初一数学代数式的值试题练习

合集下载

初一数学代数式的值及整式

初一数学代数式的值及整式

初一数学代数式的值及整式例题解析题型一求代数式的值【例1】当,时,求代数式的值.【例2】已知,,求代数式的值.【例3】若,互为相反数,,互为倒数,则代数式的值是()A. B. C. D.【例4】某百货商场经销一种儿童服装,每件售价50元,每天可以销售80件,每件可盈利10元,为了迎接六一国际儿童节,商场决定采取适当降价措施,扩大销售量,让利消费者.经市场调查发现:每件童装每降价1元,平均每天就可多销售10件.求:(1)当每件降价()元时,每天该种服装的营业额是多少元?(2)当时,每天的营业额是多少元.【练习】1. 当时,代数式的值是()A. B. C. D.2. 已知,,则代数式的值为()A. B. C. D.3. 下列用具体数值代替代数式中的字母,其中正确的是()A.当时,B.当时,C.当时,D.当时,4. 当时,下列代数式中,值最大的是()A. B. C. D.5. 若,,则的值为()A. B. C. D.6. 如果时,代数式的值是5,那么当时,代数式的值是 .7. 根据如图所示的程序,计算当输入的值为3时,输出的结果 .8. 若代数式的值是5,则代数式的值是 .9. 已知代数式的值为6,则代数式的值为()A. B. C. D.10. 已知,则代数式的值为()A. B. C. D.11. 若代数式的值为8,则代数式的值为()A. B. C. D.12. 若,则的值为()A. B. C. D.13. 定义一种运算“”,其规则为.根据这个规则,计算的值是()A. B. C. D.14. 在数,,,,中任取三个数相乘,设最大的积是,最小的积是.(1)求,的值;(2)若,求的值.15. 如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为的正方形.(1)用含a、b、x的式子表示剩余纸片的面积;(2)当,且剪去部分正方形边长为3时,求剩余纸片的面积.16. 如图所示,某长方形广场的四角都有一块半径相同的四分之一圆形花园,若圆形花园的半径为m,长方形的长为m,宽为m.(1)请用代数式表示广场空地的面积;(2)若长方形长为300m ,宽为200m ,圆形花园的半径为10m ,求广场空地的面积(结果保留π).知识点二 单项式1.定义:像xy m b a -,,2122等,都是数字与字母的,这样的代数式叫做单项式.注意:(1)单独的数字或字母也是单项式; (2)单项式分母中不能含有字母. 2.单项式的系数: ; 3.单项式的次数:;注意:(1)圆周率π是常数;(2)若单项式的系数是-1或1,通常省略1,例xy m -,2,若单项式的指数是1 ,通常省略不写;(3)单项式的系数包括前面的符号; (4)单项式的次数只与字母的指数有关.题型一 单项式【例1】下列整式中,单项式是( ) A.3a +1B.2x -yC.0.1D.21+x【例2】|2|--b axy 是关于y x ,的单项式,其系数为2,次数为3,求b a ,的值.【练习】1. 指出下列各单项式的系数和次数:a z xy aba xy 8,,2,5,,43242-π2. 下列单项式次数为3的是( ) A.3abc B.2×3×4 C.41x 3y D.52x3. 单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3 C .-23,2 D .-23,3 4. 下列说法中,正确的是( ) A.单项式一定是含字母的式子 B.单项式a 没有系数 C.-y 的次数为0D.单项式y x 32π-的系数是-2π,次数是45. 单项式: 3234y x -的系数是 ,次数是 ;6.220053xy 是 次单项式;7. 当a =____________时,整式22-+a x 是单项式.8. 如果整式(m -2n )x 2y m+n-5是关于x 和y 的五次单项式,则m+n .9. 观察下列单项式,探究其规律:,...11,9,7,5,3,65432x x x x x x 按照上述规律,第2016个单项式是( ) A.20162016x B.20164031x C.20164029x D.20154031x知识点三 多项式 1. 定义:几个的和叫做多项式;2. 多项式的项:指多项式中的每个;常数项:; 多项式的项数: ; 多项式的次数:;注意:(1)多项式的每一项包括它前面的符号; (2)多项式分母中不含字母;知识点四 整式和统称为整式;注意:判断整式的依据是分母是否含有字母,整式的分母不能含有字母;题型 整式的相关计算 【例1】已知多项式2325432+-+-x xy y x ,这个多项式有几项,分别是什么,一次项系数是什么,常数项是什么?【例2】如果关于x 的多项式1)1(5)1(234-+-+--x b x x a x 不含3x 项和x 项,求b a ,的值.【例3】已知ABCD 是长方形,以DC 为直径的圆弧与AB 只有一个交点,且AD=a 。

