三角函数线教案2

合集下载

单位圆与三角函数线教案

单位圆与三角函数线教案

单位圆与三角函数线教案教案:单位圆与三角函数线一、教学目标:1.理解单位圆的定义及性质;2.掌握三角函数线的定义;3.能够在单位圆上确定三角函数的取值范围;4.能够根据给定的角度求解三角函数的值。

二、教学重点:1.单位圆的性质;2.三角函数线的定义。

三、教学难点:1.单位圆上角度和三角函数之间的关系;2.在单位圆上确定三角函数的取值范围。

四、教学过程:Step 1:引入1.引导学生回顾三角函数的定义,并简要介绍单位圆的概念。

3.学生回答后,引导他们思考如何用单位圆解释三角函数。

Step 2:单位圆的定义及性质1.展示单位圆的图像,并介绍单位圆的定义。

2.提出问题:“单位圆的半径是多少?圆心在哪里?为什么称之为‘单位’圆?”3.引导学生发现单位圆的半径为1,并解释为什么称之为“单位”圆。

4.提问:“单位圆上一个点的坐标有什么特点?”5.学生回答后,引导他们发现单位圆上的点的坐标可以用三角函数表示。

6. 总结:单位圆上点的坐标(x,y)可以表示为(x,y)=(cosθ,sinθ),其中θ为与正半轴的夹角。

7.展示并讲解单位圆上一些特殊角度的坐标及对应的三角函数值。

Step 3:三角函数线的定义1.提醒学生在单位圆上的角度是从正半轴逆时针旋转的,而实际应用中角度是从正半轴顺时针旋转的。

3.解释正弦函数、余弦函数和正切函数的定义及性质。

4.强调正弦函数、余弦函数和正切函数的周期性。

Step 4:确定三角函数的取值范围1.提醒学生在单位圆上,正弦函数和余弦函数的取值范围是[-1,1]。

2.提问:“在什么角度上,正弦函数和余弦函数的值等于1、等于0、等于-1?”3.学生回答后,引导他们在单位圆上确定三角函数的取值范围,并总结出规律。

4.引导学生发现正切函数的取值范围是整个实数轴,不存在界限。

Step 5:求解三角函数的值1.提醒学生在单位圆上,正弦函数和余弦函数的值由点的y坐标决定,正切函数的值由点的y坐标除以点的x坐标决定。

2019 2020高中数学第1章三角函数121任意角的三角函数第2课时三角函数线及其应用教案新人教A版

2019 2020高中数学第1章三角函数121任意角的三角函数第2课时三角函数线及其应用教案新人教A版

三角函数线及其应用课时第21.有向线段(1)定义:带有方向的线段.OMMP. (2)表示:用大写字母表示,如有向线段,2.三角函数线PPPMxM. ,过垂直于作轴,垂足为作图:①(1)α的终边与单位圆交于AxT. α0)作的终边或其反向延长线于点轴的垂线,交②过(1,(2)图示:MPOMAT,分别叫做角α、结论:有向线段(3)的正弦线、余弦线、正切线,统称为三、角函数线.思考:当角的终边落在坐标轴上时,正弦线、余弦线、正切线变得怎样?xy轴上当角的终边落在轴上时,正弦线、正切线分别变成了一个点;终边落在提示:时,余弦线变成了一个点,正切线不存在.π8π1.角和角有相同的( )77A.正弦线 B.余弦线.不能确定D .正切线C.π8πC [角和角的终边互为反向线,所以正切线相同.]772.如图,在单位圆中角α的正弦线、正切线完全正确的是( )OMAT′.正弦线′,正切线 A OMAT′.正弦线′,正切线 B MPAT,正切线C.正弦线MPAT′,正切线′D.正弦线MPAT,C,正切线为正确.C [α为第三象限角,故正弦线为]3.若角α的余弦线长度为0,则它的正弦线的长度为.y轴上,正弦线与单位圆的交点为(0,0的余弦线长度为时,α的终边落在1 [若角α1)或(0,-1),所以正弦线长度为1.]】作出下列各角的正弦线、余弦线、正切线.【例1ππ10π17.(3)-;(2);(1)364 [解]如图.MPOMAT为正切线.其中为正弦线,为余弦线,三角函数线的画法x轴的垂(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作线,得到垂足,从而得正弦线和余弦线.xA)的终边(α作正切线时,应从(1,0)点引为第一或第四象限角轴的垂线,交α(2)ATT.于点,即可得到正切线或α终边的反向延长线(α为第二或第三象限角)π5 1.作出-的正弦线、余弦线和正切线.8 ]如图:[解π5????MP-=,sin??8π5????OM-,cos=??8π5????AT-. =tan??8) >cos β,那么下列结论成立的是( 【例2】 (1)已知cos αβsin α>sin .若Aα、β是第一象限角,则α>tan β是第二象限角,则B.若α、βtanα>sin βC.若α、β是第三象限角,则sin>tan β.若α、β是第四象限角,则tan αDππ4π2π4π22π4 的大小.,tan和tan和(2)利用三角函数线比较sin和sin,coscos553533在规定象限内画观察正弦线或正、β的余弦线出α→思路点拨:(1) 切线判断大小满足cos α>cos β2π4π观察图形,(2)作出和的正弦线、余弦线和正切线→比较大小35 错误;A,故βsin <αsin 时,βcos >αcos 可知,(1)由图[ D)1(图(1)由图(2)可知,cos α>cos β时,tan α<tan β,故B错误;图(2)由图(3)可知,cos α>cos β时,sin α<sin β,C错误;图(3)由图(4)可知,cos α>cos β时,tan α>tan β,D正确.]图(4)2π2π2π4π4πMPOMATMPOM′,=′,tan=,=′cos==解:如图,(2)sin,cos,333554πAT′.=tan 5.MPMP′|,符号皆正,| 显然|′|>2π4π∴sin>sin;352π4πOMOM′|,符号皆负,∴cos>cos;|<| |352π4πATAT′|,符号皆负,∴tan<tan|>||.35(1)利用三角函数线比较大小的步骤:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.