非平稳时间序列

合集下载

非平稳时间序列建模步骤

非平稳时间序列建模步骤

非平稳时间序列建模步骤介绍非平稳时间序列是指其统计特性在时间上发生变化的序列。

在实际应用中,我们经常面临非平稳时间序列的建模问题,如股票价格、气温变化等。

本文将探讨非平稳时间序列建模的步骤和方法。

为什么要建立模型非平稳时间序列在其统计特性的变化中存在一定的规律性,因此建立模型可以帮助我们理解和预测序列的行为。

模型可以从数据中提取有用的信息,揭示序列的规律和动态特征。

步骤一:观察时间序列的特性在建立模型之前,我们首先需要观察时间序列的特性,包括趋势、周期性、季节性和随机性等。

这些特性是决定时间序列模型选择的重要因素。

步骤二:平稳化处理由于非平稳时间序列的统计特性随时间变化,不利于建模和分析。

因此,我们需要对时间序列进行平稳化处理。

常用的平稳化方法包括差分法和变换法。

2.1 差分法差分法是通过计算相邻两个观测值的差异来实现序列的平稳化。

一阶差分是指相邻观测值之间的差异,二阶差分是指一阶差分的差异,以此类推。

差分法可以有效地去除序列的趋势和季节性,使序列平稳。

2.2 变换法变换法是通过对时间序列进行数学变换,将非平稳序列转化为平稳序列。

常用的变换方法包括对数变换、平方根变换和 Box-Cox 变换等。

变换法可以改变序列的分布特性,使序列满足平稳性的要求。

步骤三:选择模型平稳化处理后,我们需要选择合适的模型进行建模。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。

