技能培训专题-发电机失步保护

技能培训专题-发电机失步保护

技能培训专题-发电机失步保护

发电机大修实验

电机大修后应作哪些试验: 1、发电机大修后一般应作如下项目的试验: (1)二次回路(操作保护)传动及检查; (2)发电机起动前之其他试验; (3)测静、转子回路直流电阻; (4)励磁机空载特性试验; (5)发电机短路特性试验; (6)发电机空载特性试验及层间耐压; (7)测量发电机静、转子励磁回路绝缘; (8)对民电机作交流耐压试验,直流耐压试验; 2、上述试验的作法及运行人员注意问题:① 测量发电机静、转子励磁回路绝缘电阻。因发电机在大修时,励磁机、发电机要解体进行检查处理,静、转子励磁机等线圈绝缘处于大气中,可能吸收潮气使绝缘降低。另外在整个大修过程中,各部绝缘有无损坏,碰坏或缺陷处理不好等现象。测量上述各部绝缘是一基本方法,这是因为绝缘电阻是衡量绝缘质量的一个主要指标,用它可以发现绝缘内有无贯穿的导电通路,并能发现由于高压作用于绝缘后而发展的缺陷,测绝缘的工作,一般在开机前由运行人员去作,发电机静、转子回路绝缘电阻应在通水前测量,绝缘电阻的数值不作具体规定,但应于历史测量结果比较分析,静子回路用1000—2500V摇表测量,应不低于0.5MΩ。若通水后测量的绝缘电阻值主要的是检查水质,一般为数百千欧(用万用表测量)测量绝缘时,使用摇表,万用表应遵守有关规定。② 对发电机作交流耐压试验的目的是为了检查定子绕组的主绝缘是否良好,检查绝缘水平,确定发电机能否投运。做此试验应用专用试验升压变压器及其他用具,耐压的试验电压,一般应为额定电压的1.3—1.5倍,持续时间为一分钟。③ 直流耐压试验,它能确定绝缘耐压强度,而对绝缘内部不会损伤,同时它还可以测量被测绝缘的泄漏电流,正常时泄漏电流与外加电压为一直线关系,若泄漏电流急剧增加时,则说明绝缘有问题。该试验所加电压应为额定电压的2.5倍,对于发电机的定子绕组来讲,在最高试验电压下,各相泄漏电流在20微安以上者,各相泄漏电流间的不对称系数应不大于2,各相差值应与历史试验值作比较,不应有显著差别。④ 测量静、转子回路直流电阻测量发电机静、转子回路直流电阻的目的,是为了检查线圈内部、端部、引出线的焊缝质量以及连接点的接触情况,实际是检查这些接头的接触电阻有无变化,若接触电阻大,则说明接触不良,该工作由高压试验人员做。⑤励磁机空载特性试验:为了检查鉴定大修后的励磁机各特性是否良好,并与厂家原特性曲线比较,一般在发电机与系统并列前,当汽机转速达3000转/分钟时作该试验,其方法如下:a、在励磁机磁场回路接一电流表(端子609),并接一电压表(端子6.03、6.04) b、断开发电机、工作励磁要刀闸,解除强励11ZK c、合上MK开关,慢慢调节RC电阻,逐点读取励磁机电压及其磁场电流,直至励磁机电压达到额定值为止。 d、采取上升、下降两条特、性曲线与原特性曲线比较应无较大差异。该试验由试验人员与运行人员共同作,操作时要调整缓慢均匀,读表计要求准确同时进行。⑥发电机短路特性试验:所谓短路特性,是发电机在额定转速的发电方式下,静子三相短路时,静子短路电流Id与励磁机电流il 成正比关系。利用此试验可判断发电机转子线圈有无匝间短路,此外,计算发电机的主要参数同其电抗xd短路比以及电压调整器的整定计算时也都需要得用短路特性试验。其方法如下: a、在发电机端子排A432、B431、C432回路中串接标准电流表。在灭磁盘励磁回路接直流电流表(603、604处)并接直流电压表。 b、在发电机主油开关处A、B、C出线上接三相短路线一组。 c、发电机恢复备用,投入各保护(此时甲刀闸在断开) d、合上发电

阐述发电机失步的原理及双遮挡器原理失步保护的整定计算

阐述发电机失步的原理及双遮挡器原理失步保护的整定计算 摘要:阐述南海发电一厂220kV 出线同杆并架双回线,电网调度为确保电网系统稳定性,电厂投入发电机组失步保护的必要性;以及着重介绍了基于双遮挡器原理的发电机组失步保护整定值计算方法。 关键词:振荡;失步保护;双遮挡器;整定计算 0 引言 2013年中旬,中调转发了电网总调《电厂安全稳定防线优化方案讨论会议纪要》,并要求我厂在具体时间内完成对机组失步保护定值优化调整工作,具体原则如下:1 )机组失步保护整定范围延伸至电厂送出线路对侧变电站,即延伸至 220kV 对侧变电站;2 )为分散动作风险,机组滑极次数定值分两轮整定。即不重要机组定义为第一轮跳闸对象,重要机组为第二轮跳闸对象,后者滑极次数需比前者大。 由于我厂无装设失步解列装置, 2台机组发变组保护亦无配置失步保护(机组为200MW 发电机,可不配置发电机失步保护),按中调通知要求需进行机组失步保护定值整定并投入。 1 针对我厂220kV 出线同杆并架双回线,发电机组失步保护投入的必要性 广东电网调度对全网电厂送出线路(同杆双回线)故障的稳定性进行核算,针对我厂220kV 出线(新南甲线、新南乙线为同杆双回线)分析研究,当两回线路同时或相继出现一回线路三相永跳故障与另一回线路单相瞬时故障现象时,线路电抗增加,回路的综合电抗X Σ变大,根据公式: P E = δsin ∑ ?X E U A (1-1) A E :发电机电动势; U:无穷大系统母线电压; X Σ:包括发电机电抗在内的发电机到无穷大系统母线的总电抗; δ:发电机电动势E A 与无穷大系统电压U 之间的功角; P E : 功率极限值。 功率极限值将变小,功角特性将由图曲线1变为曲线2,如图1-1所示。[1] 图1-1 系统故障时的功角特性曲线 在切除线路的瞬间,X Σ的增大以及发电机由于机械惯性,转速不变,功率角不变δ,由公式1-1可知,这时原动机供给发电机的功率仍为Pm ,发电机的对外输出功率P E 却减少了,此时发电机的运行点将由曲线1的a 点落到曲线2的b 点上,但是b 点运行时,功率是不平衡的。