初一数学代数式求值

初一数学代数式求值

初一数学代数式求值题的详细解析:1. 题目:已知x = 1 ,求2x + 3 的值。

解析:把x = 1 代入式子,得到2×1 + 3 = 5 。

2. 题目:若y = -2 ,求3y²- 4 的值。

解析:将y = -2 代入,3×(-2)²- 4 = 8 。

3. 题目:当a = 5 时,求6a - 1 的值。

解析:把a = 5 代入,6×5 - 1 = 29 。

4. 题目:已知b = 4 ,求7b + 2 的值。

解析:因为b = 4 ,所以7×4 + 2 = 30 。

5. 题目:若c = 0 ,求8c - 5 的值。

解析:由于c = 0 ,所以8×0 - 5 = -5 。

6. 题目:当d = -3 时,求5d + 7 的值。

解析:把d = -3 代入,5×(-3) + 7 = -8 。

7. 题目:已知e = 2 ,求9e - 6 的值。

解析:将e = 2 代入,9×2 - 6 = 12 。

8. 题目:若f = -1 ,求10f + 8 的值。

解析:把f = -1 代入,10×(-1) + 8 = -2 。

9. 题目:当g = 3 时,求4g - 9 的值。

解析:把g = 3 代入,4×3 - 9 = 3 。

10. 题目:已知h = 5 ,求6h - 10 的值。

解析:因为h = 5 ,所以6×5 - 10 = 20 。

11. 题目:若i = 0 ,求7i - 3 的值。

解析:由于i = 0 ,所以7×0 - 3 = -3 。

12. 题目:当j = -2 时,求8j + 5 的值。

解析:把j = -2 代入,8×(-2) + 5 = -11 。

13. 题目:已知k = 1 ,求5k - 7 的值。

解析:将k = 1 代入,5×1 - 7 = -2 。

14. 题目:若l = -3 ,求6l + 4 的值。

初一数学代数式的值练习题精选

初一数学代数式的值练习题精选

初一数学代数式的值练习题精选1.化简代数式322(2x-1+x)-x-1,可以先将括号内的项合并得到322(3x-1)-x-1,再将常数项合并得到966x-325.2.代数式(a+b)2-(a-b)2可以展开得到4ab,代入a=-2、b=-3得到结果12.3.将2(x-y)2+3x-3y+1展开得到2x2-7xy+6y2+3x+1,代入x-y=3得到2y2+15.4.将x(2x-y+3z)展开得到2x3-xy+3xz的值,代入x=7、y=4、z=0得到126.5.将3a-a-a+1化简得到-a-1,代入a=-3得到结果2.6.将b-4ac代入a=2、b=-3、c=4得到-59.7.代数式(1/2-x-y)+5ab可以化简得到(5/2)-x-y+5ab,但没有给出具体的求值。

8.将3x-1+2y+3化简得到3x+2y+2,代入3x-2y得到-x+2.9.将2a+3a+1=6代入得到a=1,代入6a+9a+5得到35.10.将x=-2、y=-5代入得到-9/8,将x=2、y=5代入得到23/8.11.将x=2代入4x2-2xy+2y2得到20-4y+2y2,y的绝对值最小为0,代入得到20.12.将x+3=5-y化简得到y=2-x,代入a/b=b/a得到a=-1,b=-1,代入得到-5/2.13.将2x2+3x+5=6代入得到x=-1或x=5/2,代入6x2+9x-3得到33/2或-3/2.14.将2x-y=5化简得到y=2x-5,代入2y-4x+5得到-3x+5,没有给出具体的求值。

