会使刀刃强度下降,散热条件逐渐变差,而且刀刃易于产生破损,耐用度反而会下降。
因此前角ro对刀具耐用度的影响呈山峰状,它的峰顶处前角值使刀具的耐用度最高,切削不同的材料时,刀具的耐用度达到最高时的前角值也不相同。
2、主偏角Kr对刀具耐用度的影响主偏角减小,增加了刀具强度,改善了刀具的散热条件,使刀具的耐用度升高。
另外,适当减小副偏角Kr′还能降低摩擦,提高刀具强度,改善散热条件,使刀具耐用度升高。
当然,随着主偏角Kr和副偏角Kr的减小,会使系统的切深抗力Fy增大,当系统刚性不足时,会引起振动而影响加工质量。
四、如何选择科学合理的几何参数评价车刀的几何角度对车削工艺过程的影响,应该用辩证的观点去分析,同时还应该综合考虑车刀几何角度对切削过程中的切削力、切削热和刀具耐用度的影响,选择科学合理的几何参数。
1、车刀前角选择原则前角主要影响切削过程中的变形和摩擦、刀具强度,改变散热条件,影响刀具的耐用度。
选择前角时,应该综合考虑材料和加工工艺的要求。
一般认为,在刀具强度允许的条件下,尽量选用大前角。
例如,高速钢的强度高、韧性好,硬质合金脆性大、怕冲击,因此,高速钢刀具的前角可比硬质合金刀具的前角大5°左右,陶瓷刀具的脆性更大,前角不能太大。
另外,如果被加工的材料导热系数低,应该选择小前角车刀,以改善系统的散热效果,提高车刀的耐用度。
特别需要说明的是,在加工高强度材料时,为了防止车刀的破损,常采用负前角,以提高车刀的使用寿命。
2、车刀后角的选择原则后角主要影响切削时的摩擦和刀具强度。
当工件材料的强度、硬度较高时,宜取较小后角,以提高刀具强度;当工艺系统刚性较差时,应适当减小后角,防止系统产生振动;当加工精度要求较高时,应采用小后角。
3、主偏角的选择原则主偏角主要影响刀具强度、耐用度和工艺系统加工的稳定性。
一般认为,在工艺系统刚性不足时,常取较大主偏角,以减小切削力。
加工高强度、高硬度材料时,取较小主偏角以提高刀具的耐用度。
副偏角影响工件的表面质量和刀具强度,在系统不易产生振动和摩擦的条件下,应选择较小的副偏角。
4、车刀刃倾角的选择原则刃倾角主要影响切屑的倾向和刀具的强度及其锋利程度。
在无冲击的正常车削时,刃倾角一般取正值,如果切削时有间断冲击,选择负刃倾角能提高刀头强度,保护刀尖。
当系统刚性不足时,不宜采用负刃倾角,否则会因为切深抗力Fy的增大,引起系统的振动而影响加工质量。
--------------------.-车刀几何参数的综合选择摘要:合理选择车刀几何参数,是顺利完成车削加工任务的关键。
笔者结合多年的教学生产经验及相关理论资料,针对几类车刀选择,论述一下合理选择车刀的几何参数的方法。
车刀刃磨水平的高低直接关系到产品的生产效率、加工质量、设备能耗和产品成本,甚至关系到操作者的人身安全,也反映出操作者对加工主体的特性和切削用量的灵活应变能力。
合理选择车刀的几何参数是决定刃磨质量的关键,其主要体现于对车刀角度和前面形状的合理选择。
两者既相互依赖又相互制约,一把车刀不能只有一个角度,如果只有一个角度选择合理,它的切削效果也不一定理想,操作者必须根据工件材料、车刀材料、切削用量,以及工件、车刀、夹具和车床的刚性等各方面因素,全面分析,找出切削过程中的主要矛盾,合理选择车刀的角度和前面形状。