三角函数线的教学设计与反思
三角函数教学反思

三角函数教学反思在进行三角函数教学的过程中,我认真总结了自己的教学经验,并对教学方法和内容进行了反思。
以下是我对三角函数教学的反思和改进措施:一、教学目标的设定在进行三角函数教学时,我首先明确了教学目标,确保学生能够理解和运用三角函数的基本概念和性质,掌握常见的三角函数图象和性质,并能够解决与三角函数相关的实际问题。
为了达到这些目标,我采取了以下措施:1. 通过引入实际问题,激发学生对三角函数的兴趣和学习动机。
例如,我可以引用航海、建造等领域的实际问题,让学生意识到三角函数在现实生活中的重要性。
2. 设计具有挑战性和启示性的问题,培养学生的思维能力和解决问题的能力。
例如,我可以设计一些需要使用三角函数知识解答的复杂问题,让学生动手思量和解决。
3. 引导学生运用三角函数进行实际计算和建模。
例如,我可以设计一些实际计算题目,让学生应用三角函数解决实际问题,并通过计算结果的验证来巩固他们对三角函数的理解。
二、教学方法的选择在三角函数教学中,我尝试了多种教学方法,以满足不同学生的学习需求和提高教学效果。
以下是我采用的一些教学方法:1. 探索式学习:我鼓励学生通过观察、实验和探索来发现三角函数的性质和规律。
例如,我可以让学生自己观察和绘制正弦函数、余弦函数的图象,并引导他们总结出函数的周期、振幅等性质。
2. 合作学习:我鼓励学生进行小组合作学习,通过合作解决问题、讨论和分享思路,提高学生的学习效果和合作能力。
例如,我可以让学生分组进行三角函数的实际应用探索,每一个小组负责一个实际问题的解决方案,并在课堂上展示和交流。
3. 多媒体辅助教学:我利用多媒体技术,使用幻灯片、动画等教学资源,生动形象地展示三角函数的概念和性质。
例如,我可以使用动画演示正弦函数的图象变化过程,匡助学生更好地理解函数的变化规律。
三、教学内容的组织在三角函数教学中,我注重将教学内容组织成系统、有层次的知识结构,以匡助学生更好地理解和掌握三角函数的知识。
2024三角函数线(说课稿)范文

2024三角函数线(说课稿)范文今天我说课的内容是《三角函数线》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《三角函数线》是高中数学选修2(上)第4单元的内容。
它是在学生已经学习了三角函数基本概念和性质并掌握了一些常见的三角函数图像的基础上进行教学的,是高中数学中的重要知识点,而且三角函数线在解决实际问题中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解三角函数线的基本性质,掌握正弦曲线和余弦曲线的图像特点。
②能力目标:能够根据给定函数式画出相应的正弦曲线和余弦曲线,能够根据图像判断函数式。
③情感目标:在学习过程中培养学生对数学的兴趣和探索精神,激发学生的创新意识。
三、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;做了,理解了。
可见让学生亲自动手操作、实践是学生学习数学的最佳方式。
因此,这节课我采用的教法:导入法,示范法;学法是:观察比较法,实践探究法。
四、说教学准备在教学过程中,我准备了三种工具来辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增加教学容量,提高教学效率。
首先是三角函数线的图像展示,可以通过投影仪将相关图像呈现给学生观看。
其次是白板和彩笔,用于教师的板书和学生的互动操作。
最后是练习册和作业本,可以用来评估学生的学习效果和巩固知识点。
五、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”。
本着这个教学理念,我设计了如下教学环节。
环节一、引入新课在课堂伊始,我会让学生回忆一下已经学过的正弦函数和余弦函数的基本概念和性质。
然后,我会以一个有趣的例子引入新知。
比如,我会告诉学生我们要制作一支歌曲,而且要让这首歌曲的声音以特定的频率震动,产生特定的音调。
这时,我会问学生,你们知道如何确定这个频率吗?学生可能会回答使用正弦函数和余弦函数来描述音调变化的规律。
三角函数线的教学设计与反思

三角函数线的教学设计与反思穆乃云教材地位分析与学生现实分析:1. 教材地位的分析:三角函数是中学数学的重要内容之一,而三角函数线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出三角函数公式,求解三角函数不等式,探索三角函数的图像和性质,……可以说,三角函数线是研究三角函数的有利工具.2.学生现实分析:学习本节前,学生已经掌握任意角三角函数的定义,三角函数值在各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.高一上学期研究指数函数、对数函数图像时,已带领学生学习了几何画板的基础知识,现在他们已经具备初步的几何画板应用能力,能够制作简单的动画,开展数学实验.教学目标:1.知识与技能: 使学生掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,并能利用三角函数线解决一些简单的三角函数问题.2.过程与方法: 借助几何画板让学生经历概念的形成过程,提高学生观察、发现、类比、猜想和实验探索的能力;在课后开展研究性学习,让学生借助所学知识自己去发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学思维能力.3.情感态度与价值观:激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.教学重点与难点1.