15.将x=11/2代入得到121/4.16.将a=4、b=12代入得到44.17.将x=1、y=-6代入得到(1)37,(2)49,(3)49.18.用代数式10a+(a+5)表示这个两位数,当a=3时得到35.19.用代数式100a+b表示这个四位数,没有给出具体的求值。

20.将x=1、y=-1代入得到-1/2.。

初一数学代数式试题

初一数学代数式试题

初一数学代数式试题1.设甲数为a,乙数为b,用代数式表示甲、乙两数的平方的差是________.【答案】a2-b2【解析】先表示出甲、乙两数的平方,再求差,即可得到结果.甲、乙两数的平方差是a2-b2.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,比如该题中的“平方”、“差”等,从而明确其中的运算关系,正确地列出代数式.2.甲同学身高a厘米,乙同学比甲同学高6厘米,则乙同学身高为______厘米.【答案】a+6【解析】根据乙同学比甲同学高6厘米,即可得到结果.由题意得,乙同学身高为(a+6)厘米.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.3.全校学生总数是x,其中女生占40%,则女生人数是________.【答案】40%x【解析】根据女生所占的比例即可得到结果.由题意得,女生人数是40%x.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.4.一个两位数,个位数是x,十位数是y,这个两位数为________,如果个位数字与十位数字对调,所得的两位数是_________.【答案】10y+x,10x+y【解析】根据两位数=10×十位数字+个位数字,把相关数值代入即可得到结果.∵个位数是x,十位数是y,∴这个两位数为10y+x;对调位置后,十位数字为x,个位数字为y,∴所得的两位数是10x+y.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.5.在边长为a的正方形内,挖出一个底为b,高为a的正三角形,•则剩下的面积为________.【答案】a2-ab【解析】剩下的面积=正方形的面积-底为b,三角形的面积,把相关数值代入即可得到结果.剩下的面积=a2-×b×a=a2-ab.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.6.王洁同学买m本练习册花了n元,那么买2本练习册要______元.【答案】【解析】先算出一本练习册的单价,进而乘以2即为买2本练习册需要的钱数.∵买m本练习册花了n元,∴一本练习册的单价为元,∴2本练习册要元.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.7.如果陈秀娟同学用v千米/时的速度走完路程为9千米的路,那么需_______•小时.【答案】【解析】根据时间=路程÷速度,把相关数值代入即可得到结果.由题意得,需小时.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.8.在西部大开发的过程中,为了保护环境,促进生态平衡,国家计划以每年10%的速度栽树绿化,如果第一年植树绿化是a公顷,那么到第三年的植树绿化为_______公顷.【答案】a(1+10%)2【解析】第二年的植树绿化面积=第一年的植树绿化面积×(1+10%);第三年的植树绿化面积=第二年的植树绿化面积×(1+10%),把相关数值代入即可求解.第二年的植树绿化面积=a×(1+10%);第三年的植树绿化面积=a×(1+10%)×(1+10%)=a(1+10%)2.【考点】本题考查了列代数式点评:解答本题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.9.我们知道:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52.根据前面各式规律,可以猜测:1+3+5+7+9+…+(2n-1)=________.(其中n为自然数).【答案】n2【解析】从数字中找到规律,从小范围到大范围.从1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,三个等式中,可以看出等式左边最后一个数+1再除以2即得到等式右边幂的底数,即1+3+5+7+9+…+(2n-1)=n2.【考点】本题考查的是找规律点评:解答本题的关键是认真分析所给式子,得出规律,再应用发现的规律解决问题.10.解释代数式300-2a的意义.【答案】见解析【解析】结合实际情境作答,答案不唯一.如一堆苹果的质量是300,卖掉两筐,每筐质量是a,那么剩下的质量是300-2a.【考点】本题考查了代数式的意义点评:此类问题应结合实际,根据代数式的特点解答.。