发电机失磁跳闸原因分析及防止对策(2021年)

发电机失磁跳闸原因分析及防止对策(2021年) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0220

发电机失磁跳闸原因分析及防止对策 (2021年) 〔摘要〕叙述了大武口发电厂相继投入运行的JLQ-500-3000型交流励磁机(主励磁机)、YJL-100-3000交流永磁机(付励磁机)和GLT-S型励磁调节器,在运行期间,其发电机低励磁失磁保护先后动作跳闸了11次,严重危及西北电网及宁夏电网的稳定运行的情况,分析了失磁保护动作的原因,制定了相应的防止对策。 1发电机失磁跳闸的典型事例 (1)1987年9月14日19:23,发现3号机主励磁机炭刷冒火,电气运行值班人员在处理过程中,由于维护经验不足,调整电刷弹簧压力时将正、负极同时提起,使运行中的发电机励磁电流中断,造成失磁保护动作,3号机出口208开关跳闸。 (2)1987年11月28日,全厂2,3,4号机组运行,1号机组停

运,总负荷280MW,4号机组带80MW负荷运行。8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。4号机210开关跳闸,励磁调节B柜DZB开关联动,经查低励失步保护动作,励磁回路未发现异常情况。8:21,将4号机并入系统,当负荷加至80MW时,4号机再次出现上述现象,210开关跳闸。经分析认为励磁调节器有隐蔽性故障,故启动备用励磁机运行。4号机励磁调节柜停运后,经检查发现A柜综合放大器和电压反馈的R15电阻、C3滤波电容焊点孔位偏移,接头开焊脱落引起反馈电压波形畸变,导致励磁运行参数摆动,造成瞬间失磁。 (3)1989年6月29日,1,2,3,4号发电机运行,全厂总出力395MW。9:20,1号机无功负荷由65Mvar降至0,并出现“强励动作”、“强励限制”、“过负荷”光字,2号机出现“强励动作”、“强励限制”、“过负荷”、“失磁应减载”光字,调整1号机无功负荷把手加不上,急将调节器由“自动”倒为“手动”方式,将无功负荷增加到40Mvar,同时调整2号机无功负荷,使两台机组各参数趋于稳定。经查1号机有“低励失磁”动作信号,由于值班人员精心监盘,反应敏捷,

发电机失磁保护介绍(材料详实)

发电机失磁保护介绍 1 概述 同步发电机是根据电磁感应的原理工作的,发电机的转子电流(励磁电流)用于产生电磁场。正常运行工况下,转子电流必须维持在一定的水平上。发电机失磁故障是指励磁系统提供的励磁电流突然全部消失或部分消失。同步发电机失磁后将转入异步运行状态,从原来的发出无功功率转变为吸收无功功率。 对于无功功率容量小的电力系统,大型机组失磁故障首先反映为系统无功功率不足、电压下降,严重时将造成系统的电压崩溃,使一台发电机的失磁故障扩大为系统性事故。在这种情况下,失磁保护必须快速可靠动作,将失磁机组从系统中断开,保证系统的正常运行。 引起发电机失磁的原因大致有:发电机转子绕组故障、励磁系统故障、自动灭磁开关无跳闸及回路发生故障等。 2 发电机失磁过程中机端测量阻抗分析 发电机从失磁开始进入稳态异步运行,一般分为三个阶段: (1)失磁后到失步前 (2)临界失步点 (3)异步运行阶段 2.1隐极式发电机 以汽轮发电机经联络线与无穷大系统并列运行为例,其等值电路与正常运行时的向量图如图1所示。

图1 发电机与无限大系统并列运行 图中,d E 为发电机的同步电势,f U 为发电机机端相电压,s U 为无穷大系统相电压,I 为发电机定子电流,d X 为发电机同步电抗,s X 为发电机与系统之间的等值电抗,且有s d X X X +=∑ ,?为受端的功率因数角,δ为d E 与s U 之间的夹角(即功角)。 若规定发电机发出有功功率、无功功率时,表示为jQ P W -=,则 δsin ∑ =X U E P s d (1) ∑∑-=X U X U E Q s s d 2cos δ (2) 功率因数角为 P Q 1tan -=? (3) 在正常运行时,090<δ。090=δ为稳定运行极限,090>δ后发电机失步。 1. 失磁后到失步前 在失磁后到失步前的阶段中,转子电流逐渐减小,Ed 随之减小,随之增大,两者共同的结果维持发电机有功功率P 不变。与此同时,无功功率Q 随着Ed 的减小与的增大迅速减小,按(2)式计算的Q 值由正变负,发电机由发出感性无功转变为吸收感性无功。 此阶段中,发电机机端测量阻抗为 s s s s f f jX I U I jX I U I U Z +=+==& &&&&&& 带入公式jQ P U I s -=??&&,则