重点:三角函数线的作法及其简单应用.2.难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来.教学方法与与教学手段1.教法选择:“设置问题,探索辨析,归纳应用,延伸拓展”——探究式教学.2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展.3.教学手段:本节课充分利用多媒体和网络,学生利用几何画板软件探讨数学问题,做数学实验;借助合作交流发表各自的观点,展示自己的才能.教学过程一、创设问题情境前面我们学习了角的弧度制,角α弧度数的绝对值rl =α,其中l 是以角α作为圆心角时所对弧的长,r 是圆的半径.特别地, 当r =1时,l =α,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.设计意图:既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式.二、解释有向线段:有向线段是带有方向的线段.(1)方向:按书写顺序,前者为起点,后者为终点,由起点指向终点. 如:有向线段OM,O 为起点,M 为终点,由O 点指向M 点.(动态演示) (2) 数值:(只考虑在坐标轴上或与坐标轴平行的有向线段)绝对值等于线段的长度,若方向与坐标轴同向,取正值;与坐标轴反向,取负值.如:OM= 1, ON= -1, AP = 21设计意图:相关概念的学习分散了教学难点,使学生能够更多的围绕重点展开探索和研究.三、探索研究1.(复习提问)任意角α的正弦如何定义?角α的终边上任意一点P(除端点外)的坐标是(y x ,),它与原点的距离是r, 比值ry 叫做α的正弦. 思考:能否用几何图形表示出角α的正弦呢?学生联想角的弧度数与弧长的转化, 类比猜测:若令r=1,则y =αsin .取角α的终边与单位圆的交点为P,过点P 作x 轴的垂线,设垂足为M ,则有向线段MP=αsin =y .(学生分析的同时,教师用几何画板演示)请学生利用几何画板作出垂线段MP,并改变角的终边位置,观察终边在各个位置的情形,注意有向线段的方向和正弦值正负的对应.特别地,当角的终边在x 轴上时,有向线段MP 变成一个点,记数值为0.这条与单位圆有关的有向线段MP 叫做角α的正弦线.O M设计意图:让学生深刻理解三角函数线的概念,就应该让学生主动去探索,大胆去实践,亲身体验知识的发生和发展过程.2.思考:用哪条有向线段表示角α的余弦比较合适?并说明理由.请学生用几何画板演示说明.有向线段OM 叫做角α的余弦线.3. αtan xy =如何用有向线段表示? 讨论焦点:若令x =1, 则y =αtan =AT ,但是第二、三象限角的终边上没有横坐标为1的点,若此时取x =-1的点T ‘,tan α=-y =T ‘A ‘,有向线段的表示方法又不能统一.引导观察:当角的终边互为反向延长线时,它们的正切值有什么关系?统一认识: 方案1:在象限角的终边或其反向延长线上取x =1的点T ,则tan α=y =AT ; 方案2:借助正弦线、余弦线以及相似三角形知识得到αtan OM MP x y ===AT OAAT =. 设计意图:教师和学生都处在自由状态,可以不受框框的束缚,充分表达各自的意见,在自己积极思维的同时又能感受他人不同的思维方式,从而打破自己的封闭状态,进入更加广阔的领域.四、作法总结,变式演练正弦线,余弦线,正切线统称为三角函数线。
三角函数线(第三课时)教学设计

2.练习三角函数线的作图.
八、板书设计
1.2 三角函数线
1.三角函数的定义: ;
2.像 这种被看作带有方向的线段,叫做有向线段。
3.把这三条与单位圆有关的有向线段 ,分别叫做角 的正弦线、余弦线、正切线,统称为三角函数线.
4.例题讲解
5.学习小结
九、课后反思
通过这节课,学生了解有向线段的概念,知道如何利用与单位圆有关的有向线段,将任意角 的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来,体会三角函数线的简单应用,学生的掌握情况良好。不足之处就是学生分析讨论方面能力不足,还有待加强。
二、学情分析(说明学生学习本内容可能遇到的知识和能力困难)
学生过去习惯于用角的终边上点的坐标的“比值”来定义,但是不能表现出从锐角三角函数到任意角的三角函数的推广,而三角函数线的引入有利于引导学生从自己已有认知基础出发学习三角函数.
三、教学目标(根据课程标准要求和学生实际情况,指向学科核心内容、学生核心素养的发展进阶,预设要达到的知识、能力和态度的学习结果。可分条表述)
重点:三角函数线的正确理解.
难点:三角函数线的实际应用.
五、教学策略选择(说明主要采用的教学方法、手段和活动设计等)
任意角的三角函数可以有不同的定义方法,本节利用三角函数线定义任意角的正弦函数、余弦函数、正切函数.表明了正弦、余弦、正切函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.
(1)了解有向线段的概念.
(2)了解如何利用与单位圆有关的有向线段,将任意角 的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.
“三角函数的图象与性质”教学设计、反思与点评

