自由空间传播模型

合集下载

LoRa通信中的信号强度衰减与距离推算

LoRa通信中的信号强度衰减与距离推算

LoRa通信中的信号强度衰减与距离推算随着物联网技术的发展和应用范围的扩大,无线通信技术也得到了很大的发展。

其中,LoRa(Long-Range)无线通信技术凭借其低功耗、长距离和强抗干扰等特点,在物联网领域得到了广泛应用。

在LoRa通信中,信号强度的衰减与距离的推算是非常重要的一部分,本文将探讨这方面的知识。

一、LoRa通信原理及特点LoRa是一种使用扩频调制的无线通信技术,相较于传统的窄带无线通信技术,LoRa可以实现远距离通信,具有更好的抗干扰能力和更低的功耗。

LoRa技术采用了多普勒扩频、直序扩频和调幅扩频等分散技术,以及协议中的自适应速率和自动重传机制,使得在有限的频段内实现更高的可靠性和更低的功耗。

LoRa通信具有以下特点:1. 长距离通信:LoRa能够在城市环境中达到数公里的通信距离,且在郊区或农村等环境下,通信距离更远。

这使得LoRa成为连接远距离设备的理想选择,比如城市智能灯杆、智能农业监测设备等。

2. 低功耗:LoRa技术采用了低功耗的设计,能够提供长达数年的电池寿命。

这使得LoRa在一些应用场景中特别有优势,比如远程环境监测、智能电表等。

3. 抗干扰能力强:LoRa采用了扩频调制技术,能够在噪声和干扰环境下保持较好的通信质量。

这使得LoRa适用于复杂的城市环境中,如智能交通系统和智能停车等。

二、信号强度衰减与距离关系在LoRa通信中,信号强度衰减与距离之间存在着一定的关系。

这是由于传播路径上存在的路径损耗、多径效应和阴影效应等因素导致的。

1. 路径损耗:路径损耗是指信号在传播过程中因为自由空间传播、反射、绕射、散射等效应导致信号功率衰减的现象。

路径损耗与传播距离呈正相关关系,即传播距离越远,损耗越大。

2. 多径效应:多径效应是指信号在传播过程中因为反射、绕射和散射等效应导致信号多个路径同时到达接收器,并产生干扰的现象。

多径效应会导致信号衰减增大,特别是在城市环境中。

3. 阴影效应:阴影效应是指移动和固定障碍物对信号传播的阻挡和散射效应。

无线通信原理与应用-4.2 自由空间传播模型

无线通信原理与应用-4.2 自由空间传播模型
无线通信原理与应用
Wireless Communications Principles and Practice
第四章 移动无线电传播:大尺度路径损耗
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
§4.2 自由空间传播模型
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
例4.2:如果发射机发射50瓦的功率,将其换算成(a)dBm和(b)dBW。如果该发射 机为单位增益天线,并且载频为900MHz,求出在自由空间中距天线100m处接收 功率为多少dBm。10km处Pr为多少?假定接收天线为单位增益。 解: 已知: 发射功率,Pt= 50W,载频fc= 900MHz,使用公式(4.9) (a)发射功率
电气工程学院 通信工程系
无线通信原理与应用
Wireless Communications Principles and Practice
例题4.1:求解最大尺寸为1m,工作频率为900M Hz的天线的远场 距离。
解: 已知: 天线最大尺寸,D=1m 工作频率 f= 900MHz
使用公式(4.7a)可获得远地距离为:
自由空间中距发射机d处天线的接收功率由公式4.1给出(Friis公式 或自由空间公式)
其中:
Pt: 为发射功率;
Pr(d):是接收功率,为T-R距离的函数;
Gt: 是发射天线增益;
Gr: 是接收天线增益;
D: 是T-R间距离,单位为米;
L: 是与传播无关的系统损耗因子(L大于等于1);