(2)利用三角函数线比较函数值大小的关键及注意点:①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向.2π2π2πabc=tan,则( =cos, 2.已知sin=,)777abcacb<..<B<<A babcac<.D<.C<<D[由如图的三角函数线知:2π2ππATMP>,因为=<,784MPOM,>所以.2π2π2π所以cos<sin<tan,777bac.]所以<<πππ3π3.设<α<,试比较角α的正弦线、余弦线和正切线的长度.如果<α<,4224上述长度关系又如何?ππMPOMAT,,余弦线为,正切线为α<时,角α的正弦线为[解] 如图所示,当<42π3πATMPOMMPOM′,′时,角α显然在长度上,的正弦线为>′,余弦线为><;当<α24ATATMPOM′.′>′>′正切线为′,显然在长度上,]探究问题[aaa (|α≥|≤1)的不等式?,sin α≤1.利用三角函数线如何解答形如sinaaa(|,sin α≤|≤1)的不等式:提示:对形如sin α≥图①yOMaay轴的垂线交单位圆于两作),过点(0画出如图①所示的单位圆;在,轴上截取=PPOPOPOPOP′上的角的集合;图中阴影部分即为和点和和′;写出终边在′,并作射线aa的角α的范围.α的角α的范围,其余部分即为满足不等式sin ≥sin 满足不等式α≤aaa|≤1)的不等式?≤α(|.利用三角函数线如何解答形如2cos α≥,cosaaa|≤1)的不等式:≤cos α对形如提示:cos ≥,α(|图②.xaaxOM轴的垂线交单位圆于两,0)=,过点画出如图②所示的单位圆;在(轴上截取作OPOPPPOPOP′上的角的集合;图中阴影部分即为满′,作射线′;写出终边在点和和和aa cos α的角α≥足不等式cos α≤的范围.的角α的范围,其余部分即为满足不等式3】利用三角函数线确定满足下列条件的角α的取值范围.【例132. αα|≤(1)cos α>-≤;(3)|sin ;(2)tan 223的写出角α确定对应确定角α的终→思路点拨:→――方程的解边所在区域取值范围[解] (1)如图,由余弦线知角α的取值范围是3π3π???kkk?Z,<α<2π2+π-∈. α???44??(2)如图,由正切线知角α的取值范围是ππ???kkk?Zπ+∈π,α≤. α???62??111(3)由|sin α|≤,得-≤sin α≤.222如图,由正弦线知角α的取值范围是ππ???kkk?∈,π+Zπ-α≤≤.α???66??2”,求α的取值范围.的不等式改为“cos α< 1.将本例(1)2[解]如图,由余弦线知角α的取值范围是π7π???kkk?Z<2,π2+π+∈<α. α???44??132.将本例(3)的不等式改为“-≤sin θ<”,求α的取值范围. 22π117π3π2π????-=-,sin且-≤sin θ=]由三角函数线可知sin=sin,sin=[解??62633223,故θ的取值集合是< 2ππ2π7π????kkkk????k+22π2,+π+π,2π- (.∈Z)∪????6633yx-1的定义域..利用本例的方法,求函数=2sin 3x-1≥0,2sin ]要使函数有意义,只需解[1x≥.即sin 2π5π??kk??k++,2π2π∈Z). (由正弦线可知定义域为??66利用单位圆中的三角函数线解不等式的方法(1)首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角α满足条件的终边的位置.(2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.写角的范围时,抓住边界值,然后再注意角的范围的写法要求.(3)在一定范围内先找出符合条件的角,再用终边相同的角的表达式写出符合条件的提醒:所有角的集合..本节课的重点是三角函数线的画法,以及利用三角函数线解简单的不等式及比较大小1 问题,难点是对三角函数线概念的理解. .本节课应重点掌握三角函数线的以下三个问题2 ;三角函数线的画法,见类型1(1) ;利用三角函数线比较大小,见类型2(2)3.利用三角函数线解简单不等式,见类型(3).三角函数线是三角函数的几何表示,它们都是有向线段,线段的方向表示三角函数值3的正负,与坐标轴同向为正,异向为负,线段的长度是三角函数的绝对值,这是本节重中之 重. .利用三角函数线解三角不等式的方法41.下列判断中错误的是( )A .α一定时,单位圆中的正弦线一定B .在单位圆中,有相同正弦线的角相等C .α和α+π有相同的正切线D .具有相同正切线的两个角的终边在同一条直线上π5πB [A正确;B 错误,如与有相同正弦线;C 正确,因为α与π+α的终边互为反66向延长线;D 正确.]πOMMP 分别是角α=的余弦线和正弦线,那么下列结论正确的是( 2.如果, )5MPOMMPOM <0<.B0<<.A .MPOMMPOM 0>>>>0 DC ..ππOM 的余弦线和正弦线满足α=[角β=的余弦线与正弦线相等,结合图象可知角D 54MP 0.]>>baba,则cos 4 ,3.若.=sin 4,的大小关系为=ππ35ba<,<< [因为424 ,如图4弧度角的正弦线和余弦线()画出ba.]<cos 4,即观察可知sin 4<的集合.α的终边范围,并由此写出角α.在单位圆中画出适合下列条件的角413. α≤-(1)sin α;≥(2)cos 223yOBABOA=(1)作直线[α的终边在如图①所交单位圆于解,两点,连接],,则角2π2???kkk?∈Zπ,≤π≤απ+2+2.α)含边界,角的取值集合为α(示的阴影区域内???33??图①图②1xCDOCOD,则角α=-(2)作直线交单位圆于,两点,连接,的终边在如图②所示的2.24???kkk?∈,Zπ≤α≤+2π2π+π.阴影区域内(α的取值集合为,角含边界)α???33??。