3.1 自回归移动平均模型(ARMA)ARMA 模型是描述时间序列随机变动的经典模型,其包括自回归和移动平均两个部分。

自回归部分考虑了序列的历史值对当前值的影响,移动平均部分考虑了序列的误差对当前值的影响。

ARMA 模型适用于没有趋势和季节性的平稳序列。

3.2 自回归积分移动平均模型(ARIMA)ARIMA 模型是在 ARMA 模型基础上引入了积分项,用于处理非平稳序列。

非平稳时间序列模型

非平稳时间序列模型

非平稳时间序列模型非平稳时间序列模型是用来描述时间序列数据中存在趋势、季节性或其他波动的模型。

这些模型通常用于预测未来的数值或分析数据中的特征。

其中一个常见的非平稳时间序列模型是趋势模型。

趋势模型用来描述数据中存在的长期趋势。

例如,如果一个公司的销售额在过去几年里呈现稳定的增长趋势,那么趋势模型可以帮助预测未来几年的销售额。

另一个常见的非平稳时间序列模型是季节性模型。

季节性模型用来描述数据中存在的周期性变动。

例如,如果一个餐厅的每周客流量在周末较高,在工作日较低,那么季节性模型可以用来预测未来每周的客流量。

此外,还有其他非平稳时间序列模型,如自回归移动平均模型(ARMA)、自回归综合滑动平均模型(ARIMA)等。

这些模型结合了自身过去时刻的观测值和过去时刻的误差,用来预测未来的数值。

非平稳时间序列模型的建立和拟合通常包括多个步骤。

首先,需要对原始数据进行处理,例如去除趋势和季节性。

然后,选择适当的模型来拟合剩余数据。

最后,根据模型来预测未来的数值,并进行评估模型的准确性和可靠性。

总之,非平稳时间序列模型是一种描述和分析时间序列数据中存在趋势、季节性或其他波动的模型。

这些模型可以帮助我们理解数据的特征,并预测未来的趋势和变化。

非平稳时间序列模型是用来描述和分析时间序列数据中存在趋势、季节性或其他波动的模型。

这些模型通常用于预测未来的数值或分析数据中的特征。

非平稳时间序列模型在许多领域中都有广泛的应用,包括经济学、金融学、气象学等。

在经济学中,非平稳时间序列模型被广泛应用于经济预测和决策制定。

例如,GDP增长率是一个典型的非平稳时间序列数据,它受到许多因素的影响,如技术进步、政府政策等。

通过建立一个趋势模型,可以预测未来的经济增长趋势,从而提供政府和企业的决策参考。

在金融学中,非平稳时间序列模型被广泛应用于股票价格预测和风险管理。

股票价格是一个非平稳时间序列,它受到市场供需关系、公司盈利情况等多个因素的影响。

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法

第八章非平稳和季节时间序列模型分析方法时间序列是指观测值按照时间顺序排列的一组数据,其中具有季节性和非平稳性的时间序列数据具有特殊的分析需求。

本文将介绍非平稳和季节时间序列的分析方法。

一、非平稳时间序列分析方法非平稳时间序列是指其统计特征在时间上发生了变化,无法满足平稳性的要求。

非平稳时间序列具有趋势性、周期性、季节性和不规则性等特征。

对于非平稳时间序列的分析,我们可以采用以下方法:1.差分法:差分法是通过对时间序列取一阶或多阶差分来消除趋势性的影响。

通过差分后的时间序列进行分析,我们可以得到一个稳定的时间序列,并进行后续的建模和预测。

2.移动平均法:移动平均法是通过计算一定窗口范围内的观测值的平均值来消除短期波动的影响,从而得到一个平滑的时间序列。

通过移动平均后的时间序列进行分析,我们可以在一定程度上消除非平稳性的影响。

3.分解法:分解法是将非平稳时间序列分解为趋势项、季节项和随机项三个部分。

通过分解后的各个部分进行分析,我们可以了解趋势、季节和随机成分在时间序列中的作用,从而更好地进行建模和预测。

二、季节时间序列分析方法季节时间序列是指具有明显季节性的时间序列数据。

对于季节时间序列的分析,我们可以采用以下方法:1.季节性指数:季节性指数是用来描述季节性的强度和方向的指标。

通过计算每个季节的平均值与总平均值之比,可以得到季节性指数。

根据季节性指数的变化趋势,我们可以判断时间序列的季节性变化情况,并进行后续的建模和预测。

2.季节性趋势模型:季节性趋势模型是一种常用的季节时间序列建模方法。

该模型将时间序列分解为趋势项、季节项和随机项三个部分,并通过对这三个部分进行建模来分析季节性时间序列。

常用的季节性趋势模型包括季节性自回归移动平均模型(SARIMA)、季节性指数平滑模型等。

总结起来,非平稳和季节时间序列模型的分析方法主要包括差分法、移动平均法和分解法等对非平稳时间序列进行分析,以及季节性指数和季节性趋势模型等对季节性时间序列进行分析。