第9章电波传播模型

第9章电波传播模型


9.2平面反射传播模型
最小有效天线高度 当天线架设较低时,表面波其主要作用,将表面波起支 配作用的天线高度称为最小有效天线高度。最小有效高 度和波长、极化方式、地面电特性性参数有关。 当f<30MHz时表面波其主要作用,当 30MHz<f<300MHz时电波以空间波和表面波两种方式 传播,当f>300MHz时电波以空间波的方式传播,表面 波可以忽略不计。
1 1 1 1 − = − R ρ Re ρ e
Re =
1
1 1 R − 1− R ρ ρ 1 =R = KR dn 1+ 气对电波传播的影响
• 在考虑大气折射的情况下,只要把电波在均匀大气 中传播时所得到的一系列计算公式中,所用的地球 半径用等效地球半径来代替,则电波就好象在无折 射的大气中一样,沿直线传播。 • 例如,在均匀大气中,视距传播的距离为
大于两天线高度和间的距离当收发天线之差引起的相位差入射波和反射波的路径5dre10jee当天线架设高度与波长相比较高时电波主要以空间波的方式进行传播这是可以忽略表面波工程设计中当频率大于150mhz时通常只考虑直射波和反射波92平面反射传播模型最小有效天线高度当天线架设较低时表面波其主要作用将表面波起支配作用的天线高度称为最小有效天线高度
接收功率的计算
2
h1h2 PA = P∑ 2 D1 D2 d
9.2平面反射传播模型
传播损耗的计算 光滑平面传播损耗的计算
P∑ d4 1 Ls = = 2 2⋅ PA h1 h2 D1 D2
实际地面传播损耗的计算
当地形起伏不超过15m,频率为40MHz的路径或 距离小于60KM频率小于1GHz时 : L p = 120 + 40 lg d − 20 lg h1h2 当频率40 < f < 450MHz时进行修正可得: f L p = 120 + 40 lg d − 20 lg h1h2 + 20 lg 40