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

7.2.2 高中必修三数学教案《单位圆与三角函数线》

7.2.2  高中必修三数学教案《单位圆与三角函数线》

高中必修三数学教案《单位圆与三角函数线》教材分析与单位圆有关的三角函数线是对任意三角函数定义的一种“形”上的补充,它作为三角函数线的几何表示,使学生对三角函数的定义有了直观的理解,同时能帮助我们理解和掌握三角函数的定义域及三角函数的符号规律,加深数与形的结合。

三角函数线贯穿了整个三角函数的教学,借助三角函数线,可以推导出同角三角函数的基本关系式及诱导公式,画出正弦曲线,解出三角不等式,求函数的定义域及比较大小。

可以说,三角函数线是研究三角函数的有力工具。

学情分析1、学生在学习本节课之前已经学习了任意角的三角函数的定义和三角函数值在各个象限的符号。

利用几何画板工具,学生可以有效地进行数学试验。

2、在角的分类中,学习角的终边所在的象限知识,学生可能会只考虑到象限角而忽视轴上角,在学习新概念之前要复习且强调一下。

3、向量和实数的对应关系是新内容,学生需要提前掌握。

教学目标1、经过三角函数线的学习,培养数学抽象和直观想象核心素养。

2、借助三角函数的应用,培养逻辑推理及直观想象核心素养。

教学重点认识三角函数线的意义。

教学难点会用三角函数线表示一个角的正弦。

教学方法讲授法、演示法、讨论法、练习法教学过程一、问题导入我们已经知道,如果P (x ,y )是α终边上异于原点的任意一点,r = √x 2+y 2,则sin α = = y r ,cos αx r 。

如果选取的P 点坐标满足x 2+y 2 = 1,则上述正弦与余弦的表达式有什么变化?由此你能给出任意角正弦和余弦的一个直观表示吗?二、学习新知不难看出,如果x 2+y 2 = 1,则sin α = y ,cos α= x 。