非平稳时间序列概述

非平稳时间序列概述

非平稳时间序列概述非平稳时间序列是指其统计特性在不同时间上发生了变化的时间序列数据。

与平稳时间序列不同,非平稳时间序列在时间上存在趋势、季节性、周期性等变化。

这些变化使得序列的平均值、方差和协方差随着时间的推移而变化,从而使得非平稳时间序列的分析和预测更加复杂。

非平稳时间序列的主要特点包括以下几个方面:1. 趋势性:非平稳时间序列在长期内呈现出明显的趋势变化。

例如,股票价格在长期内可能会呈现上升或下降的趋势。

2. 季节性:非平稳时间序列在特定的时间段内存在周期性波动。

例如,零售销售额可能会在节假日季节出现明显的周期性增长。

3. 周期性:非平稳时间序列可能呈现出长期的周期性波动。

例如,经济增长率可能会在数年或数十年内出现周期性的波动。

4. 自相关性:非平稳时间序列的自相关性通常不会随着时间的推移而衰减。

这使得使用传统的时间序列分析方法变得困难。

非平稳时间序列的分析和预测需要使用特殊的技术和方法。

常用的方法包括差分法、季节性调整、趋势拟合、转换等。

差分法可以通过对序列的差分来消除趋势性和季节性,使得序列变得平稳。

季节性调整可以通过季节性分解或回归模型来消除季节性效应。

趋势拟合可以使用线性回归、移动平均或指数平滑等方法来拟合趋势。

转换可以将非平稳时间序列转化为平稳时间序列,例如取对数、平方根等。

非平稳时间序列的分析和预测对于许多领域的决策非常重要,如经济学、金融学、工程学等。

准确理解和预测非平稳时间序列的变化趋势可以帮助我们做出合理的决策,优化资源配置,提高效率和盈利能力。

非平稳时间序列的分析和预测在许多领域中具有重要的应用价值。

以下是一些常见的应用领域:1. 经济学:非平稳时间序列分析在宏观经济学中具有重要意义。

经济指标如GDP、通货膨胀率、失业率等往往呈现出明显的趋势和周期性变化。

对这些经济指标进行分析和预测有助于了解经济发展的趋势和周期,以及制定相应的经济政策。

2. 金融学:金融市场中的价格、交易量、股票收益等数据通常呈现出较强的非平稳性。

第十一章 非平稳时间序列分析 《计量经济学》PPT课件

第十一章  非平稳时间序列分析  《计量经济学》PPT课件
GENR DY = Y – Y(-1) 生成差分序列Δy,用OLS法估计模型
Δyt = δyt-1 + ut 的参数,如图11.2.4所示:
图11.2.4
由图11.2.4可知,ˆ =0.105475, Tδ=9.987092。此结
果也可以由EViews软件中的单位根检验功能(选择 不包含常数项和滞后项数为零)直接给出, 如图11.2.5所示:
第十一章 非平稳时间序列分析 【本章要点】(1)非平稳时间序列基本概念 (2)时间序列的平稳性检验(3)协整的概念以 及误差修正模型(ECM) 本章将只对非平稳时间序列的基本概念、时间序 列的平稳性的单位根检验以及协整理论等进行简 要讲述。
时间序列的非平稳性,是指时间序列的统计规律随 着时间的位移而发生变化,即生成变量时间序列数 据的随机过程的统计特征随时间变化而变化。只要 宽平稳的三个条件不全满足,则该时间序列便是非 平稳的。当时间序列是非平稳的时候,如果仍然应 用OLS进行回归,将导致虚假的结果或者称为伪回 归。这是因为其均值函数、方差函数不再是常数, 自协方差函数也不仅仅是时间间隔的函数。
就是带趋势项的随机游走过程。
(二)单位根检验的基本思想
在(11.2.6)式中,若α = 0,则式(11.2.6)可以
写成:
yt = ρyt-1 + ut
(11.2.7)
式(11.2.7)称为一阶自回归过程,记作AR(1),可以
证明当| ρ | <1时是平稳的,否则是非平稳的。
AR(1)过程也可以写成算符形式:
(三)DF检验 (Dickey-Fuller Test) 1.DF检验 DF检验的具体作法是用传统方法计算出的参数的T— 统计量,不与t 分布临界值比较而是改成DF分布临界 值表。

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析

第八章、非平稳时间序列分析很多时间序列表现出非平稳的特性:随机变量的数学期望和方差随时间的变化而变化。

宏观经济数据形成的时间序列中有很多是非平稳时间序列。

非平稳时间序列与平稳时间序列具有截然不同的特征,研究的方法也很不一样。

因此,在对时间序列建立模型时,必须首先进行平稳性检验,对于平稳时间序列,可采用第七章的方法进行分析,对于非平稳时间序列,可以将采用差分方法得到平稳时间序列,然后采用平稳时间序列方法对差分数据进行研究,对于多个非平稳时间序列则可以采用协整方法对其关系进行研究。

8.1 随机游动和单位根8.1.1随机游动和单位根如果时间序列t y 满足模型t t t y y ε+=-1 (8.1)其中t ε为独立同分布的白噪声序列, ,2,1,)(2==t Var t σε,则称t y 为标准随机游动(standard random walk )。

随机游动表明,时间序列在t 处的值等于1-t 时的值加上一个新息。

如果将t y 看作一个质点在直线上的位置,当前位置为1-t y ,则下一个时刻质点将向那个方向运动、运动多少(t ε)是完全随机的,既与当前所处的位置无关(t ε与1-t y 不相关),也与以前的运动历史无关(t ε与 ,,32--t t y y 不相关),由质点的运动历史和当前位置不能得出下一步运动方向的任何信息。

这便是 “随机游动”的由来。

随机游动时间序列是典型的非平稳时间序列。

将(8.1)进行递归,可以得出010211y y y y t s s t t t t t t t +==++=+=∑-=----εεεε (8.2)。

如果初始值0y 已知,则可以计算出t y 的方差为2)(σt y Var t =。

由此看出随机游动在不同时点的方差与时间t 成正比,不是常数,因此随机游动是非平稳时间序列。

下图给出了随12机游动时间序列图:图8.1 随机游动时间序列图将随机游动(8.1)用滞后算子表示为t t y L ε=-)1( (8.3),滞后多项式为L L -=Φ1)(。