无线电波空间传播模型

无线电波空间传播模型

无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。

无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。

了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。

本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。

二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。

它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。

根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。

具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。

自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。

三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。

在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。

在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。

为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。

射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。

射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。

四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。

当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。

这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。

多径传播模型通常使用统计方法进行建模和仿真。

常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。

网络路径损耗值计算公式

网络路径损耗值计算公式

网络路径损耗值计算公式引言。

在现代社会中,网络通信已经成为人们生活中不可或缺的一部分。

而在网络通信中,路径损耗值的计算是非常重要的。

路径损耗值是指信号在传输过程中由于传输媒介、距离等因素而造成的信号衰减。

在网络规划和优化中,准确计算路径损耗值可以帮助我们更好地设计和优化网络结构,提高网络的性能和覆盖范围。

因此,本文将介绍网络路径损耗值的计算公式,并探讨其在网络通信中的重要性。

一、路径损耗值的定义。

路径损耗值是指信号在传输过程中由于传输媒介、距离等因素而造成的信号衰减。

路径损耗值的大小直接影响着信号的传输质量和覆盖范围。

一般来说,路径损耗值与传输距离成正比,传输距离越远,路径损耗值越大。

此外,传输媒介的不同也会对路径损耗值产生影响,比如在空气中传输的信号路径损耗值要大于在光纤中传输的信号。

二、路径损耗值的计算公式。

路径损耗值的计算公式通常采用自由空间传播模型或多径传播模型。

其中,自由空间传播模型适用于开阔的空间环境,而多径传播模型适用于复杂的城市环境。

下面分别介绍这两种模型的路径损耗值计算公式。

1. 自由空间传播模型。

在自由空间传播模型中,路径损耗值的计算公式为:L = 20 log(d) + 20 log(f) + 20 log(4π/c)。

其中,L为路径损耗值(单位为dB),d为传输距离(单位为米),f为信号频率(单位为赫兹),c为光速(单位为米/秒)。

2. 多径传播模型。

在多径传播模型中,路径损耗值的计算公式为:L = L0 + 10 n log(d/d0)。

其中,L0为参考距离d0处的路径损耗值(单位为dB),n为路径损耗指数,通常在2-5之间,d为传输距离(单位为米)。

三、路径损耗值的重要性。

路径损耗值的准确计算对于网络规划和优化具有重要意义。

首先,路径损耗值的大小直接影响着信号的传输质量和覆盖范围。

准确计算路径损耗值可以帮助我们更好地设计和优化网络结构,提高网络的性能和覆盖范围。

其次,路径损耗值的计算还可以帮助我们评估网络设备的性能和传输媒介的质量,为网络的维护和管理提供参考依据。

无线信号功率计算公式

无线信号功率计算公式

1.1自由空间传播模型(前提:发射端与接收端之间的传播无障碍物,比如卫星与手机的连接信号)Friis 公式:L d G G P d P r t t r 222)4()(πλ=(1.1)Pr(d):接收到的信号功率 Pt:发射功率 Gt:发射天线增益 Gr:接收天线增益 λ:波长(m)d:发射端与接收端的距离(m) L:与传播无关的损耗(传输线衰减、滤波损耗、天线损耗)注:功率与增益的单位都为W可以由上述公式改写为P r ,是P r (d)的非函数形式L d G G P P r t t r lg lg 2)4lg(lg 2lg lg lg lg 2---+++=πλ (1.2)假设理想状态下无损耗,L=0,f =c / λ,将常数加和,可以演算得:152.19lg 2lg 2lg lg lg 954.16198.2lg 2lg 2lg lg lg 198.2lg 2lg 2lg 2lg lg lg 198.2lg 2lg 2lg lg lg )4lg(lg 2lg 2lg lg lg lg 2--+++=---+++=---+++=--+++=--+++=d f G G P d f G G P d f c G G P d G G P d G G P P r t t r t t r t t r t t r t t r λπλ (1.3)52.191lg 20lg 20lg 10lg 10lg 10lg 10--+++=d f G G P P r t t r (1.4)注:Pr,Pt,Gt,Gr 单位为W如果将Pr,Pt,Gt,Gr 单位换为mW ,可以推导出以下公式52.131lg 20lg 20lg 10lg 10lg 10lg 1052.191lg 20lg 2030lg 1030lg 1030lg 1030lg 1052.191lg 20lg 2010lg 10lg 1010lg 10lg 1010lg 10lg 1010lg 10lg 103333--+++=--++++++=+--++++++=+d f G G P P d f G G P P d f G G P P r t t r r t t r r t t r (1.5)无线概念中常用来表示功率的的单位一般用dbm ,dbi ,与W 的转换关系如下)lg(*10mW dbi dbm ==(1.6)1.2 地面反射模型在d>50m 情况下,422P d h h G G P r t rt t r = (1.7)可以演算为dh h G G P P r t r t t r lg 40lg 20lg 20lg 10lg 10lg 10lg 10-++++= (1.8)注:Pr,Pt,Gt,Gr 单位为W如果将Pr,Pt,Gt,Gr 单位换为mW ,可以推导出以下公式60lg 40lg 20lg 20lg 10lg 10lg 10lg 10+-++++=d h h G G P P r t r t t r (1.9)路径损耗公式为)lg 20lg 20lg 10lg 10(lg 40lg 10lg 10)(r t r t r t h h G G d P P dB PL +++-=-=(1.10)。