因为x 2+y 2 = 1可以化为√(x −0)2+(y −0)2 = 1因此P (x ,y )到原点(0,0)的距离为1。

一般地,在平面直角坐标系中,坐标满足x 2+y 2 = 1的点组成的集合称为单位圆。

因此,如果角α的终边与单位圆的交点为P ,则P 的坐标为(cos α,sin α)这就是说,角α的余弦和正弦分别等于角α终边与单位圆交点的横坐标和纵坐标。

三角函数的定义教案

三角函数的定义教案

三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。

下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。

教学重难点重点:感受周期现象的存在,会判断是否为周期现象。

难点:周期函数概念的理解,以及简单的应用。

教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。

众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。

再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。

所以,我们这节课要研究的主要内容就是周期现象与周期函数。

(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。

请你举出生活中存在周期现象的例子。

(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。

中职数学第一册第5章三角函数教案 2

中职数学第一册第5章三角函数教案 2

,180,270等。

.终边相同的角的集合:所有与角α终边相同的角,连同角说明:终边相同的角不一定相等,相等的角终边一定相同。

5.2弧度制 *回顾知识 复习导入 问题角是如何度量的?角的单位是什么? 解决将圆周的1360圆弧所对的圆心角叫做1度角,记作1°. 1度等于60分(1°=60′),1分等于60秒(1′=60″). 以度为单位来度量角的单位制叫做角度制. 扩展计算:23°35′26″+31°40′43″角度制下,计算两个角的加、减运算时,经常会带来单位换算上的麻烦.能否重新设计角的单位制,使两角的加、减运算像10进位制数的加、减运算那样简单呢?动脑思考 探索新知 概念将等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1弧度或1rad .以弧度为单位来度量角的单位制叫做弧度制.若圆的半径为r ,圆心角∠AOB 所对的圆弧长为2r ,那么∠AOB 的大小就是 22r r=弧度弧度.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 分析由定义知道,角α的弧度数的绝对值等于圆弧长l 与半径r 的比,即 lrα=(rad ).半径为r 的圆的周长为2πr ,故周角的弧度数为2π(rad)2π(rad)rr=. 由此得到两种单位制之间的换算关系:360°=2πrad ,即 180°=πrad .108;120︒≈200︒≈-60°=;30°=;120°=;270°=.2.把下列各角从弧度化为角度(口答):π=;π2=;π4=;π8=;2π3=;π3=;π6=;π12=.3.把下列各角从角度化为弧度:⑴ 75°;⑵−240°;⑶ 105°;⑷67°30′.4.把下列各角从弧度化为角度:⑴π15;⑵2π5;⑶4π3-;⑷6π-.自我探索使用工具准备计算器.观察计算器上的按键并阅读相关的使用说明书,小组完成计算器弧度与角度转换的方法.利用计算器,验证计算例题1与例题2.巩固知识典型例题例3某机械采用带传动,由发动机的主动轴带着工作机的从动轮转动.设主动轮A的直径为100 mm,从动轮B的直径为280 mm.问:主动轮A旋转360°,从动轮B旋转的角是多少?(精确到1′)解主动轮A旋转360°就是一周,所以,传动带转过的长度为π×100 = 100π(mm).再考虑从动轮,传动带紧贴着从动轮B转过100π(mm)的长度,那么,应用公式lrα=,从动轮B转过的角就等于'1005128341407π=π≈.答从动轮旋转5π7,用角度表示约为128°34′.例4如下图,求公路弯道部分AB的长l(精确到0.1m.图中长度单位:m).4327123607=⨯+,所以,>,cos43270>,tan43270>.)因为2722π=⨯π7+5,所以,275π角为第三象限角,故0,cos,27tan.-+-;3sin902tan06sin270这类问题需要首先计算出界限角的三角函数值,然后再进行代3sin902tan06sin270-+--⨯+⨯-⨯-=-.31206(1)2强化练习5.3.3-++.5sin902cos03tan180cos180课堂教学安排主要教学内容及步骤教学过程师生活动设计意图等(一)复习诱导公式一师:我们已经学习过诱导公式一,即终边相同的角的同一三角函数的值相等,这组公式是如何表达的?它们的作用是什么?生:诱导公式一可这样表达:sin(2kπ+α)=sinα;cosα(2kπ+α)=cosα;tg(2kπ+α)=tgα;ctg(2kπ+α)=ctgα.利用诱导公式一可以把求任意角的三角函数值的问题,转化为求0°~360°(0~2π)间角的三角函数值的问题.师:学习诱导公式的基本思想方法是化归转化,如果我们能把求90°~360°间的角的三角函数值转化为求0°~90°间的角的三角函数值,那么任意角的三角函数值就都能通过查表来求.设0°≤α≤90°,则90°~180°间的角,可以写成180°-α;180°~270°间的角,可以写成180°+α;270°~360°间的角,可以写成360°-α.下面我们依次讨论180°+α,-α,180-α,360°-α的三角函数值与α的三角函数值之间的关系.为了使讨论更具有一般性,这里假定α为任意角.(布置学生阅读P.152—153初步了解诱导公式二、公式三的推导过程.)(二)诱导公式二、三师:首先我们先介绍单位圆概念,如图2-18示,以原点为圆心,等于单位长的线段为半径作一个圆,这样的圆称为单位圆.下面我们利用单位圆和任意角三角函数的定义来推导诱导公式二、三.推导之前,请一位同学回答分别关于x轴,y轴,原点对称的两个点的坐标间的关系.生:设点P(x、y),它关于x轴、y轴、原点对称的点坐标分别是P1(x,-y),P2(-x,-y),P3(-x,-y).师:请同学们作出一个任意角α的终边,再作出180°+α角的终边,它们与单位圆的交点有何特征?为什么?生:如图2-18,任意角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α终边的反向延长线,角180°+α的终边与单位圆的交点P′,是与点P关于点O对称的。

《单位圆与三角函数线》优秀教案

《单位圆与三角函数线》优秀教案

1.2.2 单位圆与三角函数线1.单位圆:一般地,圆心在原点,半径为 的圆叫做单位圆;2.正射影:过点P 作PM 于直线l 于M ,则点M 是点P 在直线l 上的正射影(简称射影);3.三角函数线的概念设任意角α的顶点在圆心O ,始边与x 轴的正半轴重合,终边与单位圆相交于点P ,过点P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N .由三角函数的定义可知,点P 的坐标为(cos α,sin α),即P(cos α,sin α).其中cos α= ,sin α= .也就是说,角α的余弦和正弦分别等于角α终边与单位圆交点的 和 .又设单位圆在点A (单位圆与x 轴的正半轴的交点)的切线与α的终边或其反向延长线相交于点T ,则=αtan ;我们把有向线段 , , 分别叫做α的 、 和 ;【例 题】例.分别作出3π,65π,45π和4π-的正弦线,余弦线和正切线.【练习题】1.已知角α的终边和单位圆的交点为P ,则点P 的坐标为--------------------------------( )A .(sin α,cos α)B .(cos α,sin α)C .(sin α,tan α)D .(tan α,sin α)2.若tan θ≥0,那么θ的范围是-----------------------------------------------------------------( )A .[0°,90°)B .[0°,90°)∪(180°,270°)C .[k ·180°,k ·180°+90°)(k ∈Z)D .[k ·360°,k ·360°+90°)(k ∈Z)3.若α是第一象限角,则ααcos sin +的值与1的大小关系是---------------( )A.1cos sin >+ααB.1cos sin =+ααC.1cos sin <+ααD.不能确定4.使x x cos sin ≤成立的x 的一个区间是---------------------------------( ) A.]4,43[ππ- B.]2,2[ππ- C.]43,4[ππ- D.],0[π 5.利用单位圆,可得满足22sin <α,且),0(πα∈的α的集合为 . 6.设24παπ<<,角α的正弦线、余弦线和正切线的数量分别为a,b 和c,由图比较a,b,c 的大小。