非平稳时间序列转换方法

非平稳时间序列转换方法

非平稳时间序列转换方法
非平稳时间序列是指序列的均值、方差以及相关系数等参数在时间上
存在明显的变化趋势,因此传统的分析方法不再适用。

为了解决这个
问题,人们研究出了很多非平稳时间序列转换方法。

首先是差分法。

差分法是最常用的非平稳时间序列转换方法之一,其
思想是通过对序列进行一阶或多阶差分,将其转换成平稳时间序列。

差分法的优点是简单高效,适用范围广泛,但需要根据数据特征进行
选择差分阶数。

其次是对数转换法。

对数转换法是指对时间序列进行取对数,将非常
数方差的序列转换成方差相对较为稳定的序列,适用于泊松分布或指
数分布等数据,是处理股票、汇率、货币等金融数据的常用方法之一。

再者是平滑法。

平滑法是一种通过移动平均法或加权平均法对序列进
行平滑处理的方法,其核心思想是降低噪音干扰,突出序列的本质规律,适用于处理周期性明显的序列。

最后是趋势法。

趋势法是通过建立趋势函数、趋势函数与随机项的残
差等方法对序列进行趋势提取,从而得到平稳时间序列。

趋势法的优
点是定量化程度高,能够提取非常明显的趋势,但对于复杂的非平稳
序列效果不佳。

综上所述,非平稳时间序列转换是时间序列分析的重要领域之一。

选择适当的转换方法可以有效地降低噪音干扰,突出序列的本质规律,提高序列预测的准确度。

不同的转换方法适用于不同的情况下,我们需要结合实际情况选择最合适的方法。

(6)141非平稳时间序列的概念讲解

(6)141非平稳时间序列的概念讲解

(14.1.2)
(14.1.2)式表明yt的均值不随时间的变化而变化。
为了求出yt的方差,我们将(14.1.1)式进行一系列的迭代:
yt = yt-1 +来自ut= yt-2 + ut-1+ ut
= yt-3 + ut-2+ ut-1+ ut
= y0+ u1+ u2+…+ ut
y0 ui
§14.1 非平稳时间序列基本概念
时间序列的非平稳性,是指时间序列的统计规律随
着时间的位移而发生变化,即生成变量时间序列数
据的随机过程的统计特征随时间变化而变化。只要
宽平稳的三个条件不全满足,则该时间序列便是非
平稳的。当时间序列是非平稳的时候,如果仍然应
用OLS进行回归,将导致虚假的结果或者称为伪回归。
△yt = yt–yt-1 = ut
稳的。
(14.1.5)
(14.1.5)式表明随机游走序列的一阶差分式是平
2.带漂移项的随机游走(random walk with drift)序列 带漂移项的随机游走序列由下式确定: yt = μ+ yt-1 + ut (14.1.6)
式中μ为非零常数,称之为“漂移项”,ut为白噪声序列。
3. 带趋势项的随机游走序列 随机游走序列(14.1.1) 和(14.1.6)是比较简单的 非平稳序列,它们是
yt = μ + β t + yt-1 + ut
(14.1.11)
的特例。 (14.1.11) 式称为带趋势项的随机游走序
列,容易证明,该时间序列也是非平稳时间序列。
由(14.1.11)有
μ所以被称之为“漂移项”,是因为(14.1.6)的一阶差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

