饱和土土体渗透固结理论
饱和黏土固结理论及其研究进展

关 于 软 黏 土 非 线 性 一 维 固结 理论 , ai等 (95 基 于 线 性 Dv s 16 )
用方面取得 巨大 的成功 , 这主要是 因为它体现 了固结 的基 本物
理 过 程 , 用 的参 数 可 由常 规 的 室 内试 验 提 供 , 采 当对 计 算 精 度 的
的e 1g 关系 , 一 oc r 通过假定渗透 系数 k 与体积压缩 系数 i 的变 v n 化是 同步 的 , 得到 了固结 系数 在固结过程中为恒值下 的固结方 程, 并且获得 了解析 解。B re 等 (9 5 采用 e 1gr 关系 以 adn 16 ) 一 oo 及渗透 系数与孔压 u的简单 关系 , 采用有限差分 法得 到了 固结 曲线。M ri (9 4 采用 目前公认的 e 1 es等 17 ) -o 和 e 1 关系, 一o 同样用有 限差分法得 到了固结曲线 。然而这些研究 , 由于未区 分非线性 同结 问题按 变形定 义和按孔压定义 固结度 的不 同 , 因
( 3)
程应用的实例。但这些理论仍无 法解释某些固结试验中发现在 主固结完成后存 在有一定的孔隙水压力无法完全消散 的现象 。 因此研究新 型的固结试 验 , 进一步 探讨 饱和黏土渗透 固结 的机
理 十 分 必要 。
其中 , 于H= t 和 H Q・两种情况 , isn 15 ) 对 R” = t Gbo (9 8 曾做了 详细研究 , 并分别给出了解析解和有 限差分解。
固结 方 程 为 :
C u 02 O H :L v +丫 。
=
。
对路基的 固结沉降计算 广泛应用 的还是 T rah 于 12 年 ezg i 9 5
建 立 的 饱 和 黏 土 一 维 固 结 理 论 , 有 以 此 为 基 础 的 也 T rah— ed l 二 维 或 三维 固结 理 论 , 至 Bo固结 理论 在 工 ezg iR n u c i 甚 i t
第三章 土的固结理论

′ + δ ij u σ ij = σ ij
即σ x = σ ′ x +u ;
′ σy =σ′ y +u; σz =σz +u
(2)应力应变关系
′ = Dijkl ε kl σ ij ⎡ E1 ⎢E ⎢ 2 ⎢E [ D] = ⎢ 2 ⎢ ⎢ ⎢ ⎢ ⎣ E2 E1 E2 E1 ⎤ ⎥ ⎥ ⎥ ⎥ G ⎥ ⎥ G ⎥ G⎦ ⎥
u
γw
,得
k
γw
∇ 2u =
∂ εv ∂ ⎛ ∂u x ∂u y ∂u z ⎞ ⎟ + =− ⎜ + ∂z ⎟ ∂y ∂t ∂t⎜ ⎠ ⎝ ∂x
注意到
εv =
1 − 2v 1 − 2v (Θ − 3u ) ,带入上式得 Θ′ = E E
k
γw
∇ 2u =
∂ εv ∂ ⎛ 1 − 2v ⎞ 1 − 2v ∂ (Θ − 3u ) Θ′ ⎟ = = ⎜ ∂t ∂t⎝ E E ∂t ⎠
∂Θ = 0 ,而 Biot 固结理 ∂t
∂q ∂Θ ,则同时也有 = 0) = 0。 ∂t ∂t
当 t 2 < t ≤ t3 时
⎛ t ⎞p ⎛ t + t 2 ⎞ t − t 2 p 2 − p1 U t = U ′⎜ t − 1 ⎟ 1 + U ′⎜ t − ⋅ ⎟ 2 ⎠ t3 − t 2 p2 ⎝ 2 ⎠ p2 ⎝
当 t > t3 时
⎛ t + t ⎞ p − p1 ⎛ t ⎞p U t = U ′⎜ t − 1 ⎟ 1 + U ′⎜ t − 2 3 ⎟ 2 2 ⎠ p2 ⎝ 2 ⎠ p2 ⎝
1 ,而对于实际为弹塑性介质的饱和土体,在破坏状态对应的 3
简析饱和土与非饱和土固结理论