高中数学第七章三角函数7.2任意角的三角函数7.2.2单位圆与三角函数线教案新人教B版第三册

高中数学第七章三角函数7.2任意角的三角函数7.2.2单位圆与三角函数线教案新人教B版第三册

7.2.2 单位圆与三角函数线(教师独具内容)课程标准:1.理解三角函数的正弦线、余弦线、正切线的定义.2.能作出角的三角函数线,并利用三角函数线观察三角函数的相关信息.教学重点:利用三角函数线观察三角函数的相关信息,体会数与形的结合. 教学难点:三角函数线的运用.【知识导学】知识点一 单位圆(1)一般地,在平面直角坐标系中,坐标满足□01x 2+y 2=1的点组成的集合称为单位圆. (2)角α的余弦和正弦分别等于角α终边与单位圆交点的□02横坐标和□03纵坐标. 知识点二 三角函数线如图,设单位圆的圆心在原点,角α的顶点在圆心O ,始边与x 轴的正半轴重合,终边与单位圆相交于点P ,点P 在x 轴上的正射影为M ,点P 在y 轴上的正射影为N ,过A (1,0)作单位圆的切线交α的终边OP 或其反向延长线于点T ,则(1)把向量OM →,ON →,AT →分别叫做α的□01余弦线、□02正弦线、□03正切线,正弦线、余弦线和正切线都称为三角函数线.(2)其中|cos α|=□04|OM →|,|sin α|=□05|ON →|,|tan α|=□06|AT →|,其大小分别等于该坐标系下相应线段的长度,其正负是这样规定的:从起点到终点的方向与坐标轴的正方向相同时为正,相反时为负,即OM →的方向与x 轴的正方向相同时,表示cos α是正数,且cos α=|OM →|,OM →的方向与x 轴的正方向相反时,表示cos α是负数,且cos α=-|OM →|;ON →的方向与y 轴的正方向相同时,表示sin α是正数,且sin α=|ON →|,ON →的方向与y 轴的正方向相反时,表示sin α是负数;且sin α=-|ON →|;AT →的方向与y 轴的正方向相同时,表示tan α是正数,且tan α=|AT →|,AT →的方向与y 轴的正方向相反时,表示tan α是负数,且tan α=-|AT →|.【新知拓展】1.单位圆中的“单位”半径为1的圆是单位圆,这里的1不是1 cm ,不是1 m ,而是指1个单位长度,即作图时,规定的1的单位的长度.2.对三角函数线的几点说明(1)三角函数线是三角函数的图形表示.(2)在三角函数线中,点M ,N ,P ,A ,T 都是确定的,一般不可随意调换.P ——角的终边与单位圆的交点, M ——点P 在x 轴上的正射影, N ——点P 在y 轴上的正射影,A ——单位圆与x 轴正半轴的交点,坐标(1,0), T ——过A 的垂线与角的终边(或其延长线)的交点.1.判一判(正确的打“√”,错误的打“×”) (1)三角函数线的长度等于三角函数值.( ) (2)三角函数线的方向表示三角函数值的正负.( ) (3)对任意角都能作出正弦线、余弦线和正切线.( ) 答案 (1)× (2)√ (3)× 2.做一做(1) 如图,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM →,正切线A ′T ′→B .正弦线MP →,正切线A ′T ′→C .正弦线MP →,正切线AT →D .正弦线PM →,正切线AT →(2)如果MP ,OM 分别是角α=3π16的正弦线和余弦线的数量,则下列结论正确的是( )A .MP <OM <0B .MP >OM >0C .OM <MP <0D .OM >MP >0(3)已知α(0<α<2π)的正弦线和余弦线长度相等,且符号相同,那么α的值为( ) A.3π4或π4 B.5π4或7π4 C.π4或5π4D.π4或7π4答案 (1)C (2)D (3)C题型一 画出角的三角函数线例1 在单位圆中画出适合下列条件的角α的终边.(1)sin α=23;(2)cos α=-35;(3)tan α=2.[解] (1)作直线y =23交单位圆于P ,Q 两点,则OP 与OQ 为角α的终边,如图①.(2)作直线x =-35交单位圆于M ,N 两点,则OM 与ON 为角α的终边,如图②.(3)在直线x =1上截取AT =2,其中A 的坐标为(1,0).设直线OT 与单位圆交于C ,D 两点,则OC 与OD 为角α的终边,如图③.金版点睛1.作三角函数线的四个步骤(1)确定角的始边,单位圆与x 轴交点A (1,0). (2)确定角的终边与单位圆的交点P .(3)过P 分别作x 轴,y 轴的垂线,垂足为M ,N ,过A 作x 轴的垂线,与角的终边(或其反向延长线)交于T (T ′).(4)得正弦线ON →,余弦线OM →,正切线AT →(或AT ′→). 2.单位圆中求作角的终边的方法应用三角函数线可以求作满足形如f (α)=m 的三角函数的角的终边,具体作法是先作出直线y =m 或x =m 与单位圆的交点,再将原点与交点连接所得射线即为所求角的终边.