种变换化成一个平稳序列,根据5.2节中的方法建模,并
利用变量之间的相关信息,描述经济时间序列的变化规 律。
8
3.单整 像前述 yt 这种非平稳序列,可以通过差分运算,得 到平稳性的序列称为单整(integration)序列。定义如下: 定义:如果序列 yt ,通过 d 次差分成为一个平稳序
列,而这个序列差分 d – 1 次时却不平稳,那么称序列 yt
在上式两端减去 yt-1,通过添项和减项的方法,可得
Δ yt a yt 1 i Δ yt i ut
i 1
p 1
其中
i 1
i 1
p
i j
j i 1
p
17
ADF检验方法通过在回归方程右边加入因变量 yt 的滞 后差分项来控制高阶序列相关
§5. 3 非平稳时间序列建模
前述的AR(p)、MA(q) 和ARMA(p,q) 三个模型只适 用于刻画一个平稳序列的自相关性。一个平稳序列的数 字特征,如均值、方差和协方差等是不随时间的变化而 变化的,时间序列在各个时间点上的随机性服从一定的 概率分布。也就是说,对于一个平稳的时间序列可以通 过过去时间点上的信息,建立模型拟合过去信息,进而
3
§ 5. 3.1 非平稳序列和单整
1.确定性时间趋势
描述类似图5.9形式的非平稳经济时间序列有两种方
法,一种方法是包含一个确定性时间趋势
yt a t ut
(5.3.1)
其中 ut 是平稳序列;a + t 是线Байду номын сангаас趋势函数。这种过程
也称为趋势平稳的,因为如果从式(5.3.1)中减去 a + t,
13
因此,判断一个序列是否平稳,可以通过检验 是
否严格小于1来实现。也就是说: 原假设H0: =1,备选假设H1: < 1 从方程两边同时减去 yt-1 得,
yt yt 1 ut
(5.3.8) (5.3.9) (5.3.10)
yt yt 1 a ut
yt yt 1 a t ut
来信息的。
7
残差序列是一个非平稳序列的回归被称为伪回归,
这样的一种回归有可能拟合优度、显著性水平等指标都
很好,但是由于残差序列是一个非平稳序列,说明了这 种回归关系不能够真实的反映因变量和解释变量之间存 在的均衡关系,而仅仅是一种数字上的巧合而已。伪回 归的出现说明模型的设定出现了问题,有可能需要增加 解释变量或者减少解释变量,抑或是把原方程进行差分, 以使残差序列达到平稳。 一个可行的办法是先把一个非平稳时间序列通过某
型的拟合优度等。
( 2 )可以选择常数和线性时间趋势,选择哪种形 式很重要,因为检验显著性水平的 t 统计量在原假设下 的渐近分布依赖于关于这些项的定义。
20
① 若原序列中不存在单位根,则检验回归形式选择 含有常数,意味着所检验的序列的均值不为 0;若原序列 中存在单位根,则检验回归形式选择含有常数,意味着所 检验的序列具有线性趋势,一个简单易行的办法是画出检 验序列的曲线图,通过图形观察原序列是否在一个偏离 0 的位置随机变动或具有一个线性趋势,进而决定是否在检 验时添加常数项。 ② 若原序列中不存在单位根,则检验回归形式选择 含有常数和趋势,意味着所检验的序列具有线性趋势;若 原序列中存在单位根,则检验回归形式选择含有常数和趋 势,意味着所检验的序列具有二次趋势。同样,决定是否 在检验中添加时间趋势项,也可以通过画出原序列的曲线 图来观察。如果图形中大致显示了被检验序列的波动趋势 呈非线性变化,那么便可以添加时间趋势项。
yt yt 1 i yt i ut
i 1
p
(5.3.11)
yt yt 1 a i yt i ut
i 1
p
(5.3.12)
yt yt 1 a t i yt i ut
i 1
p
(5.3.13)
18
扩展定义将检验
判断 的估计值 ˆ 是接受原假设或者接受备选假设,进而
下判断高阶自相关序列是否存在单位根。
19
但是,在进行ADF检验时,必须注意以下两个实际 问题: ( 1 )必须为回归定义合理的滞后阶数,通常采用 AIC准则来确定给定时间序列模型的滞后阶数。在实际 应用中,还需要兼顾其他的因素,如系统的稳定性、模
其中: = -1。
14
其中: = -1,所以原假设和备选假设可以改写为
显著性检验的方法,构造检验 ˆ 显著性的 t 统计量。
可以通过最小二乘法得到 的估计值 ˆ,并对其进行
H 0 : 0 H1 : 0
但是,Dickey-Fuller研究了这个t 统计量在原假设下 已经不再服从 t 分布,它依赖于回归的形式(是否引进了 常数项和趋势项) 和样本长度T 。