发电机电压过低的原因及检修方法

解读燃油发电机组的编号形式 发电机电压过低的原因及检修方法 1、原动机转速太低。 调整原动机转速至额定值。 2、励磁回路电阻过大。 减小磁场变阻器的电阻以加大励磁电流。对于半导体励磁发电机应检查附加绕组接头是否断线或接错等 3、励磁机电刷不在中性线位置,或弹簧压力过小。 将电刷调至正确位置,更换电刷,调整弹簧压力。 4、有部分整流二极管被击穿。 检查、更换被击穿的二极管。 5、定子绕组或励磁绕组中有短路或接地故障。 检查故障,予以清除。 6、电刷接触面太小,压力不足,接触不良。 如果由于换向器表面不光引起,可在低速下,用砂布磨光换向器表面,或调整弹簧压力。 发电机电压过高的原因及检修方法 1、转速过高。 减小水轮机导水翼开度,降低转速。 2、分流电抗器铁芯气隙过大。 改变电抗器铁芯垫片厚度,调整气隙。 3、磁场变阻器短路;调压失灵。 找出短路点,予以消除。

4、发电机事故飞车。 紧急停机进行事故处理。 轴承温升过高的原因及检修方法 1、润滑油不干净。 更换润滑油。 2、轴弯曲,中心线不准。 重新找中心。 3、轴承中滚珠或滚柱损坏。 更换新轴承。 4、基础螺丝松动。 拧紧基础螺丝。 5、润滑油使用时间过长,未更换。 洗净轴承,更换润滑油。 发电机振荡失步的特征表现及处理方法 一、发电机振荡失步的特征 (1)定子电流超出正常值,电流表指针将激烈地撞挡。 (2)定子电压表的指针将快速摆动。 (3)有功功率表指针在表盘整个刻度盘上摆动。 (4)转子电流表指针在正常值附近快速摆动。 (5)发电机发出鸣叫声,且叫声的变化与仪表指针的摆动频率相对应。 (6)其他并列运行的发电机的仪表也有相应的摆动 二、发电机振荡失步的时处理方法

三相同步发电机实验解读

1.同步发电机运行实验指导书2.发电机励磁调节装置实验指导书3.静态稳定实验(提纲,供参考) 4.发电机保护实验提示 5. 广西大学电气工程学院

同步发电机运行实验指导书 目录 一、实验目的 二、实验装置及接线 三、实验内容 实验一发电机组的起动和同步电抗Xd测定 实验二发电机同期并网实验 实验三发电机的正常运行 实验四发电机的特殊运行方式 实验五发电机的起励实验 四、实验报告 五、参考资料 六、附录 1.不饱和Xd的求法 2.用简化矢量图求Eq和δ 3.同期表及同期电压矢量分析

一、实验目的 同步发电机是电力系统最重要又最复杂的电气设备,在电力系统运行中起着十分重要的作用。通过实验,使学生掌握和巩固同步发电机及其运行的基本概念和基本原理,培养学生的实践能力、分析能力和创新能力,加强工程实线训练,提高学生的综合素质。 二、实验装置及接线 实验在电力系统监控实验室进行,每套实验装置以4KW直流电动机与同轴的1.5KW同步发电机为被控对象,配置常规仪表测量控制屏(常规控制)和自动控制屏(微机监控)。可实现对发电机组的测量、控制、信号、保护、调节、并列等功能,本次同步发电机运行实验,仅采用常规控制方式。 直流电动机-同步发电机组的参数如下: 直流电动机: 型号Z2-42,凸极机 额定功率4KW 额定电压DC220V 额定电流22A 额定转速1500r/min 额定励磁电压DC220V 额定励磁电流0.81A 同步发电机 型号STC-1.5 额定功率 1.5KW 额定电压AC400V(星接) 额定电流 2.7A 额定功率因数0.8 空载励磁电流1A 额定励磁电流2A 同步发电机接线如图电-01所示。发电机通过接触器1KM、转换开关1QS、

从保护试验中认识失磁保护

从保护试验中认识失磁保护 失磁保护:发电机失磁保护是发电机继电保护的一种。 定义:是指发电机的励磁突然消失或部分消失,当发电机完全失去励磁时,励磁电流 将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转 矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳 定极限角时,发电机与系统失去同步,此时发电机保护装置动作于发电机出口断路器,是发 电机脱离电网,防止发电机损坏和保护电网稳定运行,这种保护叫失磁保护。 关于失磁保护,大家可以简单理解成发电机没有励磁后,由发电机转变成电动机,发电机 机端测量阻抗,失磁前在阻抗平面R——X坐标第一象限,失磁后测量阻抗的轨迹沿着等有 功阻抗圆进入第四象限。随着失磁的发展,机端测量阻抗的端点落在静稳极限阻抗圆内, 转入异步运行状态。具体失磁过程见附件2. 测试对象:3080(V2.0D)发电机保护装置 测试仪器:昂立测试仪 失磁保护定值定值: Xa 5.77Ω Xb 17.31Ω延时0.4S (1)动作精度 实验方法:测试仪加电压UA 57.74V 0° UB 57.74V 240° UC 57.74V 120°, A:保持IA 90°、IB 310°、IC 210°角度不变,增加电流幅值,步长0.5A,记录动作数 据 (理论值电流从3.33到10为动作区。Imax=57.74/5.77=10 Imin=57.74/17.31=3.33) B:保持IA、IB、IC 幅值5.774A不变,增加电流角度,步长10度,记录动作值,继续增 加角度 直至复归,记录复归值。(理论值IA从60度到120度为动作区)