[跟踪训练1] 作出5π4的正弦线、余弦线和正切线.解 在直角坐标系中作以坐标原点为圆心的单位圆,如图所示,以x 轴的正半轴为始边作5π4的终边,与单位圆交于点P ,作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,由单位圆与x 轴正方向的交点A 作x 轴的垂线与5π4的终边的反向延长线交于点T ,则ON →,OM →,AT →分别为5π4的正弦线、余弦线、正切线.题型二 利用三角函数线比较大小例2 利用三角函数线比较下列各组数的大小: (1)sin 2π3与sin 4π5;(2)cos 2π3与cos 4π5;(3)tan 2π3与tan 4π5.[解] 如图,在单位圆中,2π3的终边为OP 1,4π5的终边为OP 2,过P 1,P 2分别作x 轴的垂线,垂足为M 1,M 2,延长P 1O ,P 2O 交经过A (1,0)的单位圆的切线于T 1,T 2.(1)sin 2π3=|M 1P 1→|,sin 4π5=|M 2P 2→|,∵|M 1P 1→|>|M 2P 2→|,∴sin 2π3>sin 4π5.(2)cos 2π3=-|OM 1→|,cos 4π5=-|OM 2→|,∵-|OM 1→|>-|OM 2→|,∴cos 2π3>cos 4π5.(3)tan 2π3=-|AT 1→|,tan 4π5=-|AT 2→|,∵-|AT 1→|<-|AT 2→|,∴tan 2π3<tan 4π5.金版点睛三角函数线是一个角的三角函数值的体现,从三角函数线的方向可以看出三角函数值的正负,三角函数线的长度是三角函数值的绝对值,因此,对于同名三角函数值的大小比较,利用三角函数线求解比较直观、形象.(1)sin α与sin β:作出以坐标原点为圆心的单位圆,分别作出角α,β的终边与单位圆的交点P 1,P 2,然后比较P 1,P 2两点纵坐标的大小即可得sin α与sin β的大小.(2)cos α与cos β:作出以坐标原点为圆心的单位圆,分别作出角α,β的终边与单位圆的交点P 1,P 2,然后比较P 1,P 2两点横坐标的大小即可得cos α与cos β的大小.(3)tan α与tan β:作出以坐标原点为圆心的单位圆,分别作出角α,β的终边,过点(1,0)作垂线,设与角α,β的终边所在直线分别交于点T 1,T 2,然后比较T 1,T 2两点的纵坐标的大小即可得tan α与tan β的大小.[跟踪训练2] 若θ∈⎝ ⎛⎭⎪⎫3π4,π,则下列各式错误的是( ) A .sin θ+cos θ<0 B .sin θ-cos θ>0 C .|sin θ|<|cos θ| D .sin θ+cos θ>0答案 D解析 因为θ∈⎝⎛⎭⎪⎫3π4,π,作出角的正弦线和余弦线如图所示,所以sin θ>0,cos θ<0,且|sin θ|<|cos θ|,所以sin θ+cos θ<0,sin θ-cos θ>0.题型三 利用三角函数线证明不等式例3 已知α为锐角,求证:1<sin α+cos α<π2.[证明] 如图,设角α的终边与单位圆相交于点P (x ,y ),过点P 作PQ ⊥Ox ,PR ⊥Oy ,Q ,R 为垂足,连接PA ,PB , ∵y =sin α,x =cos α, 在△OPQ 中,|QP →|+|OQ →|>|OP →|, ∴sin α+cos α>1.∵S △OPA =12|OA →|·|PQ →|=12y =12sin α,S △POB =12|OB →|·|PR →|=12x =12cos α, S 扇形OAB =14×π×12=π4,又四边形OAPB 被扇形所覆盖, ∴S △OPA +S △POB <S 扇形OAB ,∴12sin α+12cos α<π4,即sin α+cos α<π2. ∴1<sin α+cos α<π2.金版点睛利用三角函数线证明不等式的策略一般先根据条件作出三角函数线,在进一步证明不等式的过程中往往需要借助于三角形和扇形的面积,按题意适当放大或缩小证明结论.[跟踪训练3] 已知α∈⎝ ⎛⎭⎪⎫0,π2,求证:sin α<α<tan α. 证明 在单位圆中设∠AOP =α,则AP ︵的长度为α,角α的正弦线为MP →,正切线为AT →,∵△OPA 面积<扇形OPA 面积<△OAT 面积,∴12|OA →|·|MP →|<12|OA →|·α<12|OA →|·|AT →|, 即|MP →|<α<|AT →|,∴sin α<α<tan α.1.关于三角函数线,下列说法正确的是( ) A .对任何角都能作出正弦线、余弦线和正切线 B .有的角正弦线、余弦线和正切线都不存在C .任何角的正弦线、正切线总是存在,但余弦线不一定存在D .任何角的正弦线、余弦线总是存在,但是正切线不一定存在 答案 D解析 正弦函数和余弦函数的定义域是R ,所以任何角的正弦线、余弦线总是存在,正切函数的定义域不是R ,所以任何角的正切线不一定存在.2.