初一下册代数式练习题及答案

初一下册代数式练习题及答案

初一下册代数式练习题及答案一.选择题1.下列各式子中,符合代数式书写要求的是12ab22x?3千米ab?31ab ?2.下列各式不是同类项的是ab 与3ab x与2x22121ab与?3ab ab与4ba63.下列各式正确的是3a?b?3ab 3x?4?27x?2??2x?2?3x??.单项式?2ab的次数是1 - 5.一个两三位数,a表示百位数,b表示十位数,c表示个位数,那么这个两位数可表示为 a?b?c abc10abc100a?10b?c6.在排成每行七天的日历表中取下一个3?3方块。

若所有日期数之和为189,则n的值为:21 11 1.若k为自然数,22k?pp1xy与?xk?3y3是同类项,则满足条件的k值有21个2个 3个无数个8.长方形的一边长等于3a?2b,另一边比它小a?b,那么这个长方形的周长是10a?6b 7a+3b 10a+10b 12a+8b.代数式a?3a?7a?7与3?2a?3a?a的和是奇数偶数 5的倍数无法确定 10.如果A是三次多项式,B是三次多项式,那么A+B一定是六次多项式次数不高于3的整式三次多项式次数不低于3的整式二.填空题。

11.实数a?a?0?的相反数的倒数是 12.a,b两个数在数轴上表示如右图,则表示这两个数的两点之间的距离是。

13.单项式??r的系数是。

2322314.多项式a?21a?1的最高次项是15.一年期的存款的年利率为p%,利息个人所得税的税率为20%。

某人存入的本金为a元,则到期支出时实得本利和为元。

16.2a?4b?3与a?b的2倍是17.已知多项式ax?bx?cx?9,当x??1时,多项式的值为17。

则该多项式当x?1时的值是。

18.已知甲、乙两种糖果的单价分别是x元/千克和12元/千克。

为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是元/千克。

初一上册数学代数式求值试题

初一上册数学代数式求值试题

初一上册数学代数式求值试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为( )A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为( )A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为( )A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是( )A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为( )A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x ﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为( )A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是( )A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是( )A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为( )A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式 ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是( )A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时, ax3﹣3bx+4= a﹣3b+4=7,解得 a﹣3b=3,当x=﹣1时, ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18 .【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为 3 .【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b= 6 .【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015= 2005 .【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5= 1 .【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m= ﹣11 .【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1= 2 .【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1= 1 .【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3 .【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9 .【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是 3 .【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9 .【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故答案为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为 5 .【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3 .【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9 .【考点】代数式求值.【专题】整体思想.【分析】把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故答案为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。

2023-2024年初一年级数学求解代数式的值,例题、习题附加答案

2023-2024年初一年级数学求解代数式的值,例题、习题附加答案

求代数式的值练习目的:能用具体的数值代替代数式中的字母,求出代数式的值。

什么是代数式的值:通常我们将代数式中的字母用具体指代的数字代替,并按照代数式的运算法则运算出具体的数值结果,就成作为代数式的值。

例1学校为了开展校体育活动,需要购进一批篮球,要求每班能分配2个,学校后备余留15个。

那么学校需要购进多少个篮球?解:设前学校共有n个班级,那么学校需要购进的篮球总数为:n.2+15假设,现在学校有20个班级(即20n),那么篮球总数=就是:2=+20⨯.2+15n=5515进一步假设,现在学校有班级25个(即25n),那么篮=球总数就是:+⨯+2==n.651515225由例题可以看出,当n取值不同是,代数式15n的计算2+结果也不同。