通信系统中的无线信号传播模型与特点

通信系统中的无线信号传播模型与特点

通信系统中的无线信号传播模型与特点无线通信是指通过无线电波或红外线等无线电磁波来实现信息传输的通信方式。

现如今,无线通信系统已经广泛应用于无线电、移动通信、卫星通信、无线局域网等多个领域。

无线信号传播模型与特点对于确保通信质量和提高通信效率非常重要。

一、信号传播模型无线信号传播模型是描述无线信号在空间传播过程中衰减和传播路径的模型。

常用的信号传播模型主要包括自由空间传播模型、自由路径传播模型和多径传播模型。

1. 自由空间传播模型:自由空间传播模型是最简单的无线信号传播模型,它假设空间中没有障碍物,信号在传播过程中不会受到衰减。

该模型适用于空旷的地区,如在广场上使用遥控器控制无人机。

2. 自由路径传播模型:自由路径传播模型考虑到了地面、建筑物等直射路径上的障碍物对信号传播的影响。

一般采用二维平面模型或三维平面模型来描述信号的传播路径。

该模型可以应用于城市中高楼大厦之间的通信。

3. 多径传播模型:多径传播模型认为信号在传播过程中会经历多条传播路径,包括直射路径、反射路径和散射路径。

反射路径是信号经过建筑物等物体表面反射,并到达接收点。

散射路径是信号在随机散射体表面发生散射后到达接收点。

该模型可以应用于室内无线通信和城市中街道间的通信。

二、信号传播特点无线信号传播具有独特的特点,了解这些特点对于设计和优化无线通信系统非常重要。

1. 多径效应:多径效应是指信号在传播过程中经历了多条路径,导致接收信号中出现多个分量。

这些分量之间存在相位差和时间延迟,会造成信号的频谱扩展和码间干扰。

在调制解调、信道估计和误码控制等方面需要针对多径效应进行处理。

2. 反射和折射:无线信号在传播过程中会经过建筑物、树木等物体的表面,发生反射和折射。

这会导致信号的强度、相位和传播路径的改变。

因此,在设计信号传播模型时需要考虑建筑物和其他物体对信号传播的影响。

3. 阻塞效应:阻塞效应是指由于障碍物的存在,信号不能直接到达接收点。

这会导致信号衰减、散射和影子区等问题。

通信原理知识点笔记总结

通信原理知识点笔记总结

通信原理知识点笔记总结一、信号与系统1.1 时域和频域时域表示信号随时间的变化,频域表示信号在频率上的特性。

通信系统中的信号通常是在时域和频域上进行分析和处理的。

1.2 信号的分类根据波形和性质,信号可以分为连续信号和离散信号。

连续信号是信号在时间上连续变化的,而离散信号是在某些时刻取特定数值的信号。

1.3 傅里叶变换傅里叶变换是将信号在时域上的波形转换到频域上的表示,可以分析信号的频谱特性。

傅里叶逆变换则是将信号从频域上的表示还原为时域上的波形。

1.4 采样和量化在数字通信中,信号需要经过采样和量化处理,将连续信号转换为离散信号,以便进行数字化处理和传输。

1.5 系统的传递函数系统的传递函数描述了输入信号和输出信号之间的关系,可以用来分析系统的性能和稳定性。

二、模拟调制与解调2.1 模拟调制模拟调制是将数字信号调制成模拟信号,以便在传输过程中减小信号的失真和干扰。

常见的模拟调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。

2.2 AM调制原理AM调制是通过改变载波的幅度来传输信息,信号可以直接调制到载波上。

2.3 FM调制原理FM调制是通过改变载波的频率来传输信息,信号是通过改变载波的频率来实现。

2.4 PM调制原理PM调制是通过改变载波的相位来传输信息,信号是通过改变载波的相位来实现。

2.5 解调解调是将模拟信号还原成原始数字信号的过程,通常通过相应的解调器实现。

三、数字调制与解调3.1 数字调制数字调制是将数字信号调制成模拟信号的过程,常见的数字调制方式有ASK、FSK和PSK 等。

3.2 ASK调制原理ASK调制是通过改变载波的幅度来传输数字信号,可以通过调制器将数字信号转换为模拟信号。

3.3 FSK调制原理FSK调制是通过改变载波的频率来传输数字信号,可以通过调制器将数字信号转换为模拟信号。

3.4 PSK调制原理PSK调制是通过改变载波的相位来传输数字信号,可以通过调制器将数字信号转换为模拟信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Pr
(d )
Pt Gt Gr λ2 (4π)2 d 2 L
10 log Pr
10 log Pt
10 log Gt
10 log Gr
10 log L 1obile Networks Technology
Zhenzhou Tang @ Wenzhou University
2.2 无线传播模型 2.2.2 自由空间传播模型
为了给通信系统的规划和设计提供依据,人们通过理论分析或实测 等方法,对电磁波在某些特定环境下的传播特性进行统计分析,从 而总结和建立了一些具有普遍性的数学模型。我们将这些模型称为 无线传播模型(Propagation Model)。
自由空间传播模型(Free Space Propagation Model)是最简单、理 想情况的无线电波传播模型。
13
2.2 无线传播模型 2.2.2 自由空间传播模型
自由空间路径损耗用于 描述信号衰减,定义为 有效发射功率和接收功 率之间的差值,不包括 天线增益
PL(dB) 10 log Pt Pr
147.56 20 log d 20 log f
14
Wireless and Mobile Networks Technology
Zhenzhou Tang @ Wenzhou University
相关文档
最新文档