已知角α的正弦线的长度为1,则角α的终边在( ) A .x 轴上 B .y 轴上 C .x 轴的正半轴上 D .y 轴的正半轴上答案 B解析 若正弦线长度为1,则sin α=±1,所以角α终边为y 轴上.3.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π6,5π6C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤5π6,π 答案 B解析 利用单位圆和三角函数线解不等式.如图所示,∠P 2OM 2=π6,∠P 1OM 1=5π6,|P 1M 1→|=|P 2M 2→|=12,则图中阴影部分为所求,即x ∈⎣⎢⎡⎦⎥⎤π6,5π6.4.角π6的终边与单位圆的交点的坐标是________.答案 ⎝⎛⎭⎪⎫32,12 解析 cos π6=32,sin π6=12,所以角π6的终边与单位圆的交点的坐标是⎝ ⎛⎭⎪⎫32,12.5.画出α=2的正弦线、余弦线和正切线. 解 如图所示,MP →=sin2,OM →=cos2,AT →=tan2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容与教学目标本节教学目的是使学生掌握正弦线、余弦线和正切线,重点是掌握用这几种函数线分析三角函数的有关问题、难点是对有向线段表示实数的理解.建议教学中改用动态图形演示三角函数线,由学生观察各三角函数线的特征.课题引入三角函数线是用几何手段,形象地表示三角函数的重要工具,又是用数形结合思想解题的好帮手.用三角函数线反映三角函数的性质直观、形象,便于理解和使用.它的产生过程及过程中蕴含的思想如下(以正弦线为例)知识讲解本节课学生接受起来有一定难度,讲授时注意讲清下几点:1.单位圆中的三角函数线是有向线段,它与平面几何中所遇到的线段不同,它不但有长度,还有方向,我们引一条直线MN,点A在直线MN上移动到达点B,AB就是一条有向线段,记作AB,对于直线MN,可以规定某一个方向为正方向(例如数轴),则称MN为轴,若AB 与轴的方向一致,就规定为“正”;若AB 与轴的方向相反,就规定为“负”.根据AB 与轴MN 的方向相同或相反,分别把它的长度加上正号或负号,这样所得的数,叫做有向线段的数量,记作AB ,要强调AB 不能写成BA ,因为AB=-BA2.单位圆中某些特定的有向线段的长度和方向可以用来表示三角函数值,称它们为三角函数线(本课只讲正弦线、余弦线、正切线),三角函数线既然是有向线段,在用字母表示这些线段时,就要注意它们的方向,分清始点和终点,书写顺序不能颠倒,为此,我们规定:凡由原点出发的线段,以原点为始点;不从原点出发的线段,以函数线与坐标轴的交点为始点,如图4-13中,MP 叫做角α的正弦线,A T 叫做角α的正切线,其中,(4-13)(1)正弦线、正切线的方向从纵坐标轴一致(向上)时为正,同纵坐标轴反向(向下)时为负,(2)余弦线的方向同横坐标轴一致(向右)时为正,同横坐标轴反向(向左)时为负.3.三角函数线为什么可以表示三角函数值,是学生理解此概念的关键,教师务必使学生清楚理解:正弦线是有向线段MP ,而有向线段MP 的符号和点P 的纵坐标y 的符号相同,且MP 的量度等于y ,又1=r ,所以MP sin ===y ry α.因此,可说明OM cos ===x rx α正切线是有向线段A T ,设点T 的坐标为),(y x '',由图4-13可以看出,OPM ∆∽OTA ∆,并且当x 和y 同号时,x '和y '也同号;当x 和y 异号时,x '和y '也异号,又x '=1,所以AT 1tan ='='=''==y y x y xy α,要强调指出,由x '=1可知,不管α是第几象限角,作正切线时,都要从单位圆与x 轴正半轴的交点A 处画起.4.最后说明角α的终边落在轴上时的情况,当角α的终边在x 轴上时,正弦线、正切线分别变成一个点;当角α的终边在y 轴上时,余弦线变成一个点,正切线不存在.例题分析例1.作出下列各角的正弦线、余弦线、正切线 (1)65π ; (2)π45 ; (3)3π-.分析:本例是为了使学生掌握各象限(尤其是第二、三、四象限)内角的正弦线、余弦线、正切线的画法,属于基础题.解(1)如图4-14 (2)如图4-14 (3)如图4-14例2.已知角α的正弦线长度为22,且方向与y 轴的正向相反,求α角.分析:此例是利用各象限内正弦线长度相等的角之间的关系来求角的问题,比例1灵活一些.解:先求0~2π之间的相等在第一象限,22PM =,4POX π=∠,第三象限,与OP 关于原点或中心对称的P O ',有22M P ='',在第四象限,与OP 关于x 轴对称的P O '',有22M P ='''',45P XO π='∠与47P XO π=''∠符合题意.