当20=n时,n的值是55;当25=n时,代数式152+代数式15n的值是65.2+例2当375===,z ,y x 时,求代数式z)y x x(462-+的值. 解:z)y x x(462-+=)(3476525⨯-⨯+⨯⨯=12)42(105-+⨯=405⨯=200.例3根据下面a,b 的值,求代数式ab a -2的值: (1)205==,b a ;(2)24==,b a .解:(1)当205==,b a 时,代数式ab a -2的值为: a b a -2=52052-=425-=21. (2)当24==,b a 时,代数式ab a -2的值为: a b a -2=4242-=2116-=2115. 练一练:1、求下列代数式的值.(1)当2=x 时,求代数式12-x 的值. 解:当2=x 时,求代数式12-x 的值为:12-x =122-=3.(2)当3143==,y x 时,求代数式y)x(x -的值. 解:当3143==,y x 时,求代数式y)x(x -的值为: y)x(x -=)(314343-⨯=12543⨯=165. 2、当213==,b a 时,求下列代数式的值.(1)(b a +)2;(2)(b a -)2. 解:(1)当213==,b a 时,代数式(b a +)2的值为: (b a +)2=(3+21)2=2)27(=449. (2)当213==,b a 时,代数式(b a -)2的值为: (b a -)2=(213-)2=2)25(=425. 3、当25==,y x 时,求代数式yx y x 4354--的值. 解:当25==,y x 时,求代数式y x y x 4354--的值为: y x y x 4354--=24532554⨯-⨯⨯-⨯=8151020--=710. 4、当2085===c ,b a ,时,求下列代数式的值:(1)b )a)(c (c c --+;(2)b a a c +-.解:(1)当2085===c ,b a ,时,代数式b )a)(c (c c --+的值为:b )a)(c (c c --+=)820()520(20-⨯-+=20+1215⨯=20+180=200. (2)当2085===c ,b a ,时,代数式ba a c +-的值为:b a ac +-=85520+-=1315.。

初一数学七年级代数式的值练习题

初一数学七年级代数式的值练习题

初一数学七年级代数式的值练习题数学七年级代数式的值练习题一、判别题1、独自一个数如- 不是代数式( )2、s=r2是一个代数式( )3、当a是一个整数时,总有意义( )4、代数式的值不能大于15、x与y的平方和与x、y的和的平方的差为(x+y)2-(x2+y2)6、某工厂第一个月消费a件产品,第二个月增产x%,两个月共消费a+ax%二、填空:1、设甲数为x,乙数比甲数的3倍多2,那么乙数为2、设甲数为a,乙数为b,那么它们的倒数和为3、能被3和4整除的自然数可表示为4、a是一个两位数,b是一位数,假设把a放在b的左边,那么所在的三位数是5、一项工程甲独做需x天完成,乙独做需y天完成,甲先做2天,乙再参与做a天,这时完成的工程为6、一辆汽车从甲地动身,先以a千米/时速度走了m小时,又以b千米/时的速度走了n小时抵达乙地,那么汽车由甲地到乙地的平均速度为千米/时7、一件商品,每件本钱a元,将本钱添加25%定出价钱,后因仓库积压调作,按价钱的92%出售,每件还能盈利8、有一列数:1,2,3,4,5,6,,当按顺序从第2个数数到第6个数时共数了个数;当按顺序从第m个数数到第n个数(nm)时共数了个数。

9、某项工程,甲独自做需a天完成,乙独自做需b天完成,那么(1)甲每天完成工程的(2)乙每天完成工程的(3)甲、乙合做4天完成工程的(4)甲做3天,乙做5天完成工程的(5)甲、乙合做天,才干完成全部工程。