一、内容和内容解析1.内容(1)正弦函数、余弦函数、正切函数的图象与性质,包括正弦函数、余弦函数、正切函数图象的画法.(2)正弦函数、余弦函数、正切函数的周期性、奇偶性、单调性和最大(小)值.2.内容解析内容的本质:三角函数的图象与性质的本质是周期现象的直观表示与代数表示,也是函数图象与性质研究的延续.蕴涵的思想和方法:三角函数是刻画周期现象的重要模型,函数的图象是周期现象的直观体现,函数的性质是周期变化规律的代数表现,所以模型思想、数形结合思想是学习三角函数的图象与性质中的重要思想方法.同时,由局部的正弦曲线得到完整的正弦曲线、由正弦曲线得到余弦曲线的过程中也蕴涵了换元转换的思想方法.知识的上、下位关系:三角函数是特殊的函数,是研究度量几何的基础,作为函数的下位知识,基本遵从函数的图象与性质的研究路径:现实背景—函数概念—图象—性质—应用.由于三角函数自身的特殊性,要充分借助单位圆及圆周运动的特性去研究三角函数的图象与性质.因此,研究正弦函数的图象与性质是根据定义借助单位圆直接画出函数的图象,再利用图象直观研究函数的性质;而研究正切函数的图象与性质是以定义为岀发点,先研究函数的部分性质,再结合定义和这些性质研究函数的图象,然后借助观察图象进一步获得函数的其他性质.育人价值:用三角函数来刻画圆周运动时角度与点的“位置”间的对应关系,这种思想方法帮助人们在观察客观事物的运动变化时,能建立起不同要素之间的联系,并用这种联系去研究、发现事物的运动变化规律,对提升人们的认识水平有重要意义和价值.因此,学习三角函数的图象与性质很有必要.一方面,帮助学生进一步熟悉函数的图象与性质的研究路径;另一方面,引导学生感受周而复始运动现象的变化规律及相应性质,培养学生的数学抽象、逻辑推理、直观想象、数学建模等素养.教学重点:正弦函数、余弦函数和正切函数的图象及主要性质,包括周期性、奇偶性、单调性、最大(小)值;研究函数图象与性质的一般思路和方法.“三角函数的图象与性质”教学设计、反思与点评陈智猛摘要:本节课教学的核心是画出正弦函数图象上的任意点T()x0,sin x0,经历观察角α与sinα的变化、教师示范、计算机演示、学生用“手工细线缠绕”法实践操作四个步骤.诱导公式是反映圆周运动中运动变化规律的代数式,它在简化函数图象的研究过程、由正弦曲线得到余弦曲线等方面都发挥着作用,使得数与形的联系得到充分体现.关键词:正弦函数;图象与性质;诱导公式;教学设计收稿日期:2020-12-29作者简介:陈智猛(1963—),男,中学高级教师,主要从事高中数学教育教学研究.··11二、目标和目标解析1.目标(1)能画出三角函数(正弦函数、余弦函数、正切函数)的图象,了解三角函数的周期性、奇偶性、单调性、最大(小)值.(2)建立三角函数定义(单位圆)与三角函数图象的联系,明确三角函数图象与性质的研究方法. 2.单元目标解析(1)研究正弦函数、余弦函数的图象与性质是先画函数图象后研究函数的性质.画正弦函数的图象有别于以往研究的函数图象,关键是画出图象上任意一点T()x0,sin x0;画余弦函数的图象主要是根据正弦函数、余弦函数的密切联系,利用图象变换得到余弦函数的图象.“五点(作图)法”是在精度要求不高、需反映曲线“波浪起伏”特点时画简图使用.(2)画正切函数的图象前要先研究正切函数的部分性质.根据函数性质知道,只需画出函数y=tan x,x∈éëöø0,π2的图象.画函数图象的关键是画出图象上的任意一点T()x0,tan x0.(3)函数的性质与图象相辅相成,不是一成不变的.本节课的学习既经历由函数图象到函数性质的研究过程,也经历由函数性质到函数图象再到函数性质的研究过程,全方位理解三角函数的图象与性质.(4)画余弦函数的图象也可以用描点的方法.本节课利用图象变换由正弦曲线得到余弦曲线,其目的是要体现正弦函数与余弦函数的密切关联,也给出得到函数图象的新方法.三、教学问题诊断分析学生之前有绘制函数图象的经验,但是利用定义、几何意义绘制函数图象是第一次,在思维习惯上存在障碍.对准确绘制岀函数的图象和正弦函数的图象及正切函数图象上任意一点的理解存在困难;在选定一个点的横坐标x0,如何从几何角度找到sin x0和tan x0的操作上难度较大.要在圆周运动中体会随着角x0的变化sin x0和tan x0的变化及意义.由于一个角的正切值是这个角的终边与单位圆交点的坐标的比值,难以直接利用正切值的几何意义对正切函数进行几何作图,在理解正切函数图象与函数定义的内在联系上有一定的难度.要注意从几何角度进行变形,化“动”为“定”.教学难点:画出正弦函数、正切函数的图象.四、教学支持条件分析(1)学生初步掌握了研究函数的路径,已利用三角函数定义和单位圆模型得到同角三角函数基本关系式与诱导公式.教学中要回顾函数的图象与性质的研究路径,并在圆周运动和三角函数定义的基础上发现三角函数的独特性,为准确绘制函数图象提供依据.(2)本节课需要投影仪、多媒体、几何画板软件、自制教具等支持条件.在图象平移、画出正弦函数图象上任意一点T()x0,tan x0时用计算机操作演示,准确、直观,让学生有更多的时间去观察、思考,体会画图方法的本质与思想内涵.同时,让学生使用自制教具经历用“手工细线缠绕”法准确绘制图象上任意一点T()x0,tan x0的过程.学生动手操作,亲身体验,提升认识,积累活动经验.五、课时教学设计1.课时教学内容第1课时:正弦函数、余弦函数的图象.(1)通过正弦函数定义得到正弦函数的图象,会用五点(作图)法作出简图.(2)通过图象变换得到余弦函数的图象.2.课时教学目标(1)了解三角函数周而复始的特性,简化函数图象与性质的研究过程.(2)能利用正弦函数定义确定正弦函数值sin x0,能画出正弦函数图象上任意一点T()x0,sin x0,能画出正弦函数的图象.(3)能利用图象变换画出余弦函数的图象.(4)了解运用五点(作图)法绘制函数y=sin x,x∈[]0,2π和y=cos x,x∈[]-π,π的简图.3.教学重点与难点教学重点:画出正弦函数、余弦函数的图象.教学难点:画出正弦函数的图象上的任意一点T()x0,sin x0,利用图象变换画出余弦函数的图象.··124.教学过程设计(1)回顾单元,凸显主题.