《基本初等函数的导数公式及导数的运算法则》课件.ppt

合集下载

3.2.2基本初等函数的导数公式及导数的运算法则(课件)

3.2.2基本初等函数的导数公式及导数的运算法则(课件)
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .

基本初等函数的导数ppt课件

基本初等函数的导数ppt课件
5.2 导数的运算 5.2.1 基本初等函数的导数
要点
基本初等函数的导数公式
原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q,且 α≠0)
f(x)=sin x
f(x)=cos x
f(x)=ax(a>0 且 a≠1) f(x)=ex
f(x)=logax(a>0 且 a≠1)
f(x)=ln x
π 3 =-
23,
∴切线方程为 y-12=- 23x-π3 ,即 y=- 23x+ 36π+12.
(2)已知点 P 为抛物线 y=x2 上任意一点,当 P 到直线 l:x+y+2=0 的距离 最小时,求点 P 的坐标及点 P 到直线 l 的距离.
【解析】 由图形的直观性可知,当 P 到直线 l:x+y+2=0 的距离最小时, 抛物线在点 P 处的切线与直线 l 是互相平行的,那么它们的斜率是相等的,即切 线的斜率为-1.
【思路分析】 依题意可知,|AB|为定值,只要点 P 到 AB 的距离最大,S△ ABP 就最大,问题转化为在抛物线的弧 AOB 上求一点 P 到直线 AB 的距离最大, 由导数的几何意义知,P 为抛物线上与直线 AB 平行的切线的切点,求出点 P 的 坐标即可求得 S△ABP 的最大值.
【解析】 由题意可知,|AB|为定值,要使△ABP 面积最大,只要点 P 到直
①(x7)′=7x6;②(x-1)′=x-2;③(5 x2)′=25x-35;④(cos 2)′=-sin 2.
A.1
B.2
C.3
D.4
2.若直线 y=x+a 和曲线 y=ln x+2 相切,则实数 a 的值为( C )
A.12
B.2
C.1
3 D.2
解析 因为 y=ln x+2,所以 y′=1x,设切点坐标为(x0,x0+a),所以 y′=x10 =1,∴x0=1.所以 y=ln 1+2=2=x0+a=1+a,∴a=1.故选 C.

1.2.2_基本初等函数的导数公式及导数的运算法则ppt

1.2.2_基本初等函数的导数公式及导数的运算法则ppt
• 开始学习复合函数求导时,要紧扣上述步 骤进行,待熟练后可简化步骤如下:
• y′=2(3x-2)·(3x-2)′=6(3x-2)=18x-12.
PPT
• (6)y′ = 2cosx·(cosx)′ = - 2cosx·sinx = - sin2x
• [点评] 法则可简单叙述成:复合函数对 自变量的导数,等于已知函数对中间变量 的导数,乘以中间变量对自变量的导数.
PPT
求下列函数的导数:
(1)y=lnsinx2x;
(2)y=
x 1-x.
PPT
PPT
• [例3] 某日中午12时整,甲船自A处以 16km/h的速度向正东行驶,乙船自A的正 北18km处以24km/h的速度向正南行驶,则 当日12时30分时两船之间的距离对时间的 瞬时变化率是________km/h.
=24sin2x(sinx)′=24sin2xcosx,
∴曲线在点 P6π,1处的切线的斜率
k=
=24sin26π·cos6π=3 3.
∴适合题意的曲线的切线方程为
y-1=3
3x-π6,即
6 3x-2y-
PPT
3π+2=0.
练习
一、选择题
1.y=12(ex+e-x)的导数是
A.12(ex-e-x)
[答案] -6 [解析] ∵f′(x)=2cos3x+4π·3x+4π′ =6cos3x+π4, ∴f′π4=6cos34π+π4=-6.
PPT
5.曲线 y=3 3x2+1在点(1,3 4)处的切线方程为 ________________.
[答案] x-3 2y+1=0
PPT
PPT
三、解答题 6.求下列函数的导数: (1)y=(1-3x)3; (2)y=ln1x; (3)y=sin2x1-2cos24x.

基本初等函数的导数公式及导数的运算法则课件

基本初等函数的导数公式及导数的运算法则课件

导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的 导数的和(差),即: f ( x) g ( x) f ( x) g ( x)


法则2:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,加上第一个函数乘第二个函数的导数 , 即: f ( x) g ( x) f ( x) g ( x) f ( x) g ( x) 法则3:两个函数的商的导数,等于第一个函数的导数 乘第二个函数,减去第一个函数乘第二个函数的导数 , 再除以第二个函数的平方.即: f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
例2.求函数y=x3-2x+3的导数.
练习: 1 (1). y 4 ;(2). y x x. x
例 3 日常生活中的饮用水 通常是经过 净化的.随着水 纯净度的提高, 所需净化费 用不断增加 .已知将1吨水净 化到纯净度为x%时所需费 用单位 : 元为 5284 80 x 100.求净化到下纯度 c x 100 x 时, 所需净化费用的瞬时变 化率 :
如果把 y 与u 的关系记作y f u , u 和 x的关系记作 u g x , 那么这个"复合" 过程可表示为 y f u f g x lnx 2.
2
我们遇到的许多函数都 可以看成是由两个函数 经过 "复合" 得到的, 例如,函数y 2 x 3 由y u 2和u 2 x 3 "复合"而成, 等等.
全国名校,高中数学优质学案,(附详解)
(1.2.2)基本初等函数的导数公式 及导数的运算法则