三、选择题:1、以下代数式中符号代数式书写要求的有( )① ②abc2 ③ ④ ⑤2(a+b) ⑥ah2A、1个B、2个C、3个D、4个2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为( )A、 B、 C、 D、3、矩形的周长为s,假定它的长为a,那么宽为( )A、s-aB、s-2aC、D、4、当a=8,b=4,代数式的值是( )A、62B、63C、126D、10225、假定代数式2y+3y+7的值为8,那么代数式4y2+6y-9的值是( )A、13B、-2C、17D、-76、假定a、b互为相反数,p、q互为倒数,m的相对值为5,那么代数式的值是( )A、-6B、-5C、-4D、0四、求代数式的值1、当a=7,b=9求值①4a+b ② ③ ④2、当时求代数式(ab+c)(2ac-b)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学代数式的值试题练习
一、判断题
1、单独一个数如-不是代数式
2、s=πr2是一个代数式
3、当a是一个整数时,总有意义
4、代数式的值不能大于1
5、x与y的平方和与x、y的和的平方的差为x+y2-x2+y2
6、某工厂第一个月生产a件产品,第二个月增产x%,两个月共生产a+ax%
二、填空:’
1、设甲数为x,乙数比甲数的3倍多2,则乙数为
2、设甲数为a,乙数为b,则它们的倒数和为
3、能被3和4整除的自然数可表示为
4、a是一个两位数,b是一位数,如果把a放在b的左边,则所在的三位数是
5、一项工程甲独做需x天完成,乙独做需y天完成,甲先做2天,乙再加入做a天,这时完成的工程为
6、一辆汽车从甲地出发,先以a千米/时速度走了m小时,又以b千米/时的速度走
了n小时到达乙地,则汽车由甲地到乙地的平均速度为千米/时
7、一件商品,每件成本a元,将成本增加25%定出价格,后因仓库积压调作,按价格的92%出售,每件还能盈利
8、有一列数:1,2,3,4,5,6,…,当按顺序从第2个数数到第6个数时共数了个数;当
按顺序从第m个数数到第n个数n>m时共数了个数。

9、某项工程,甲单独做需a天完成,乙单独做需b天完成,则
1甲每天完成工程的
2乙每天完成工程的
3甲、乙合做4天完成工程的
4甲做3天,乙做5天完成工程的
5甲、乙合做天,才能完成全部工程。

三、选择题:
1、下列代数式中符号代数式书写要求的’有
①②ab÷c2③④⑤2×a+b⑥ah2
A、1个
B、2个
C、3个
D、4个
2、a、b两数的平方差除以a与b的差的平方的商用代数式表示为
A、B、C、D、
3、矩形的周长为s,若它的长为a,则宽为
A、s-a
B、s-2a
C、
D、
4、当a=8,b=4,代数式的值是
A、62
B、63
C、126
D、1022
5、若代数式2y+3y+7的值为8,则代数式4y2+6y-9的值是
A、13
B、-2
C、17
D、-7
6、若a、b互为相反数,p、q互为倒数,m的绝对值为5,则代数式的值是
A、-6
B、-5
C、-4
D、0
四、求代数式的值
1、当a=7,b=9求值
①4a+b②③④
2、当时求代数式ab+c2ac-b的值。

3、当时,求代数式的值。

4、已知a=3b,c=,求的值。

5、已知a+19=b+9=c+8求代数式a-b2+b-c2+c-a2的值。

6、下列各式哪些是代数式?哪些不是代数式
1a2+12s=πr234a>b
52πr607a-2b85>-3
7、用代数式表示:
1与a-b的和是20的数
2与3a-2b的积是100的数
3除以x+y的商是a的数
4被5除商为b,余数为3的数。

8、指出下列每小题中的两个代数式的意义有什么不同。

1a+与a2ab-c与ab-c
3与4x+y2与x2y2
9、已知a+=5求代数式a+2+a-3+的值
10、当时求代数式的值。

11、若代数式2a2+3a+1的值为5,求代数式4a2+ba+8的值。

五、生产一批电视机,每天生产m台,计划生产a天,为适应市场需求,需提前3天完成,用代数式表示出每天应多生产多少台,并求当m=1000,a=28时每天多生产的数。

六、保险公司赔偿损失的计算公式为
保险赔款=保险金额×损失程度
损失程度=
若某人参加保险的财产价值为200000元,受损时,按当时市场价计算总值为150000元,受损后残值为30000元,请计算一下该投保户能获得多少保险赔偿?
感谢您的阅读,祝您生活愉快。

相关文档
最新文档