研究探讨Research308简析饱和土与非饱和土固结理论李向群1(指导老师)刘帅2(吉林建筑大学测绘与勘察工程学院,吉林长春130118)中图分类号:TB332 文献标识码:A 文章编号1007-6344(2020)02-0001-01摘要:这篇文章通过对饱土和非饱和土各自的概念以及目前国内外的研究成果进行了简要的阐述,为了在今后土的固结试验与研究当中应注重二者的区别于联系,来促进在固结理论的进一步深入研究打下基础。
关键词:饱和土;固结理论;非饱和土0 引言近些年,随着我国基础建设的大力推进,人们对岩土工程行业的技术提出了更高的要求。
土固结问题在工程实践当中随处可见的,而土的固结理论的研究对建筑物沉降、地基稳定以及地基的设计与处理都有指导性的作用。
土体在外力作用下土体受压收缩并伴随着水从孔隙中排出,土骨架在孔隙水压力的作用下发生变形并缓慢的趋于稳定,这就是固结的过程。
在土体结构内部土骨架有效应力的增加过程和孔隙水压的消散的过程可以看作饱和土的固结过程。
对非饱和土而言,气体与水同时存在土的孔隙当中,其固结过程是水与气之间的相互作用。
由于孔隙水非饱和土中的渗透性、孔隙气的渗透性以及土中的水分与土体结构的影响,这些因素将极大地影响非饱和土固结的研究。
目前,在实践当中还没有发现有成熟与适用的非饱和土固结理论,故在未来对非饱和土固结这个领域的研究还是非常有意义的。
1 饱和土固结理论研究饱和土实质上是在土体结构内部土颗粒周围的孔隙被水充满的二相体系。
对于透水性好的饱和土(沙土、碎石头),其变形所经历的时间段短,可以认为在外荷载施加完毕时,土体的结构就已经趋于稳定了。
如果对于透水性好的软粘土而言,其固结变形需要几年甚至几十年才能完成。
人们普遍的认为土力学学科的诞生是基于太沙基固结理论和有效应力原理的提出。
太沙基固结理论与有效应力原理都是由美国著名的土力学家太沙基所证明推广得到并且得到了岩土工程界学者们的认可。
饱和粘性土地基沉降与时间的关系

饱和粘性土地基沉降与时间的关系第四节 饱和粘性土地基沉降与时间的关系前面介绍的方法确定地基的沉降量,是指地基土在建筑荷载作用下达到压缩稳定后的沉降量,因而称为地基的最终沉降量。
然而,在工程实践中,常常需要预估建筑物完工及一般时间后的沉降量和达到某一沉降所需要的时间,这就要求解决沉降与时间的关系问题,下面简单介绍饱和土体依据渗流固结理论为基础解决地基沉降与时间的关系。
一、饱和土的有效应力原理用太沙基渗透固结模型很能说明问题。
当t =0时,u =σ,0='σ 当t ﹥0时,u +'=σσ,0≠'σ当t =∞时,σσ'=,u =0结论:u +'=σσ',饱和土的渗透固结过程就是孔隙水压力向有效力应力转化的过程。
在渗透固结过程中,伴随着孔隙水压力逐渐消散,有效应力在逐渐增长,土的体积也就逐渐减小,强度随着提高。
二、饱和土的渗流固结整个模型(饱和土体)⎪⎩⎪⎨⎧→→→土的渗透性活塞小孔的大小孔隙水水固体颗粒骨架弹簧三、太沙基一维渗流固结理论(最简单的单向固结)——1925年太沙基提出一.基本假设:将固结理论模型用于反映饱和粘性土的实际固结问题,其基本假设如下: 1.土层是均质的,饱和水的2.在固结过程中,土粒和孔隙水是不可压缩的; 3.土层仅在竖向产生排水固结(相当于有侧限条件);4.土层的渗透系数k 和压缩系数a 为常数; 5.土层的压缩速率取决于自由水的排出速率,水的渗出符合达西定律;6.外荷是一次瞬时施加的,且沿深度z 为均匀分布。
二.固结微分方程式的建立在饱和土体渗透固结过程中,土层内任一点的孔隙水应力),(t z u 所满足的微分方程式称为固结微分方程式。
在粘性土层中距顶面z 处取一微分单元,长度为dz ,土体初始孔隙比为e 1,设在固结过程中的某一时刻t ,从单元顶面流出的流量为q +dz zq ∂∂则从底面流入的流量将为q 。
于是,在dt 时间内,微分单元被挤出的孔隙水量为:dzdt zqdt q dz z q q dQ )(])[(∂∂=-∂∂+=设渗透固结过程中时间t 的孔隙比为e t , 孔隙体积为:dz e e Vtv11+=在dt 时间内,微分单元的孔隙体积的变化量为:dzdt e e dt dz e et dt t V dV ttt v v ∂∂+=+∂∂=∂∂=1111)1(由于土体中土粒,水是不可压缩的,故此时间内流经微分单元的水量变化应该等于微分单元孔隙体积的变化量, 即:vdV dQ =或dzdt te e dzdt z q t∂∂+=∂∂111)(即:te ez q t∂∂+=∂∂111根据渗流满足达西定律的假设zu r k z h kki VA q w ∂∂=∂∂===式中:A 为微分单元在渗流方向上的载面积,A =1;i :为水头梯度,zhi ∂∂=其中h 为侧压管水头高度μ:为孔隙水压力,h r u w =根据压缩曲线和有效应力原理,dp de a -=而up u z-=-=σσ'所以: tu a t e t ∂∂=∂∂ 并令ware k Cv )1(1+= 则得t uzu Cv ∂∂=∂∂22此式即为饱和土体单向渗透固结微分方程式 。
土的固结及固结系数确定