失步保护

水电站发变组失步保护动作分析 蒋琛1,闫涛1,张强1 (1.江苏省方天电力技术有限公司,江苏南京 211100) 摘要:介绍国内外主流发变组失步保护动作原理,分析一次水电站动作数据,分析了动作机理,并对同类型的失步保护应用提出建议。 关键词:水电站发变组失步保护 1.引言 针对江苏省内近年基建项目中大机组上的较多的情况,如扬州二厂600MW×2(已投运),华润常熟电厂660MW×2(其中1#机已投运),张家港华兴电厂395MW×2(燃机),戚墅堰电厂395MW×2(燃机),望亭电厂(395MW×2燃机),镇江电厂三期(660MW×2),常州国电(660MW×2),太仓环保电厂四期(660MW ×2)、华能太仓(660MW×2)、等厂,以及一批正在基建和已经运行的大型机组的发变机组保护都按稳定导则和设计规程的要求配置了失步保护,但也有例外的是华能南通电厂的350MW机组未配置发电机失步保护。 因此我们认为有必要对这些失步保护的性能进行研究,通过现场试验来分析这些失步保护在系统受到扰动时,是否存在不正确动作的可能行,以杜绝影响电网安全、稳定和不必要跳机的不利因素。 2.各保护原理分析 LPS失步保护原理(录自GE公司LPS保护说明书) 沙河电站的发变机组保护RS489中不具备失步保护的功能,故外方采用微机型线路保护LPS(为GE公司的早期产品,需要说明的是:用于线路保护的失步判别元件主要是防止线路保护的阻抗元件发生误动,当系统发生扰动,即使失步判别元件误动,也只是短暂闭锁这套线路保护,而用于大型发变机组和水轮机组的失步保护则是不允许这种不应该的误动)中的振荡闭锁元件作为水轮机组的失步保护。其动作逻辑见图2-1。 当系统发生振荡,且阻抗轨迹进入OUTER 动作特性圆(图2-1)后,与门AND61的一个输入来自OUTER,另一输入来自MIDDLE从或门OR61输入,如果阻抗轨迹在OUTER和MIDDLE中间停留的时间超过时间启动整定值TLOS1后,则TLOS1动作并使得AND61的一个输入为1,只要OUTER动作,TLOS1就将一直保持在动作状态。 当发生短路故障,由于OUTER,MIDDLE 同时动作,MIDDLE动作信号通过NOT61闭锁,TLOS1将不动作。 图1. LPS失步保护的动作逻辑 振荡的阻抗轨迹将进入MIDDLE(图2-2),但还停留在INNER外时,AND62的一个输入被TLOS1触发,另一输入则是MIDDLE本身, 第三个输入则由INNER的非门NOT62决定,如果振荡引起的阻抗轨迹在MIDDLE 和

发电机的主要保护

发电机的主要保护 1. 继电保护及自动装置的一般规定 继电保护及自动装置是保证电网运行。保护电气设备的主要装置,保护装置使用不当或不正确动作将会引起事故或事故扩大,损坏电气设备甚至整个电力系统瓦解。 1)继电保护盘的前后,都应有明显的设备名称,盘上的继电器、压板和试验部件及端子排都应有明显的标志名称,投入运行前由继保人员负责做 好。 2)任何情况下,设备不容许无保护运行,若开关改非自动,应在有关调度和本厂领导同意下情况方可短时停用其中一部分保护。 3)继电保护和自动装置的投入、停用、试验或更改定值,如由系统调度管理的设备,则应按调度命令执行;如由本厂管理的设备,则应按值长命 令执行。 4)运行人员一般只进行投入,切除装置的压板、控制开关(切换开关)和操作控制电源的操作,在事故处理或发生异常情况时,可以在查明图纸 的情况下进行必要的处理,并做好必要记录。 5)运行人员处的继电保护图纸应经常保持正确完整。当继电保护回路接线变动后,检修人员应及时送交异动报告和修改底图。 2.继电保护及自动装置的维护与管理 1).值班人员在接班时,应巡视保护装置,并检查以下项目: (1)继电保护及自动装置罩壳是否完好,无过热、水蒸汽、异声等不正常现象

。 (2)继电保护及自动装置信号应指示正确。 (3)继电保护及自动装置的运行方式,出口压板等应符合被保护设备的当时运行方式, (4)所有保护装置应保持清洁,做保护装置清洁工作时,要小心谨慎,对保护装置不可敲击,并注意固定不可靠的电阻,灯座,小线等。 (5)监视直流母线电压在220V左右,以防止因直流电压不正常而使保护装置拒动或误动作。监视直流系统绝缘正常,以防止因系统绝缘降低或直流接地造成保护装置误动作 (6)开关跳、合闸回路应良好(跳闸灯亮代表合闸回路正常,合闸灯亮代表跳闸回路正常;跳、合闸灯同时亮或不亮代表回路不正常)。 2).系统发生异常或事故时,值班人员应进行下列工作: (1)立即检查保护装置有无动作,哪些保护动作信号有指示。 (2)准确记录保护动作,电流冲击、电压摆动,负荷变化情况,开关跳闸、合闸时间, 当时的一次系统运行方式,故障发生地点、现象等。 (3)各种保护与自动装置动作情况详细记录后,对装置进行检查,复归信号。(4)保护动作开关跳闸,在强送电前,应先复归保护。 (5)向值长或调度报告发生的异常情况;并说明哪些保护动作,哪些开关跳闸、合闸及时间。 (6)若遇保护及自动装置动作异常,应通知检修人员处理。 (7)退出或投入继电保护及自动装置应按调度或值长命令执行.并将上述情况记在值班记录簿内。对于有可能误动的保护装置,必须先退出,事后报告值长,通知继电人员处理。

发电机失磁保护.