引导语:我们学习了三角函数的定义,类比已经学过的基本初等函数,接下来我们要学习什么内容?师生活动:教师引导学生回忆幂函数、指数函数和对数函数的学习过程,明确研究函数图象与性质的路径:现实背景—函数概念—图象—性质—运用.学生类比并结合已经学过的三角函数的定义,明确本节课的学习主线:从定义出发,得到函数图象.【设计意图】作为函数的下位概念,通过类比已经学过的函数回忆研究函数的一般路径,明确本节课的重点内容是研究正弦函数y =sin x ,x ∈R 的图象,也为后续由图象研究函数的性质做准备.(2)周而复始,简化过程.问题1:从图象直观上看,点B 每旋转一周就回到原来的位置,体现了三角函数周而复始的特性.从函数角度来看,自变量每增加或减少2π个单位长度,函数值将重复出现.你能用公式表示这一特性吗?这个特性对我们研究正弦函数的图象有什么帮助?师生活动:学生观察点B 在单位圆上的旋转变化,体会三角函数值周而复始的变化情况;并运用诱导公式sin ()α±2π=sin α表示这一特性;简化函数y =sin x ,x ∈R 的图象的研究过程,从研究函数y =sin x ,x ∈[]0,2π的图象开始.【设计意图】让学生回忆三角函数的定义,既体现三角函数定义的重要性,又为画点原理的认知提供铺垫.突出三角函数周而复始的特性,目的是让学生明确对于具有周而复始特性(周期性)的函数的研究,可以从研究函数在一个周期内的图象与性质开始,简化研究过程.(3)利用定义,画任意点.问题2:我们知道,图象的基本要素是点,利用正弦函数的定义,在[]0,2π上任取一值x 0,能否确定函数值sin x 0,画出点T ()x 0,sin x 0?师生活动:学生回忆正弦函数的定义,在单位圆中,观察随着角α的变化函数值sin α的变化情况,教师提醒学生函数值sin α就是角α的终边与单位圆的交点B 的纵坐标.在x 轴上任取一值x 0,使x 0∈[]0,2π,在单位圆中,作出大小为x 0的角(始边在x 轴的正半轴)的终边,其终边与单位圆交点的纵坐标就是sin x 0.教师示范:在x 轴上任取一值x 0,使x 0∈[]0,2π,用“手工细线缠绕”的方法找到弧长为x 0的弧所对的圆心角x 0,确定函数值sin x 0,画出T ()x 0,sin x 0.学生动手操作:在[]0,2π上任取一值x 0,用“手工细线缠绕”的方法找到弧长为x 0的弧所对的圆心角x 0,确定函数值sin x 0,画出T ()x 0,sin x 0,通过实践体会画任意点T ()x 0,sin x 0的原理.【设计意图】从图象到点、从点到点坐标的确定,利用定义实现画出正弦函数图象上任意一点,从而得到函数的图象,体现点与图象的辩证统一.也说明了正弦函数的定义在函数图象的构造和认识过程中不可替代的作用.合作交流、实践操作是画点原理物化的重要方法,通过亲手操作、具身体验,熟悉并理解画点方法,为接下来的取特殊值、画特殊点提供支持.画出任意点T ()x 0,sin x 0,经历教师示范、学生实践操作,让学生在体验的过程中思考和理解,从而突破教学难点.(4)定若干点,描点作图.问题3:我们已掌握了画点原理,现在在[]0,2π上取若干值进行描点,画出函数y =sin x ,x ∈[]0,2π的图象,你打算描出哪些点?师生活动:取值0,π2,π,32π,2π,描出五个点.追问:仅描出五个点,能体现函数y =sin x ,x ∈[]0,2π的图象的形状吗?要让正弦函数的图象更精确,我们该如何做?师生活动:取更多的点,显然在éëùû0,π2上还要取其他值,不妨取特殊的π6和π3,其他区间也类似取特殊值,相当于把区间[]0,2π十二等分,对应的角所在的终边与单位圆的交点也把整个圆周十二等分,描画出13个点.学生实践活动:根据画点T ()x 0,sin x 0的方法,得到自变量取这些值时对应的函数图象上的13个点.利用信息技术取足够多的值,画出足够多的点,形成函数y =sin x ,x ∈[]0,2π的图象.【设计意图】取图象上足够多的特殊点有助于直观把握正弦函数图象的形状,并为利用五点法作简图提供基础.同时,让学生形成两点意识:确定函数图象的形状时往往要抓住图象上的关键点;足够多的特殊点能更好地反映函数图象的形状,体现十二等分[]0,2π画图象的必要性.明确信息技术代替人进行重··13复工作是在掌握画点原理的基础上进行辅助操作;让学生明白所画的点越多图象越精确.(5)补全整图,五点简图.问题4:可以得到完整的正弦函数y=sin x,x∈R 的图象吗?师生活动:引导学生通过直观想象得到函数y= sin x,x∈R的图象,再从逻辑推理的角度说明其正确性.通过PPT动画实现y=sin x,x∈R的图象上任意一点的平移,启发学生通过所有点的平移思考整个图象的平移,说明函数y=sin x,x∈[]2π,4π的图象与函数y=sin x,x∈[]0,2π的图象的形状完全一致,用公式sin()2kπ+x=sin x可以说明.将函数y=sin x,x∈[]0,2π的图象不断平移(每次移动2π个单位长度),得到函数y=sin x,x∈R的图象.追问1:正弦函数y=sin x,x∈R的图象是一条曲线,我们称为正弦曲线,该曲线有何特点?师生活动:观察图象,发现图象的形状是“波浪起伏”的连续光滑曲线,有波峰和波谷.追问2:我们要画正弦曲线,在精度要求不高时,有什么简便画法?师生活动:以画函数y=sin x,x∈[]0,2π的图象为例,找到波峰和波谷及图象与x轴的交点等五个关键点()0,0,æèöøπ2,1,()π,0,æèöø3π2,-1,()2π,0,基本上可以呈现出“波浪起伏”的特点,这种作图法称为“五点(作图)法”.【设计意图】利用三角函数周而复始的特性和诱导公式,分别从几何与代数两个角度理解函数y=sin x,x∈R 的图象的形状是“波浪起伏”的连续光滑曲线.