dt时段内: 孔隙体积的变化=流出的水量
q
dz
1
(q q dz) z
V t2d t q q q zd z d t q zd zd t
1 e q 1 e1 t z
数学模型
饱和土体的渗流固结理论 - 一维渗流固结理论
dt时段内: 孔隙体积的变化=流出的水量
达西定律: qAkikikhuku z wz
t
wa z2
u t
Cv
2u z2
固结系数:
Cv
k(1 e1 ) a w
Cv 反映土的固结特性:孔压消散的快慢-固结速度 Cv 与渗透系数k成正比,与压缩系数a成反比; 单位:cm2/s;m2/year,粘性土一般在 10-4 cm2/s 量级
数学模型
饱和土体的渗流固结理论 - 一维渗流固结理论
由于次固结,S∞不易确定 存在初始沉降,产生误差
直接测量法
饱和土体的渗流固结理论 - 固结系数确定方法
O
t
(2 90
)
t
(1 90
)
t
Ut 182m1 ,3,5m 12em242Tv
(1)
S60
Ut 1.128 Tv
S90
S
Ut 1.128Tv (2) 校正初始沉降误差
Ut60%时二线基本重合,之后逐
渗透固结微分方程:
u t
Cv
2u z2
• 反映了超静孔压的消散速度与孔压沿竖向的分布有关 • 是一线性齐次抛物型微分方程式,与热传导扩散方程形式上完全
相同,一般可用分离变量方法求解
• 其一般解的形式为:
u (z ,t) ( C 1 cA o C s z 2 sA i) e n A z 2 C v t
饱和土的渗流固结