发电机失磁微机保护的研究 摘要:介绍了现阶段的发电机失磁保护装置、发电机失磁保护的4种主要判据,并针对阻抗Ⅱ段和低电压判据延时较长的不足,提出利用发电机功率变化量作为失磁保护辅助加速判据。还研究了失磁保护方案存在的问题,针对相应的问题提出微机失磁保护新方案,并对新方案进行了介绍。 关键词:失磁保护;失磁保护判据;功率变化量;辅助加速判据;微机失磁保护新方案。 0 引言 中国历年来的发电机失磁故障率都比较高,因而,发电机失磁保护受到广泛重视。近年来,国内在发电机失励磁分析和试验方面做了很多工作,取得了很大的成绩。在失磁保护装置方面也已经开发出了多种型号的装置,其性能基本满足了电力系统的要求。现阶段新型微机失磁保护判据组合及作用结果包括如下四方面的内容:a.失磁保护Ⅰ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据、功率判据和无功反向判据组合。失磁保护Ⅰ段投入,发电机失磁时,0.5 s降出力; b.失磁保护Ⅱ段:系统低电压判据、定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。失磁保护Ⅱ段投入,发电机失磁时, 系统电压低于整定值,延时0.8 s 动作切发变组主断路器、灭磁断路器、厂用电源断路器及励磁系统各断路器; c.失磁保护Ⅲ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。失磁保护Ⅲ段保护投入,发电机失磁后,延时1.5 s,动作于“报警”,也可动作于“切换备用励磁”,或者动作于“跳闸”,有3种状态供选择; d.失磁保护Ⅳ段:定子阻抗判据和无功反向判据组合。失磁保护Ⅳ段为长延时段,只判断定子阻抗判据,在减出力、切换备用励磁无效的情况下,5 min动作于“跳闸”。 1 发电机失磁后的基本物理过程及产生的影响 发电机失磁故障是指发电机的励磁突然消失或部分消失。对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。 当发电机完全失去励磁时,励磁电流将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳定极限角时,发电机与系统失去同步。发电机失磁后

对发电机失磁保护的浅析

对发电机失磁保护的浅析 摘要:发电机的失磁保护和失步保护对于发电机而言非常重要,一般而言,两种保护的依据都是故障时的阻抗变化轨迹特性,因此两者在某些阻抗区域的动作会有重叠,从而造成失磁保护和失步保护的逻辑运算冲突。本文从发电机失磁保护和失步保护的分析出发,进而探讨了发电机失磁保护和失步保护的冲突,最后提出了两种保护的协调方案。 关键词:失磁保护;失步保护;冲突 目前,大部分的发电机在某种程度上都允许一定的进相运行,选择的是异步圆当作失磁保护的动作阻抗区域;而失步保护所使用的动作阻抗区域则为一种叶形区域。两者的保护依据主要取决于阻抗的变化,而在实际的运用中,对于失磁保护而言,除了受到了阻抗的影响也受到了其他因素的影响,比如转子电压,这个因素同时也是区分失磁故障与失步故障的一个依据。 1发电机失磁现象 发电机失磁[1,2]是指正常运行发电机的励磁电流全部的或部分的消失现象。引起发电机失磁原因有:励磁机故障、自动灭磁开关误跳闸、转子绕组故障、回路发生故障以及误操作、半导体励磁系统中某些元件的损坏等等。失磁是发电机常见故障形式之一,特别是大型发电机组,由于励磁系统环节较多,因而也加了发生失磁的机会。发电机发生失磁以后,励磁电流将逐渐衰减至零,发电机的感应电势Ed随着励磁电流的减小而不断减小,电磁转矩将小于原动机的转矩,因而使转子加速,导致发电机功角增大。当发电机功角超过静稳极限角时,发电机将会与电力系统失去同步。发电机失磁后将从系统中吸取一定的感性无功来供给转子励磁电流,转子会出现转差,在定子绕组中感应电势,定子电流增大,定子电压下降,有功

功率下降,而无功功率反向并不断增大,在转子回路会有差频电流产生,整个系统的电压会下降,某些电源支路也会产生过电流,发电机的各个电气量不断的摆动,严重威胁发电机和整个电力系统的安全稳定运行。 2发电机失磁危害 发电机失磁后,发电机转子和定子磁场间出现了速度差,则在转子回路中感应出差频电流,引起转子局部过热,甚至灼伤,同时发电机受交变异步电磁力矩冲击而发生振动,尤其在重负荷下失磁将发生剧烈振动,直接威胁机组安全运行。此外,发电机从系统吸收无功功率引起系统电压下降,如果系统无功储备不足则可能使系统电压低于允许值,甚至电压崩溃而瓦解系统。 3发电机失磁保护判据 3.1定子侧阻抗判据 定子阻抗判据有静稳边界阻抗判据和异步边界阻抗判据2 种。静稳边界阻抗判据是根据发电机失去静稳时机端阻抗的变化轨迹而设立的,异步边界阻抗判据是根据发电机失磁后转入稳定异步运行时机端阻抗的变化轨迹而设立的,动作时间比较晚。静稳边界阻抗判据和异步边界阻抗判据动作区域都为圆,如图1 所示。 3.2转子低电压判据 转子低电压判据也是根据发电机的静稳边界而设计的,包括等励磁电压判据和变励磁电压判据。等励磁电压判据动作电压值为定值,一般为额定空载励磁电压的80 %。变励磁电压判据的动作电压值随发电机输出的有功功率变化而改变 3.3三相同时低压判据与过功率判据 三相同时低压判据分为主变高压侧三相低压判据和机端三相低压判据。主变高压侧三相低压判据防止发电机失磁故障造成高压母线电压的严重下降,导致系统稳定性破坏,动作电压取