从图象上的点的平移到图象的平移,借助诱导公式说明函数y=sin x,x∈[]2π,4π的图象与函数y=sin x,x∈[]0,2π的图象形状完全一致.同时,表明函数图象可以通过平移变换得到,为后面画出余弦函数的图象提供铺垫.从精确图象到五点简图,体现认识事物的过程与特点——全局与局部、抓主要矛盾.正弦函数图象的形状是“波浪起伏”的连续光滑曲线,抓住五个关键点足以体现.这也是在精确度要求不高时,可以用五点(作图)法画出正弦函数简图的依据.(6)图象变换,余弦曲线.问题5:下面我们要研究余弦函数y=cos x,x∈R 的图象.由三角函数的定义知,正弦函数与余弦函数是一对密切关联的函数,我们可以借助这种关联画出余弦函数的图象吗?师生活动:教师引导学生从定义出发理解,用诱导公式体现出正弦函数与余弦函数的密切关联;引导学生思考这种关联从几何角度理解呈现出什么现象.从图形变换(几何角度)角度,通过平移得到余弦函数的图象.根据诱导公式cos x=sinæèöøπ2+x,知函数y= cos x,x∈R的图象即为函数y=sinæèöøπ2+x,x∈R的图象,只需将函数y=sin x,x∈R的图象向左平移π2个单位长度,即可以得到函数y=sinæèöøπ2+x,x∈R的图象,即函数y=cos x,x∈R的图象.余弦函数的图象叫做余弦曲线,余弦曲线通过平移可以与正弦曲线完全重合,其曲线的形状也是“波浪起伏”的连续光滑曲线.可以用五点(作图)法画出余弦函数的简图.例如,画函数y=cos x,x∈[]-π,π的简图时,找到的五个关键点是()-π,-1,æèöø-π2,0,()0,1,æèöøπ2,0,()π,-1.【设计意图】让学生体会诱导公式是图象变换的代数依据.通过图象变换得到余弦曲线,更好地体现余弦函数与正弦函数的密切关联.(7)巧借诱导,简化作图.问题6:如何画出函数y=cos x,x∈[]0,2π的简图?师生活动:回顾图象构造和认识过程,发现函数y= -cos x,x∈[]0,2π的图象与函数y=cos x,x∈[]0,2π的图象关于x轴对称,曲线形状也是“波浪起伏”的连续光滑曲线,同样可以找到五个关键点用“五点(作图)法”画简图.先用“五点(作图)法”画出函数y=cos x,x∈[]0,2π的简图,再作其关于x轴对称的图象.引导学生关注诱导公式,由-cos x=cos()π+x知,画出函数y=-cos x,x∈R的图象即画出函数y= cos()π+x,x∈R的图象,只需将函数y=cos x,x∈R 的图象向左平移π个单位长度即可.追问1:利用诱导公式-cos x=cos()π-x,是否可以由函数y=cos x,x∈R的图象画出函数y=-cos x,x∈R 的图象?追问2:利用诱导公式实现图象变换来作图,类比上述问题,你能提出新的问题吗?【设计意图】诱导公式是三角函数的图象和性质的代数表现,诱导公式cos x=sinæèöøπ2-x,sin x=sin()π-x,··14sin x=-sin()2π-x,sin x=-sin()π+x等都能在正弦曲线和余弦曲线的作图过程中发挥作用.例如,sin x= -sin()2π-x,若画函数y=sin x,x∈[]π,2π的图象,即画函数y=-sin()2π-x,x∈[]π,2π的图象,只需作出函数y=sin x,x∈[]0,π的图象关于点()π,0中心对称后的图象即可.学生不一定能建立所有诱导公式与图象变换之间的联系,更不易准确通过诱导公式描述图象变换.教师引导学生多从诱导公式的角度出发认识正弦函数和余弦函数的图象,并形成意识,有助于培养学生的数学抽象和直观想象素养.(8)回顾所学,小结提升.问题7:我们怎样得到正弦函数的图象?经历怎样的过程?怎样得到余弦函数的图象?利用了什么公式?下节课,我们将学习三角函数的什么内容?师生活动:引导学生从基本技能和基本活动经验角度总结本节课的学习收获,引导学生将本节课的内容嵌入整个三角函数的知识体系中.【设计意图】通过课堂小结让学生明确本节课内容的重点与难点,明确本节课在知识、方法、能力等方面的目标,体现合作交流、主动学习.回到主题单元教学,让学生明确下节课内容的重点——函数的性质,确定研究性质的两条路径,即通过图象直观得到性质和将定义结合单位圆来推导性质.六、教学反思教材是最重要、最准确的教学资源,理解教材的意图,根据学生的情况恰当设计是教学成功的基础.新教材中正弦函数和余弦函数的图象内容不同以往,没有采用三角函数线,而是紧扣函数研究路径和单位圆,利用正弦函数的定义认识正弦函数的图象. 1.思效本节课以学生为中心,明确教材意图,把握教学重点,通过有效活动突破教学难点,培养学生的数学思想和数学能力.(1)从学生认知出发,巩固基础知识.学习效果是教学最关注的问题,从学生认知出发,准确把握本节课的重点,分解教学难点,通过高效教学活动巩固基础知识.知识回顾时,将正弦函数的定义放在突出位置,特别是对自变量α和函数值sinα(终边与单位圆交点的纵坐标)的意义理解,突出教学重点.明确自变量x既是图象上一点的横坐标,也是单位圆中弧长为x的弧所对的圆心角,关键是如何通过x,利用正弦函数的定义确定函数值sin x,突破教学难点.同样,通过定义明确正弦函数和余弦函数是一对密切关联的函数,可以利用诱导公式和图象平移得到余弦函数的图象,这样就将本节课的教学重点和教学难点牢牢集中在利用定义得到函数图象这条教学主线上.(2)把握教材逻辑,培养基本思想.认识数学问题,我们较熟悉的路径是从几何直观到逻辑推理.这在教材中有多处体现:①类比已有研究方法,得到先画出图象后研究性质;②体现周而复始的特性,对单位圆上点的运动变化进行几何观察,再用sin()x±2π=sin x进行代数表示;③由函数y= sin x,x∈[]0,2π的图象到函数y=sin x,x∈R的图象,先让学生直观想象,再利用诱导公式说明. 