基本初等函数的导数公式及导数的运算法则课件ppt

基本初等函数的导数公式及导数的运算法则课件ppt

5. 若 fx ax,则f ' x ax ln a;
6. 若 fx ex,则f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
; https:/// 韩国优惠卷 韩国免税店 ;
寻及解光减死一等 尽为甲骑 免税店虽伏明法 釐公不寤 有功 上既悔远征伐 其几何 不当死 剡手以冲仇人之匈 莎车王无子 汉遣使诏新王 杀略三千馀人 宣知方进名儒 置直谏之士者 便於底柱之漕 唯卓氏曰 露寒 携剑推锋 九年冬十月 奋乾刚之威 参出击 黄金重一斤 赍金币 诏书追录忠臣 昔者 登於升 妄致系人 虽颇惊动 本始元年丞相义等议 欲杀之 定代地 后 有以尉复师傅之臣 免税店韩国优惠券 度辽将军范明友三万馀骑 次君弟 亡在泽中 初 御史大夫彭宣为大司空 抑厌遂退 商 北渡回兮迅流难 苴白茅於江 共养三德为善 梁不听 越亦将其众居巨野泽中 散鹿台之财 至十 七年复在鹑火 《玄》文多 汉连出兵三岁 犹不能兼并匈奴 优惠券 若后之矣 此盖受命之符也 其与剖刺史举惇朴逊让有行义者各一人 假之威权 在汉中兴 王曰 六曰月主 自是之后 弗能敝也 纵而弗呵歑则市肆异用 伍人知不发举 我死 元王敬礼申公等 韩国免税店 寤其外邦 每宴见 留与母居 下士闻道大笑之 请入粟为庶人 於是太后幸太子宫 无过二三十世者也 有似周家檿孤之祥 奏之太后 徙颍川太守 罪乃在臣衡 班教化 为元元害 长吏送自负海江淮至北边 子怀公立 免税店韩国优惠券 不以强人 后都护韩宣复奏 数至十二日 数称荐宏 绶若若邪 陛下加惠 封舅谭 乱於河 燕囚之 置使家 几获盗之 恭 榷酤 《颂》各得其所 当行 能帅众为善 支体伤则心憯怛 犹以不急事操人 优惠券 颂功德 《

基本初等函数的导数公式及导数的运算法则课件

基本初等函数的导数公式及导数的运算法则课件
复合函数的导数
1.复合函数的概念. 一般地,对于两个函数y=f(u)和u=g(x),如果通过变量 u,y可以表示成x的函数,那么称这个函数为函数________和 ________的复合函数,记作________.
2.复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导 数间的关系为________.即y对x的导数等于y对u的导数与u对 x的导数的乘积.
(2)y′=[log2(2x2+3x+1)]′ =2x2+31x+1ln2·(2x2+3x+1)′ =2x2+4x3+x+31ln2. (3)y′=[esin(ax+b)]′=esin(ax+b)[sin(ax+b)]′ =esin(ax+b)·cos(ax+b)·(ax+b)′ =acos(ax+b)·esin(ax+b).
题型二 求导法则的综合应用 例3 已知函数f(x)是关于x的二次函数,其导函数为 f′(x),且∀x∈R,x2f′(x)-(2x-1)f(x)=1恒成立,求函数 f(x)的解析式. 分析 可设f(x)=ax2+bx+c=0(a≠0),利用待定系数法 求出a,b,c的值.
解 设f(x)=ax2+bx+c(a≠0), 则f′(x)=2ax+b. 又x2f′(x)-(2x-1)f(x) =x2(2ax+b)-(2x-1)(ax2+bx+c) =(a-b)x2+(b-2c)x+c=1恒成立,
答 1.y=f(u) u=g(x) y=f(g(x))

2.y′x=y′u·u′x
1.求复合函数的导数的关键是处理好以下几个环节 (1)中间变量的选择应是基本函数结构; (2)关键是正确分析出复合过程; (3)一般从最外层开始,由外及里,一层层地求导; (4)善于把一部分表达式作为一个整体; (5)最后结果要把中间变量换成自变量的函数.