发电机频繁启停机危害分析

发电机频繁启停机危害分析 发电机作为电厂最重要的一次设备之一,其安全运行和检修维护一直备受关注,而威胁发电机安全运行的因素很多,文章主要阐述的是频繁启停机对发电机的危害及维护检修措施。 标签:同期并网;相位差;幅值差 目前,发电厂运行方式受电网调度和某些特殊运行方式下,存在长期调峰频繁启停机,此类发电机的运行工况是比较恶劣的。 首先,发电机会在短时间内(如一周内)多次开机并列。同期并列过程实际上对发电机存在影响,虽然自动准同期并网方式已经广泛应用,但由于目前技术还无法做到完全无扰并网,在并网瞬间存在着电压差、相角差和频率差,会对发电机定子和转子造成一定损伤(取决于压差、频差和相角差幅值),特别是会在发电机转子上产生以较大的扭矩,长时间密集同期并列会对发电机定、转子产生危害,造成诸如线圈绑扎松动,铁芯松动,端部发热等机械应力伤害和绝缘下降。具体分析如下: 1 电压幅值差对发电机造成的影响 假设带并侧U和系统侧Us 同相位,且带并侧f =系统侧fs ,而电压幅值不同,并列时会产生冲击电流。发电机阻抗是感性的,这时发电机电流Ij 属于无功性质,其有效值为Ij=Ud/jX″d。当U>Us时,Ij滞后Ud90°,该电流对发电机起去磁作用,使U降低,发电机并列后立即输出无功负荷。当U

发电机大修后应作哪些试验

发电机大修后应作哪些试验 1、发电机大修后一般应作如下项目的试验: (1)二次回路(操作保护)传动及检查; (2)发电机起动前之其他试验; (3)测静、转子回路直流电阻; (4)励磁机空载特性试验; (5)发电机短路特性试验; (6)发电机空载特性试验及层间耐压; (7)测量发电机静、转子励磁回路绝缘; (8)对民电机作交流耐压试验,直流耐压试验; 2、上述试验的作法及运行人员注意问题: ①测量发电机静、转子励磁回路绝缘电阻。 因发电机在大修时,励磁机、发电机要解体进行检查处理,静、转子励磁机等线圈绝缘处于大气中,可能吸收潮气使绝缘降低。另外在整个大修过程中,各部绝缘有无损坏,碰坏或缺陷处理不好等现象。测量上述各部绝缘是一基本方法,这是因为绝缘电阻是衡量绝缘质量的一个主要指标,用它可以发现绝缘内有无贯穿的导电通路,并能发现由于高压作用于绝缘后而发展的缺陷,测绝缘的工作,一般在开机前由运行人员去作,发电机静、转子回路绝缘电阻应在通水前测量,绝缘电阻的数值不作具体规定,但应于历史测量结果比较分析,静子回路用1000—2500V摇表测量,应不低于0.5MΩ。 若通水后测量的绝缘电阻值主要的是检查水质,一般为数百千欧(用万用表测量)测量绝缘时,使用摇表,万用表应遵守有关规定。 ②对发电机作交流耐压试验的目的是为了检查定子绕组的主绝缘是否良好,检查绝缘水平,确定发电机能否投运。做此试验应用专用试验升压变压器及其他用具,耐压的试验电压,一般应为额定电压的1.3—1.5倍,持续时间为一分钟。 ③直流耐压试验,它能确定绝缘耐压强度,而对绝缘内部不会损伤,同时它还可以测量被测绝缘的泄漏电流,正常时泄漏电流与外加电压为一直线关系,若泄漏电流急剧增加时,则说明绝缘有问题。该试验所加电压应为额定电压的2.5倍,对于发电机的定子绕组来讲,在最高试验电压下,各相泄漏电流在20微安以上者,各相泄漏电流间的不对称系数应不大于2,各相差值应与历史试验值作比较,不应有显著差别。 ④测量静、转子回路直流电阻 测量发电机静、转子回路直流电阻的目的,是为了检查线圈内部、端部、引出线的焊缝质量以及连接点的接触情况,实际是检查这些接头的接触电阻有无变化,若接触电阻大,则说明接触不良,该工作由高压试验人员做。 ⑤励磁机空载特性试验: 为了检查鉴定大修后的励磁机各特性是否良好,并与厂家原特性曲线比较,一般在发电机与系统并列前,当汽机转速达3000转/分钟时作该试验,其方法如下: a、在励磁机磁场回路接一电流表(端子609),并接一电压表(端子 6.03、6.04)