1.理论分析方法
? 实质是进行结构与地基相互作用分析,计算上部结构中由 于地基差异沉降可能引起的次应力或拉应力,然后在保证 其不超过结构承受能力的前提下,综合考虑其它方面的要 求,确定地基容许变形值
2.经验统计法
? 对大量的各类已建筑物进行沉降观测和使用状况的调查, 然后结合地基地质类型,加以归纳整理,提出各种容许变 形值,《建筑地基基础设计规范》列出不同形式建筑物容 许变形值。
§4.4 建筑物沉降观测与地基容许变形值
? 一、建筑物沉降观测
? 反映地基的实际变形以及地基变形对建筑物的影响程度 ? 根据沉降观测资料验证地基设计方案的正确性,地基事故
的处理方式以及检查施工的质量
? 沉降计算值与实测值的比较,判断现行沉降计算方法的准 确性,并发展新的更符合实际的沉降计算方法
? 观测工作主要内容
采用分离变量法,求得傅立叶级数解
? uz,t
?4?Fra bibliotek??
z m?1
1 sin m
m? 2
2H
exp( ??
2m2Tv
/
4)
式中:TV——表示时间因素
Tv ?
cv H2
t
? m——正奇整数1,3,5…;
? H——待固结土层最长排水距离(m),单面排水土层取土层厚 度,双面排水土层取土层厚度一半
? 地基固结度 地基固结度:地基固结过程中任一时刻t的固结沉降量sct与 其最终固结沉降量sc之比
p
235kPa
H
粘土层
不透水层 157kPa
? 【解答】
? 1.当t=1年的沉降量
地基最终沉降量 固结系数
S
?
a?
太沙基一维固结理论

例如,在第四纪一般粘性土地区,一般的 四、五层以上的民用建筑物的允许沉降仅 10 cm左右,沉降超过此值就容易产生裂缝; 而沿海软土地区,沉降的固结过程很慢, 建筑物能够适应于地基的变形。因此,类 似建筑物的允许沉降量可达20 cm甚至更大。
碎石土和砂土的压缩性小而渗透性大,在 受荷后固结稳定所需的时间很短,可以认 为在外荷载施加完毕时,其固结变形就已 经基本完成。饱和粘性土与粉土地基在建 筑物荷载作用下需要经过相当长时间才能 达到最终沉降,例如厚的饱和软粘土层, 其固结变形需要几年甚至几十年才能完成。 因此,工程中一般只考虑粘性土和粉土的 变形与时间的关系。
a 估计该土层的最终沉降量S;
b 计算该土层的竖向固结系数
cv
k(1 e0 )
wa
c 计算竖向固结时间因数
Tv
cvt H2
d 应用公式 U z
1 8
2
1
( m2
m1,3,...
exp( m2
2Tv
/ 4))
计算固结度,或查
U z Tv 系曲线求 U z
f 应用公式
Uz
地基沉降发展三分量地基沉降发展三分量初始沉降瞬时沉降s土体在附加应力作用下产生的瞬时变形固结沉降s饱和与接近饱和的粘性土在荷载作用下随着超静孔隙水压力的消散土中孔隙水的排出土骨架产生变形所造成的沉降固结压密次固结沉降s主固结过程超静孔隙水压力消散过程结束后在有效应力不变的情况下土的骨架仍随时间继续发生变形土的性质对沉降的影响砂土地基初始沉降是主要的排水固结变形在荷载作用后很快完成饱和软粘土地基固结沉降是主要的需要很长时间才能完成沉降计算方法初始沉降采用弹性理论求解固结沉降根据固结确定试验参数采用分层总和法求解次结沉降根据蠕变试验确定参数采用分层总和法求解次固结变形为主固结变形完成后土体的变形在时间上把主固结变形和次固结变形截然分开的意见在学术界看法是不一致的
土力学 太沙基渗透固结理论

有效应力原理
总应力已知 超静孔隙水压力的时空分布
单面排水有效应力的 渗流固结的 过程取决于 土层的可压 缩性和渗透 性
2019/2/10 4
数学建模
孔隙体积的压缩=孔隙水的流出量
土 的 压 缩 定 律 σ′ 有效应力原理 达 西 定 律 μ
一维固结微分方程的建立
土力学第六讲
-----Terzaghi渗透固结理论
渗透固结的概念:
指由于外荷载作用,土体内产生超孔隙水力, 在水头差的作用下,土体内部发生渗流,导致土 中水排出,土体孔隙比降低,体积减小,发生固 结沉降。
注:超孔隙水压力与孔隙水压力的区别?
1、 太沙基的渗流固结理论
(1)基本假定 ①土层均匀且完全饱和; ②土颗粒与水不可压缩; ③变形是单向压缩(水的渗出和土层压缩是单向的); ④荷载均布且一次施加并在固结过程中保持不变—z = const; ⑤渗流符合达西定律且渗透系数保持不变; ⑥压缩系数a是常数。 (2)基本变量
2019/2/10
6