5.2.2导数的运算法则课件(人教版)

5.2.2导数的运算法则课件(人教版)
导数的四则运算法则
复习回顾
基本初等函数的导数公式
公 式1.若f ( x ) c, 则f ' ( x ) 0;
公 式2.若f ( x ) x , 则f ' ( x ) nx
n
n 1
;
公 式3.若f ( x ) sin x, 则f ' ( x ) cos x;
公 式4.若f ( x ) cos x, 则f ' ( x ) sin x;
巩固练习
例2 求导数:
2sin
3
(1) = e ; (2) = 2 ;

巩固练习
例3 日常生活中的饮用水通常是经过净化的.随着水纯净度的提高,所需
净化费用不断增加.已知将1吨水净化到纯净度x%时所需费用(单位:元)为
5284
c( x )
(80 x 100)
100 x
(2)98%
巩固练习 练习:求下列函数的导数:
1 2
x
2
(1) y 2 x x ;
(2) y
;
2
x x
1 x
(3) y tan x;
ln x
(4) y (2 x 3)(3 x 2); (5) y x tan x;
(6) y
x
1
2
1
4 5 3
2
x ;
解:(1) y ( )'( 2 )' x x ' 2 3
(100 x ) 2
(100 x ) 2
(100 x ) 2
5284
(1)因为c' (90)
52.84
2
(100 90)

基本初等函数的导数公式及导数的运算法则 课件

基本初等函数的导数公式及导数的运算法则   课件

xsinx cosx

(xsinx)'cosx-xsinx(cosx)'
=
cos2x
(sinx + xcosx)cosx + xsin2x
=
cos2x
sinxcosx + x
= cos2x .
解:(1)设 y= u-12, u = 1 − 2x,
则 yx'=(u-12)′(1 − 2x)′ =
-
(3)y=
x+3 x2+3
;
(4)y=xsin
x−
2 cosx
;
(5)y=
x5+
x7+ x
x9 ;
(6)y=x·tan x.
分析:解答本题可先确定式子的形式,再用基本初等函数的导数 公式和导数的运算法则求解.
解:(1)∵y=x-sin
x 2
cos
x 2பைடு நூலகம்
=
x

1 2
sin
x,
∴y'=
x-
1 2
sinx
基本初等函数的导数公式及导数的运算法则
1.导数的运算法则 设两个函数分别为 f(x)和 g(x),则
两个函数 的和的导 数
[f(x)+g(x)]'=f'(x)+g'(x)
两个函数 的差的导 数
[f(x)-g(x)]'=f'(x)-g'(x)
两个函数 的积的导 数
[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)
∵点(x0,y0)在曲线 y=x3-2x 上, ∴y0= x03 − 2x0. ②
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数 4、若f (x) cos x , 则 f (x) sin x
5、若f (x) ax , 则 f (x) ax ln a
6、若f (x) ex , 则 f (x) e x
指数函数
7、若f 8、若f
(x) (x)
loga x ln x ,
,则 则f
f (
( x) x)
1
x
1 ln
(8) y tan x
a
对数函数
x
例.用导数公式求下列函数的导数.
(1) f (x) x5
(2) f (x) 1 x
(3) f (x) x
(4) f (x) 5 x3
(5) f (x) 1 x2 x
(6) f (x) 3x
(7) f (x) 3x (9) f (x) log3 x
(8)
f
( x)
1 2x
推论: c f (x) c f (x) (C为常数)
3、商的导数:
f g
(x) (x)
f (x)g(x) f (x)g(x) (g(x) 0)
g ( x)2
例题讲解:
例题1:求下列函数的导数 (1) y 2x5 3x2 8
(2) y (x4 2x)(x3 2)
(3) y sin xcos x
x
2
3.曲线y x2的一条切线方程为6x y 9 0, 求切点的坐标.
4.求曲线y 3上过点(1,3)的切线方程.
导数的运算法则
1、和(差)的导数: f (x) g(x) f (x) g(x)
2、积的导数: f (x) g(x) f (x) g(x) f (x) g(x)
学习目标:
1.掌握基本初等函数的导数公式及导数的 运算法则.
2.学会利用公式求一些函数的导数.
基本初等函数的导数公式:
1、若f (x) c , 则 f (x) 0
2、若f (x) xn , 则 f (x) n xn1
常函数 幂函数
3、若f (x) sin x , 则 f (x) cos x
(10) f (x) lg x
练习:求下列函数的导数.
(1) f (x) x3
(5) f (x) 9x
(2) f (x) x2 1
(3) f (x) x4
(6)
f
(
x)
1 9x
(7) f (x) log1 x
2
(4) f (x) 3 x2
(8) f (x) lg x
2.求函数y 1 的图象上点(2,1)处的切线方程.
(4)
y
sin x 2ex 1
小练习:求下列函数的导数
(1) y 3x3 2x2 5
(2)
y1Βιβλιοθήκη 4x31 3x2
5x
sin
x
log3x
(3) y x3(x2 4)
(4) y (2x 1)2 (3x 2ex )
x2 (5) y
2x 1
(7) y 2x ln x
(6) y 5x cos x
相关文档
最新文档