发电机失磁保护的典型配置方案

发电机失磁保护的典型配置方案 1 引言 励磁系统是同步发电机的重要组成部分,对电力系统及发电机的稳定运行有十分重要的影响。由于励磁系统相对较为复杂,主要包括励磁功率单元和励磁控制部分,因而励磁故障的发生率在发电机故障中是较高的。加强失磁保护的研究,找到一个合理而成熟可靠的失磁保护配置方案是十分必要的。 由于失磁保护的判据较多,闭锁方式和出口方式也较多,因此失磁保护的配置目前在所有发电机保护中最复杂,种类也最多。据国内一发电机保护的大型生产厂家统计,2000年中,该厂所供的失磁保护配置方案就有20多种。如此之多的配置方案对于现场运行是十分不利的。不仅业主和设计部门难以作出选择,而且整定、调试、运行、培训都变得复杂。这样,现场运行经验和运行业绩不易取得,无法形成一个典型方案以提高设计、整定效率和运行水平,也不利于保护的成熟和完善。从电网运行中反映,失磁保护的误动率较高。 湖北襄樊电厂4台300MW汽轮发电机组,首次在300MW发电机组上采用国产WFB-100微机保护,经过近3年的现场运行,其失磁保护在试运行期间发生过误动作,在采取一定措施后,未再误动。近年来,失磁保护先后经过数次严重故障的考验和进相运行实验,都正确动作。本文将分析该厂失磁保护方案的特点,并以此为典型方案,以供同行借鉴参考。 2 失磁保护的主判据 目前失磁保护使用最多的主判据主要有三种,分别是 1)转子低电压判据,即通过测量励磁电压U fd 是否小于动作值; 2)机端低阻抗判据Z<; 3)系统低电压U m <。三种判据分别反映转子侧、定子侧和系统侧的电气量。 2.1转子低电压判据U fd 早期的整流型和集成电路型保护,采用定励磁电压判据,表达式为: U fd <K·U fd0 , U fd0 为空载励磁电压,K为小于1的常数。 目前的微机保护,多采用变励磁电压判据U fd (P),即在发电机带有功P的工况下,根据静稳极限所需的最低励磁电压,来判别是否已失磁。正常运行情况下(包括进相),励磁电压不 会低于空载励磁电压。U fd (P)判据十分灵敏,能反映出低励的情况,但整定计算相对复杂。因 为U fd 是转子系统的电气量,多为直流,而功率P是定子系统的电气量,为交流量,两者在一个判据进行比较。如果整定不当很容易导致误动作。 在襄樊电厂1#机试运行期间就因为该判据整定值偏大而误动2次。经检查并结合进相运行 试验数据进行分析发现,整定值K偏大的主要原因是在整定计算中,发电机空载励磁电压U fd0 、 同步电抗X d ,均采用的是设计值,而设计值与实测值有较大的差别[1]。如襄樊电厂1#机的设计 值U fd0=160V,X d =1.997(标么值),而实测值U fd0 =140V,X d =1.68(标么值)。由此造成 发电机在无功功率较小或进相运行时,U fd (P)判据落入动作区而误动。这种情况,在全国其他 地区也屡有发生,人们往往因此害怕用此判据。对于水轮机组,由于X d 与X q 的不同,整定计算 就更繁琐一些[2]。 但是勿容置疑的是,该判据灵敏度最高,动作很快。如果掌握好其整定计算方法,在整定 计算上充分考虑空载励磁电压U fd0和同步电抗X d 等参数的影响,或在试运行期间加以实验调整, 不仅可以避免误动作,而且是一个十分有效的判据。能防止事故扩大而被迫停机,特别适用于

发电机保护现象、处理

发电机保护1 对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 发电机保护简介 1、发电机失磁保护 失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。静稳阻抗判据在失磁后静稳边界时动作。TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A

发电机过压保护实验

发电机过压保护实验 一、实验目的 1、掌握发电机电压保护的电路原理,工作特性、使用及整定原则。 2、通过安装调试理解过压保护中各继电器的功用和整定调试方法。 3、掌握发电机过压保护的电路接线和实验操作技术。 二、预习与思考 1、图17—1的过电压保护电路中,每一个继电器承担着什么任务?能否少用几个? 2、图17—1电路中各个继电器的参数是根据什么原则整定的? 3、假如图17—1中信号继电器的电流线圈误接入电压回路会现什么后果? 4、为什么安装调试时只断开电压继电器与电压互感器的连接,在电压继电器线圈上加调试 电压就可以进行调试整定? 5、为什么四个继电器中只有YJ是测量元件? 三、原理说明 发电机保护是一套防止输出端电压升高而使发电机绝缘受到损害的继电保护装置。 当运行中的发电机突然甩掉负荷或者带时限切除距发电机较近的外部故障时,由于转子旋转速度的增加以及强行励磁装置动作等原因,发电机的端电压升高。 对于水轮发电机,由于调速系统惯性较大,使动作过程缓慢,因此在突然失去负荷时,转速将超过额定值,这时发电机输出端电压有可能高达额定值的1.8~2倍,为了防止发电机的绝缘受到损坏,在水轮发电机上一般应装设过电压保护。 对于汽轮发电机,由于它装有快速动作的调速器,当转速超过额定值的10%后,汽轮机的危急保安器会立即动作,关闭主汽门,能有效防止由于机组转速升高引起的过电压,因此,对汽轮发电机一般不考虑装设过电压保护。但为确保大型汽轮发电机的安全,对中间再热式的大型机组,由于其工频调节器调节过程比较迟缓,励磁系统反应的速度也比较缓慢,因此,在大型汽轮发电机也有必要装设过电压保护装置。 (一)保护装置原理接线图 过电压保护装置的原理接线如图17—1所示,由于过电压是三相对称出现的,故只需装一只电压继电器作为测量元件。保护由接在发电机输出端的电压互感器上的一个过电压继电器YJ以及时间继电器SJ、信号继电器XJ、保护出口中间继电器BCJ等组成。保护动作后跳开发电机断路器和灭磁开关,对大型发电机—变压器组则跳开变压器高压侧断路器及灭磁开关。 (二)保护装置动作值的整定 保护的动作电压可按下式进行计算: Udb=(1.2~1.5)UFe (17-1) 式中UF—发电机额定相间电压。 继电器的动作电压则为: nY b Ud j Ud . . (17—2) 保护的动作时限,一般取0.5秒。式中:nY—电压互感器变比。