2.思得本节课采用多种教学方法,重视问题链的设置,通过具体实践活动,提升学生的画图技能,形成研究函数图象的活动经验.(1)重视实践活动,提升基本技能.活动即学习,合作交流、实践操作能够有效提升学生的基本技能.画点技能的形成一般要经历了解、体会、理解、掌握等过程.教学过程中需要设置不同的实践活动:PPT动画了解、教师实践展示、合作动手操作、多次综合运用.这四个环节让原理清晰化,让技能熟练化,让学生大胆尝试,并有时间去具体实践.(2)设置问题情境,形成基本活动经验.问题是数学的心脏,也是教学最基本的起点.问题明确化、思维清晰化.针对学生思维发生点和思维障碍点设问,让学生懂得思考什么.例如,在x轴上任取值x0∈[]0,2π,能否从几何角度表示出函数值sin x0学生聚焦如何从几何角度表示sin x0,自然联想到定义和单位圆.问题层次化、思维深度化.有层次的问题链,帮助学生从几何直观、代数推理等多个方面认识数学问题.例如,描点画出函数y=sin x,x∈[]0,2π的图象,你打算描出哪些点?这些点有何特殊性?这些点够吗?为了图象形状的准确,还需要增加点吗?增加哪些点?为什么?学生通过问题链,构建了点与函数图象之间的联系,为五点(作图)法打下了基础.··153.思改以“思”促“改”,教学改进、提升自我永远在路上.(1)信息技术与手持技术融入教学,生动形象,交互反馈,结构紧凑,高容、高效,带动教学方式的改变.本节课的教学离不开信息技术的支持,画点原理的形成、正弦函数图象的构造与认识、图象的平移变换等都离不开PPT动画、视频动画的直观呈现.数学实验和动手实践相结合,学生借助相应工具参与作图原理的发现与探究,有助于提升学生几何作图的认知深度,培养他们的创新能力.(2)“诱导公式能简化作图过程”这一内容的教学,虽然经历了简化研究区间、平移得到余弦函数的图象,以及函数y=-cos x,x∈[]0,2π的图象的研究等过程,但是还应该设计出有层次、有目标、有深度的问题,引导学生去分析和思考诱导公式这个代数关系式与几何图形的联系.总之,以学生为本,重视教材,挖掘教材意图,教学精准、高效.数学知识通过教材设计呈现,数学思维通过教材逻辑体现,数学活动通过教材意图设置.七、点评数学在形成人的理性思维、科学精神和促进个人智力发展的过程中发挥着不可替代的作用.《普通高中数学课程标准(2017年版2020年修订)》(以下简称《标准》)指出,引导学生会用数学眼光观察世界,会用数学思维思考世界,会用数学语言表达世界.具体到一节课的教学,我们要怎么做呢?《标准》的基本理念中强调要凸显数学的内在逻辑和思想方法;要创设教学情境,启发思考,把握本质;要培育学生的科学精神和创新意识,关注核心素养的形成和发展.因此,理解数学、教学、学生,再加上技术,就是我们思考“三角函数的图象与性质”这节课的基点.本节课是“三角函数的图象与性质”这个单元的第一课时,在单元教学的视角下,本节课承上启下,既延续以往研究函数的图象与性质的方法路径,又有新的创新,丰富了函数的图象与性质的研究方法,沟通了函数的图象与性质的内在关联,使“数”与“形”的融合再次得到体现.1.理解数学,尊重教材正弦函数和余弦函数的图象这节课,初看很不起眼,因为我们已经经历了一次函数、二次函数、指数函数、对数函数和幂函数的图象研究,无非描出几个特殊点(描点法作图),然后用光滑的曲线连接即可.本节课还是这样吗?这就需要我们去理解三角函数的独特性.首先,根据单位圆上任意一点在圆周上旋转一周就回到原来的位置,公式sin()x±2π=sin x,cos()x±2π= cos x表示自变量每增加(减少)2π,正弦函数值和余弦函数值将重复出现(从几何特点到代数关系),利用这个特性,将正弦函数的图象研究范围由R简化到[]0,2π.这是在前面的学习中没有经历过的.其次,利用单位圆定义三角函数赋予三角函数几何属性.因此,三角函数的图象的研究有别于以往的函数图象的研究,指数函数、对数函数和幂函数的图象的描点都是代数运算的结果,而三角函数的图象的描点是几何描点,即利用三角函数的定义借助单位圆作出函数y=sin x,x∈[]0,2π的图象上的任意一点T()x0,sin x0.准确描绘出图象上的“任意一点”,这还是前面的学习所没有经历的.再次,观察发现,正弦函数和余弦函数的图象是一条“波浪起伏”的连续光滑曲线,通过抓住关键点把握图象的形状,这也是前面的学习中所没有经历的.最后,函数y=cos x,x∈R的图象是根据诱导公式cos x=sinæèöøx+π2,通过将正弦函数y=sin x,x∈R的图象向左平移π2个单位长度得到的.这在前面的学习中较少经历.历数种种,在理解数学和教材编写意图的基础上,我们才有可能恰当地设计问题,启发、引导学生思考并解决问题.2.理解教学,突破难点对于画出函数的图象,学生的学习基础(画指数函数、对数函数和幂函数的图象)是描点法.那么,画正弦函数y=sin x,x∈[]0,2π的图象的教学起点在哪里?借助单位圆,直接要求利用三角函数的定义作出正弦函数y=sin x,x∈[]0,2π的图象上的任意一点T()x0,sin x0是否比较突兀?学生是否会全无头绪?该难点如何突破?这些问题都是展开教学时需要思考的.首先,在单位圆上的任意一点在圆周上旋转一周回到原来的位置的运动变化过程中,要有意识地引导··16。
《三角函数的图像和性质》教学设计与反思

《三角函数的图像和性质》教学设计与反
思
一、教学设计
1. 教学目标
- 理解正弦函数、余弦函数和正切函数的图像和性质
- 掌握三角函数的周期性和对称性
- 能够利用图像和性质解决三角函数相关问题
2. 教学步骤
步骤一:引入概念
- 通过示意图介绍正弦函数、余弦函数和正切函数的定义
- 强调函数的周期性和对称性