同样可以除去这种确定性趋势,然后分析和预测去势 后的时间序列。对于中长期预测而言,能准确地给出确定 性时间趋势的形式很重要。如果 yt 能够通过去势方法排除 确定性趋势,转化为平稳序列,称为退势平稳过程。
5
2. 差分平稳过程 非平稳序列中有一类序列可以通过差分运算,得到具 有平稳性的序列,考虑下式
21
3. DFGLS检验
在经验研究中,尽管DF检验的DF 统计量是应用最广泛
的单位根检验,但是它的检验功效偏低,尤其是在小样本
条件下,数据的生成过程为高度自相关时,检验的功效非 常不理想。另外,DF检验和ADF检验对于含有时间趋势的 退势平稳序列的检验是失效的。因此,为了改进DF和ADF 检验的效能,Elliott,Rothenberg和Stock (1996) 基于GLS 方法的退势DF检验,简称为DFGLS检验,其基本原理如下:
23
利用方程(5.3.14)的估计参数定义退势后的序列ytd为
ˆ(a ) ytd yt xt
DFGLS检验。检验过程如下:
t = 1, 2, , T
然后,对退势后的序列ytd,应用ADF检验,即为
ytd ytd1 i ytdi ut
i 1
p 1
t = 1, 2, , T
为 d 阶单整序列,记为 yt ~ I(d)。特别地,如果序列 yt 本身是平稳的,则为零阶单整序列,记为 yt ~ I(0)。
9
单整阶数是使序列平稳而差分的次数。对于上面 的随机游走过程,有一个单位根,所以是I(1),同样, 平稳序列是I(0)。一般而言,表示存量的数据,如以不 变价格资产总值、储蓄余额等存量数据经常表现为 2阶
如果序列存在高阶滞后相关,这就违背了扰动项是独立同 分布的假设。在这种情况下,可以使用增广的 DF 检验方 法(augmented Dickey-Fuller test )来检验含有高阶序列 相关的序列的单位根。
16
2. ADF检验
考虑 yt 存在p阶序列相关,用p阶自回归过程来修正,
yt a 1 yt 1 2 yt 2 p yt p ut
KPSS 检验、 ERS 检验和 NP 检验,本节将介绍 DF 检验、
ADF检验。 ADF检验和 PP检验方法出现的比较早,在实际应用
中较为常见,但是,由于这2种方法均需要对被检验序列
作可能包含常数项和趋势变量项的假设,因此,应用起 来带有一定的不便;其它几种方法克服了前 2种方法带来 的不便,在剔除原序列趋势的基础上,构造统计量检验 序列是否存在单位根,应用起来较为方便。
15
Mackinnon进行了大规模的模拟,给出了不同回归模
型、不同样本数以及不同显著性水平下的临界值。这样, 就可以根据需要,选择适当的显著性水平,通过 t 统计量 来决定能否拒绝原假设。这一检验被称为 Dickey-Fuller检 验(DF检验)。
上面描述的单位根检验只有当序列为AR(1)时才有效。
H 0 : 0 H1 : 0
(5.3.14)
原假设为:至少存在一个单位根;备选假设为:序列 不存在单位根。序列 yt可能还包含常数项和时间趋势项。 判断一个高阶自相关序列AR(p) 过程是否存在单位根。 类似于DF检验,Mackinnon通过模拟也得出在不同回 归模型及不同样本容量下检验 ˆ 不同显著性水平的 t 统计 量的临界值。这使我们能够很方便的在设定的显著性水平
11
1. DF检验 为说明DF检验的使用,先考虑3种形式的回归模型
yt yt 1 ut
yt yt 1 a ut
(5.3.5) (5.3.6) (5.3.7)
yt yt 1 a t ut
其中 a 是常数, t 是线性趋势函数,ut ~ i.i.d. N (0, 2) 。
22
首先定义序列 yt 的拟差分序列如下:
yt d ( y t | a) yt ayt 1
并且构造如下回归方程:
if t 1 if t 1
t = 1, 2, , T
d ( yt | a) d ( xt | a) δ(a) ut
t = 1, 2, , T (5.3.14)
单整 I(2) ;以不变价格表示的消费额、收入等流量数
据经常表现为1阶单整I(1) ;而像利率、收益率等变化 率的数据则经常表现为0阶单整I(0) 。
10
§5.3.2
非平稳序列的单位根检验
检查序列平稳性的标准方法是单位根检验。有6种单 位 根 检 验 方 法 : ADF 检 验 、 DFGLS 检 验 、 PP 检 验 、
预测未来的信息。
1
然而,对于一个非平稳时间序列而言,时间序列的
某些数字特征是随着时间的变化而变化的。
非平稳时间序列在各个时间点上的随机规律是不同 的,难以通过序列已知的信息去掌握时间序列整体上的 随机性。但在实践中遇到的经济和金融数据大多是非平 稳的时间序列。
相关文档
最新文档