发电机常见故障新版

发电机常见故障、事故处理 第一、发电机的异常运行及处理 一、发电机过负荷: 1.现象: 1)定子电流指示超过额定值 2)有、无功表指示超过额定值 2.原因:系统发生短路故障、发电机失步运行、成群电动机启动和强行励磁等情况下,发电机的定子或转子都可能短时过负荷。 3.处理方法: 1)系统故障,监视发电机各部分温度不超限,定子电流为额定值。 2)系统无故障,单机过负荷,系统电压正常: A.减少无功,使定子电流降到额定值以,但功率因数不超过0.95,定子 电压不低于0.95倍额定电压。注意定子电流达到允许值所经过的时间,不允许超过规定值。 B.若减少无功不能满足要求,则请示值长降低有功。 C.若AC励磁调节器通道故障引起定子过负荷,应将AC调节器切至DC 调节器运行。 D.加强对发电机端部、滑环和整流子的检查。如有可能加强冷却:降低发 电机入口风温,发电机、变压器组增开油泵、风扇等。 E.过负荷运行时,应密切监视定子线圈,空冷器前后的冷、热风温度、机 组振动摆度,不准超过允许值,并作好详细的记录。 二、发电机三相电流不平衡: 1.现象:

1)定子三相电流指示互不相等,三相电流差较大,负序电流指示值也增大。 2)当不平衡超限且超过规定运行时间时,负序信号装置发“发电机不对称过 负荷”信号。 3)造成转子的振动和发热。 2.原因: 1)发电机及其回路一相断开或断路器一相接触不良。 2)某条送电线路非全相运行。 3)系统单相负荷过大:如有容量巨大的单相负载。 4)定子电流表或表计回路故障也会使定子三相电流表指示不对称。 3.处理方法: 当发电机三相电流不平衡超限运行时,若判明不是表计回路故障引起,应立即降低机组的负荷,使不平衡电流降到允许值以下,然后向系统调度汇报。等三相电流平衡后,再根据调度命令增加机组负荷。水轮发电机的三相电流之差,不得超过额定电流的20%,同时任何一相的电流,不得大于其额定值。水轮发电机允许担负的负序电流,不得大于额定电流的12%。 三、发电机温度异常: 1.现象:发电机绕组或铁心温度比正常值明显升高或超限,发电机各轴承温度比正常值明显升高或超限。 2.原因: 1)测量元件故障 2)冷却系统故障:冷却水压不够、冷却水量不足、管路堵塞、破裂或阀心脱 落。 3)三相电流不平衡超限引起温度升高。 4)发电机过负荷。

发电机失步保护介绍

发电机失步保护介绍 1 概述 当发电机正常运行时,发电机与电力系统的电动势以同样的工频角频率旋转,之间的相位差维持不变,发电机处于同步稳定运行状态。如果受到某种干扰,发电机与系统之间的电动势以不同的角频率旋转,线路两侧电动势相位差不断变化,此时称作发电机失步。 发电机失步后,两侧电动势之间的夹角δ在0°到360°间不断变化。发电机机端电压与电流也呈周期性变化,因此需要对失步时的机端测量阻抗进行分析。 2 发电机失步时电气量变化分析 发电机失步时电压、电流变化 以发电机带无穷大系统为例,发电机电势为Eg ,系统侧电势为Es ,各回路等值阻抗如图1中所示。 s s U E ? ?=? ? ? 图1 发电机带无穷大系统 如图1中所示,发电机失步前,保护安装处为送电端,g E 超前S E ,假设两侧电动势 幅值相等,则δj g s e E E -= ,夹角δ由线路传输的有功功率决定。 此时发电机机端电流为: ∑ -∑-=-=Z e E Z E E I j g s g )1(δ (1)

发电机机端电压为: g g Z I E U -= (2) 绘制出发电机带无穷大系统时对应的相量图,如图2所示。事实上,将式(1)带入式(2),则有 ∑ --=Z Z E E E U g s g g )( 可以看出,如果系统中各元件的阻抗角都相同的话,系统中各点的电压相量的端点都落 在图2中)(s g E E -的相量上。由(1)式知,当δ=180°时,∑ =Z E I g 2,此时线路中电 流最大,电流在阻抗g Z 上产生的压降最大,此时发电机机端电压最低。 发电机失步时,系统中电压最低的一点C ,称作振荡中心。可在图2中作垂直于 )(s g E E -的相量c U ,此点电压最低,即为振荡中心。 s 图2 发电机带无穷大系统的相量图 发电机失步时的机端测量阻抗 当发电机失步时,保护安装处的电压与电流幅值与相位都将随着两侧电动势夹角δ的变化而变化。因此,反映电压和电流比值的阻抗继电器的测量阻抗幅值和相位也将随 δ而变化。如果两侧电动势幅值相等,即E E E s g == ,发电机出口处测量阻抗为: g j g j g g g g g g g Z e Z Z Z e E E Z I E I Z I E I U Z --=--=-=-==-∑ ∑ -δ δ1)1(

相关文档
最新文档