步骤二:讲解图像和性质
- 展示正弦函数、余弦函数和正切函数的图像
- 分析图像特征,如振幅、周期、对称轴等
- 阐述三角函数的性质,如奇偶性、界值等
步骤三:解决问题
- 提供一些典型问题,引导学生运用图像和性质求解
- 示范解题方法,包括利用性质、缩放变换等
3. 教学资源
- 投影仪和电脑
- 教学PPT
- 相关练题和答案
4. 教学评估
- 设计小组练题,测试学生对三角函数图像和性质的理解程度
- 实时观察学生解题过程,评估其解题方法和思维能力
- 结合学生回答问题和总结教学效果
二、教学反思
本次教学设计在引入概念、讲解图像和性质以及解决问题等环
节上都能够使学生参与,从而提高学生的主动研究能力。
通过图像
的展示和性质的阐述,学生可以直观地理解三角函数的规律和特点。
而解决问题的训练则有助于学生运用所学知识解决实际问题。
值得改进的地方是在评估方面,可以加入更多的互动环节和个别评价,以更准确地评估学生的掌握情况。
此外,教学资源可以进一步扩充,包括实物展示和多媒体辅助工具,以提升教学效果。
总体而言,本次教学设计能够满足教学目标并促进学生的参与和思维能力培养,但仍需在实施过程中加以优化和改进。
三角函数教学反思

三角函数教学反思引言概述:三角函数是数学中重要的一个分支,它在几何学、物理学、工程学等领域中都有广泛的应用。
然而,在教学过程中,我们往往会遇到一些问题和挑战。
本文将对三角函数教学进行反思,探讨如何改进教学方法和策略,以提高学生的学习效果和兴趣。
一、教学目标的明确性1.1 确定学生的学习目标在三角函数教学中,我们应该明确学生的学习目标,以便有针对性地进行教学。
例如,我们可以设定学生需要掌握的基本概念、公式和解题方法等。
通过明确学习目标,学生能够更好地理解三角函数的重要性和应用领域。
1.2 强调数学与实际应用的联系三角函数的应用广泛,但有时学生可能难以理解其与实际问题的联系。
我们可以通过引入实际案例和应用场景,让学生意识到三角函数在解决实际问题中的重要性。
例如,通过讲解三角函数在建造设计、天文学和地理测量中的应用,激发学生的学习兴趣。
1.3 设计具体的评估方式为了确保学生掌握了三角函数的知识和技能,我们需要设计具体的评估方式。
除了传统的测试和考试,我们还可以采用项目作业、小组讨论和实验等方式,让学生主动参预学习和应用三角函数的知识。
二、教学方法的多样性2.1 创设情境,引起学生兴趣在三角函数教学中,我们可以通过创设情境来引起学生的兴趣。
例如,可以设计一些有趣的问题和挑战,让学生主动思量和解决。
这样不仅能够增加学生的参预度,还能够提高他们的学习动力和效果。
2.2 引导学生自主探索三角函数的学习需要一定的自主探索能力。
我们可以设计一些探索性的学习任务,让学生通过实际操作和观察来发现三角函数的性质和规律。
通过自主探索,学生能够更深入地理解三角函数的概念和应用。
2.3 利用技术手段辅助教学现代技术手段为三角函数教学提供了更多的可能性。
我们可以利用计算机软件、数学建模工具和在线资源等,为学生提供更直观、生动的学习体验。
例如,通过使用数学建模软件,学生可以摹拟和观察三角函数的变化规律,进一步加深对其的理解。
三、教学内容的实际性3.1 强调实际问题的解决在三角函数教学中,我们应该强调实际问题的解决,让学生明白数学的应用价值。
三角函数教学反思

三角函数教学反思【引言】三角函数是高中数学中的重要内容,它是解决各种几何问题和物理问题的基础。
本文将对三角函数教学进行反思,分析当前教学中存在的问题,并提出改进的方案。
【问题分析】1. 教学内容过于抽象:传统的三角函数教学注重公式的推导和证明,给学生造成为了很大的困扰。
学生难以理解三角函数的概念和应用,导致学习兴趣不高,效果不佳。
2. 缺乏实际应用:三角函数的应用非常广泛,但教学中缺乏具体的实际应用场景,学生很难将抽象的概念与实际问题相结合,限制了他们的学习动力和理解能力。
3. 缺乏互动与实践:传统的三角函数教学以教师为中心,学生被动接受知识。
缺乏互动和实践环节,学生的参预度不高,难以主动探索和应用所学知识。
【改进方案】1. 引入具体案例:在教学中引入具体的实际案例,如测量高楼建造物高度、计算太阳光的入射角等,让学生亲自参预解决问题的过程。
通过实际案例的引入,激发学生的学习兴趣,提高他们对三角函数的理解和应用能力。
2. 创设情境:通过创设情境,将抽象的三角函数概念与学生熟悉的实际场景相结合。
例如,设计一个游戏,让学生在游戏中应用三角函数来解决问题,增加学习的趣味性和参预度。
3. 探索式学习:引导学生主动探索和发现知识,通过小组合作、实验等方式,让学生自主探索三角函数的性质和应用规律。
教师可以充当引导者的角色,促进学生之间的互动和合作,培养学生的问题解决能力和创新思维。
4. 多媒体辅助教学:利用多媒体技术,结合动画、摹拟实验等形式,生动展示三角函数的概念和应用。
通过图形、动画的展示,匡助学生更好地理解三角函数的几何意义和物理意义,提高学习效果。
5. 个性化教学:根据学生的不同程度和兴趣,进行个性化的教学设计和辅导。
对于学习难点的学生,可以提供更多的辅导和练习机会;对于学习进度较快的学生,可以提供更深入的拓展内容,激发他们的学习兴趣。
【改进效果预期】1. 提高学生的学习兴趣:通过引入具体案例和创设情境,激发学生的学习兴趣,使他们更主动地参预学习过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数线的教学设计与反思
穆乃云
教材地位分析与学生现实分析:
1. 教材地位的分析:三角函数是中学数学的重要内容之一,而三角函数
线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.