∴ ππαk 245+=或)Z k (k 247∈+=ππα例3.角α是第一象限角,求证:1cos sin >+αα(4-14)边分析:本例是利用单位圆中的三角函数线,采用数形结合的方法,证明三角不等式的题目,证法巧妙,使学生初步体验到三角函数线是有用的. 解:在第一象限作出角α的正弦线、余弦线,如图4-15,因为α是第一象限角,所以0cos ,0sin >>αα,故 OM cos ,PM sin ==αα,在OPM ∆中,有OP OM PM >+∴1cos sin >+αα例4.若24παπ<<,比较αsin 、αcos 、αtan 的大小.分析:本例仍是三角函数线的应用题,由于24παπ<<时,αsin 、αcos 、αtan 都大于0,故可以直接观察角α的正弦线、余弦线、正切线的长短来比较三者的大小.解:如图4-16,由于24παπ<<,知0t a n ,0c o s ,0s i n >>>ααα,所以AT tan ,OM cos ,MP sin ===ααα.∵AT MP OM <<, ∴αααtan sin cos <<.练习与讲评1.作出下列各角的正弦线、余弦线、正切线 (1)6π; (2)32π; (3)43π-; (4)3π-.2.以5cm 为单位长度作单位圆,分别作出以210º、315º角的正弦线、余弦线、正切线量出它们的长度,从而写出这些角的正弦值、余弦值、正切值.答 案1.(图略) 2.(图略).1315tan 7.0315cos 7.0315sin ,6.0210tan 9.0210cos 5.0210sin -=︒≈︒-≈︒≈︒-≈︒-=︒讲评:通过练习,检查正弦线、余弦线、正切线的作法是否已经掌握,尤其是正切线的位置是否正确?小结与总结用单位圆中的正弦线、余弦线、正切线表示正弦、余弦、正切函数的值,这样就使数和形更紧密的结合起来,为我们进一步研究正弦、余弦、正切函数的图象与性质铺平了道路.习 题A 组1.作出下列各角的正弦线、余弦线、正切线: (1)4π; (2)6π-; (3)65π-; (4)34π-.2.若40πα<<,比较αsin 、αcos 的大小.B 组1.利用三角函数线,求满足下列条件的角(︒<<︒3600α) . (1)21sin =α ; (2)22cos =α; (3)1tan -=α.2.利用三角函数线,求满足下列条件的角: (1)角α的正弦线长度为23,且方向与y 轴的方向相同;(2)角α的余弦线长度为21,且方向与x 轴的方向相反;(3)角α的正切线长度为33,且方向与y 轴的方向相反.答 案A 组 1.图略2. ααcos sin <. B 组1 (1)︒=30α或︒=150α(2)︒=45α或︒315; (3)︒=135α或︒315. 2 (1)ππαk 23+=或)k (k 232Z ∈+=ππα; (2)ππαk 232+=或)k (k 234Z ∈+=ππα; (3)ππαk 267+=或)k (k 2611Z ∈+=ππα.引伸与提高1.关于余切线的画法:y x =αcot 中,令1=y ,则在单位圆中,x x yx ===1cot α,画余切线时,一律从单位圆与y 轴正半轴的交点B 处画起(如图4-17)2.利用三角函数线确定角的范围: 例如 求满足23sin ≥α的角α的范围,可在单位圆中画出满足23sin =α的角的集合,如图26,由图可以看出,23P XO sin XOP sin ='∠=∠,而32P XO ,3XOP ππ='∠=∠,又X O P ∠与P XO '∠之间的角的正弦线比MP 长,且为正,∴ 满足条件的所有角是:⎭⎬⎫⎩⎨⎧∈+≤≤+Z k ,k 232k 23ππαππα思 考 题为什么三角函数线能表示三角函数值?为什么不论α是第几象限角,正切线一律从单位圆与x 轴正方向的交点处画起? 按此思路,你认为正割线、余割线应该怎样画?测 试 题一、选择题1.角α(πα20<<)的正弦线与余弦线的长度相等,且符号相同,那么α的值是( ) (A )4π; (B )45π ; (C )4π或45π; (D )以上结论都不对.2.下列命题正确的是( )(A )存在一个角,使0cos sin ==αα; (B )存在一个角,使0tan =α,1cos -=α; (C )存在一个锐角α,使1cos sin <+αα; (D )同角的正切线与正弦线的方向一定一致. 二、填空题1.若角α的正弦线长度是21,且方向与y 轴正向相反,则α=________.2.若角α的正切线长度为1,且方向与y 轴的正向一致,则α=________. 三、解答题作出下列各角的正弦线、余弦线、正切线 1.π611 ; 2.π45-.答 案一、1.C ; 2. B. 二、1. ππk 267+或)Z k (k 2611∈+ππ;2.ππk 24+或)Z k (k 243∈+ππ.三、图略.。

相关文档
最新文档