借助三角函数线可以推出三角函数公式,求解三角函数不等式,探索三角函数的
图像和性质,……可以说,三角函数线是研究三角函数的有利工具.
2.学生现实分析:学习本节前,学生已经掌握任意角三角函数的定义,三角函数
值在各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.高一
上学期研究指数函数、对数函数图像时,已带领学生学习了几何画板的基础知识,
现在他们已经具备初步的几何画板应用能力,能够制作简单的动画,开展数学实
验.
教学目标:
1.知识与技能: 使学生掌握如何利用单位圆中的有向线段分别表示任意角
的正弦、余弦、正切函数值,并能利用三角函数线解决一些简单的三角函数问题.
2.过程与方法: 借助几何画板让学生经历概念的形成过程,提高学生观察、
发现、类比、猜想和实验探索的能力;在课后开展研究性学习,让学生借助所学
知识自己去发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述
等基本数学思维能力.
3.情感态度与价值观:激发学生对数学研究的热情,培养学生勇于发现、
勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探
究、教学相长的教学情境.
教学重点与难点
1.重点:三角函数线的作法及其简单应用.
2.难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函
数值分别用它们的几何形式表示出来.
教学方法与与教学手段
1.教法选择:“设置问题,探索辨析,归纳应用,延伸拓展”——探究式
教学.
2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成
过程;猜想、求证,达到知识的延展.
3.教学手段:本节课充分利用多媒体和网络,学生利用几何画板软件探讨
数学问题,做数学实验; 借助合作交流发表各自的观点,展示自己的才能.
教学过程
一、 创设问题情境
前面我们学习了角的弧度制,角α弧度数的绝对值r
l =α,其中l 是以角α
作为圆心角时所对弧的长,r 是圆的半径.特别地, 当r =1时,l =α,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.
设计意图:既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式.
二、解释有向线段:有向线段是带有方向的线段.
(1)方向:按书写顺序,前者为起点,后者为终点,由起点指向终点. 如:有向线段OM,O 为起点,M 为终点,由O 点指向M 点.
(动态演示) (2) 数值:(只考虑在坐标轴上或与坐标轴平行的有向线段)
绝对值等于线段的长度,若方向与坐标轴同向,取正值;与坐标轴反向,取负值.如:
OM= 1,
ON= -1,
AP = 2
1 设计意图:相关概念的学习分散了教学难点,使学生能够更多的围绕重点展开探索和研究.
三、探索研究
1.(复习提问)任意角α的正弦如何定义?
角α的终边上任意一点P(除端点外)的坐标是(y x ,),它与原点的距离是r, 比值r
y 叫做α的正弦. 思考:能否用几何图形表示出角α的正弦呢?
学生联想角的弧度数与弧长的转化, 类比猜测:若令r=1,则y =αs i n
.取角α的终边与单位圆的交点为P,过点P 作x 轴的垂线,设垂足为M ,则有向线段MP=αsin =y .(学生分析的同时,教师用几何画板演示)
请学生利用几何画板作出垂线段MP,并改变角的终边位置,观察终边在各个位置的情形,注意有向线段的方向和正弦值正负的对应.特别地,当角的终边在x 轴上时,有向线段MP 变成一个点,记数值为0.
这条与单位圆有关的有向线段MP 叫做角α的正弦线.
设计意图:让学生深刻理解三角函数线的概念,就应该让学生主动去探索,大胆去实践,亲身体验知识的发生和发展过程.
2.思考:用哪条有向线段表示角α的余弦比较合适?并说明理由.
O M
请学生用几何画板演示说明.
有向线段OM 叫做角α的余弦线.
3. αtan x
y =如何用有向线段表示? 讨论焦点:
若令x =1, 则y =αtan =AT ,但是第二、三象限角的终边上没
有横坐标为1的点,若此时取x =-1的点T ‘,tan α=-y =T ‘A ‘,有向线段的表示方法又不能统一.
引导观察:
当角的终边互为反向延长线时,它们的正切值有什么关系?
统一认识: 方案1:在象限角的终边或其反向延长线上取x =1的点T ,则tan α=y =AT ; 方案2:借助正弦线、余弦线以及相似三角形知识得到
αt a n OM MP x y ===AT OA
AT =. 设计意图:教师和学生都处在自由状态,可以不受框框的束缚,充分表达各自的意见,在自己积极思维的同时又能感受他人不同的思维方式,从而打破自己的封闭状态,进入更加广阔的领域.
四、作法总结,变式演练
正弦线,余弦线,正切线统称为三角函数线。
请大家总结这三种三角函数线的作法,并用几何画板演示(一学生描述,同时用电脑演示):
第一步:作出角α的终边,与单位圆交于点P ;
第二步:过点P 作x 轴的垂线,设垂足为M ,得正弦线MP 、余弦线OM ; 第三步:过点A(1,0)作单位圆的切线,它与角α的终边或其反向延长线的交点设为T ,得角α的正切线AT.
设计意图:及时归纳总结,加深知识的理解和记忆.
特别注意:三角函数线是有向线段,在用字母表示这些线段时,要注意它们的方向,分清起点和终点,书写顺序不能颠倒.余弦线以原点为起点,正弦线和正切线以此线段与坐标轴的公共点为起点,其中点A 为定点(1,0).
练习:利用几何画板画出下列各角的正弦线、余弦线、正切线:
(1)65π; (2)6
13π-. 学生先做,然后投影展示一学生的作品,并强调三角函数线的位置和方向. 例1 利用几何画板画出适合下列条件的角α的终边:
(1)21sin =α; (2)21cos -=α;。