高考数学模拟试题(一).pdf
湖南师大附中2019届高考模拟卷(一)文科数学(PDF版)

湖南师大附中2019届高考模拟卷(一)数学(文科)第I 卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合⎭⎬⎫⎩⎨⎧-==x x y x M 2lg|,{}1|<=x x N ,则=N M ()A .()10,B .(]20,C .[)21,D .()∞+,02.如果复数i ai +-12)(R a ∈为纯虚数,则=a ()A .2-B .0C .1D .23.如图是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的平均价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅众高到低居于前三位的城市为天津、西安、厦门4.记n S 为等差数列{}n a 的前n 项和,若33=a ,216=S ,则数列{}n a 的公差为()A .1B .1-C .2D .2-5.已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2ln =c ,则a ,b ,c 的大小关系为()A .ba c <<B .a cb <<C .c a b <<D .a b c <<6.在长方体1111D C B A ABCD -中,1=AB ,2=AD ,31=AA ,则异面直线11B A 与1AC 所成角的余弦值为()A .1438B .1414C .1313D .317.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数a x y =,[)+∞∈,0x 是增函数的概率为()A .53B .54C .43D .738.已知函数x x x x f 2sin 2cos sin 2)(-=,给出下列四个结论:①函数)(x f 的最小正周期是π;②函数)(x f 在区间⎥⎦⎤⎢⎣⎡85,8ππ上是减函数;③函数)(x f 的图象关于点⎪⎭⎫ ⎝⎛-0,8π对称;④函数)(x f 的图象可由函数x y 2sin 2=的图象向右平移8π个单位,再向下平移1个单位得到.其中正确结论的个数是()A .1B .2C .3D .49.a 实常数,下列图象中可以作为函数a x x x f +=2)(的图象的有()A .1个B .2个C .3个D .4个10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A 、B两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A 、B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为()A .320千元B .360千元C .400千元D .440千元11.在ABC ∆中,已知3=AB ,32=AC ,点D 为BC 的三等分点(靠近C ),则BC AD ⋅的取值范围为()A .()53,B .()355,C .()95,D .()75,12.已知不等式x m x 21-<-在[]20,上恒成立,且函数mx e x f x -=)(在()∞+,3上单调递增,则实数m 的取值范围为()A .()()∞+∞-,,52B .()(]352e ,, ∞-C .()(]252e ,, ∞-D .()(]351e ,, ∞-第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.若角α的顶点在坐标原点,始边为x 轴的正半轴,其终边经过点)4,3(0--P ,则=αtan .14.如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为.15.设双曲线C :12222=-by a x )0,0(>>b a 的左焦点为1F ,过左焦点1F 作x 轴的垂线交双曲线C 于M 、N 两点,其中M 位于第二象限,),0(b B ,若BMN ∠是锐角,则双曲线的离心率的取值范围是.16.定义在()+∞,0上的函数)(x f 满足:①当[)3,1∈x 时,21)(--=x x f ;②)(3)3(x f x f =.设关于x 的函数a x f x F -=)()(的零点从小到大依次为1x ,2x ,…,n x ,….若()3,1∈a ,则=+++n x x x 221 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题满分12分)等比数列{}n a 的各项均为正数,且13221=+a a ,62239a a a =.(1)求数列{}n a 的通项公式;(2)设n n a a a b 32313log log log +++= ,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和.18.(本小题满分12分)在多面体ABDE C -中,△ABC 为等边三角形,四边形ABDE 为菱形,平面ABC ⊥平面ABDE ,2=AB ,3π=∠DBA .(1)求证:CD AB ⊥;(2)求点B 到平面CDE 的距离.19.(本小题满分12分)2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用33+模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取n 名学生进行调查.(1)已知抽取的n 名学生中含女生45人,求n 的值及抽取到的男生人数;(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的n 名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的22⨯列联表.请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率。
高考数学模拟试题及答案.pdf

不能提前交卷离场 按照规定,在考试结束前,不允许考生交卷离场。如考生确因患病等原因无法坚持到考 试结束,由监考老师报告主考,由主考根据情况按有关规定处理。 5
②
与直线
相交,所得弦长为 2
③设 A、 B 为两个定点, m为常数,
,则动点 P 的轨迹为椭圆
④若椭圆的左、右焦点分别为 对称点 M的轨迹是圆
F1、 F2,P 是该椭圆上的任意一点,则点
F2 关于∠F1PF2 的外角平分线的
其中真命题的序号为
(写出所有真命题的序号) .
三、解答题(本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤)
A. 90 个
B . 120 个
C. 180 个
D . 200 个
10.下列说法正确的是 ( ) A.“x2=1”是“ x=1”的充分不必要条件 B.“ x= - 1”是“x2-5x- 6=0”的必要不充分条件
C.命题“
使得
”的否定是:“
均有
”
D.命题“若 α=β,则 sin α=sin β”的逆否命题为真命题
高考数学模拟试题 ( 一)
一、选择题(本题Βιβλιοθήκη 12 个小题,每题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合
要求的,请把符合要求一项的字母代号填在题后括号内
.)
1. 已知集合 M={x∣ -3x - 28 ≤0},N = {x|
2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)

一、单选题1. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A∩B=( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]2. 已知正四棱台的上下底面边长分别为4,6,高为,E是的中点,则下列说法正确的个数是()①正四棱台的体积为;②平面平面;③平面;④正四棱台的外接球的表面积为A .1B .2C .3D .43. “数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相同,若中间空格已填数字4,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从大到小排列的,则不同的填法种数为( )4A .70B .120C .140D .1444.若,则有( )A.B.C.D.5. 一个四面体的三视图如图所示,则该几何体的外接球的表面积与体积之和为()A.B.C.D.6.已知直线与, 轴的正半轴分别交于点,,与直线交于点,若(为坐标原点),则, 的值分别为A .,B .,C .,D.,7. 已知函数(,)的图象如图所示,则的值是()2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)二、多选题三、填空题A.B.C.D.8. 定义区间,,,的长度为.如果一个函数的所有单调递增区间的长度之和为,那么称这个函数为“函数”,下列四个命题:①函数是“函数”;②函数是“函数”;③函数是"m 函数",且“函数,且”;④函数是“函数,且”.其中正确的命题的个数为( )A .4个B .3个C .2个D .1个9. 如图,正方形ABCD 的边长为1,M ,N 分别为BC ,CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,以下结论中正确的是()A .异面直线AC 与BD 所成的角为定值B .三棱锥的外接球的表面积为C .存在某个位置,使得直线AD 与直线BC 垂直D .三棱锥体积的最大值为10. 设函数,且相邻两条对称轴之间的距离为,,,则( )A .,B.在区间上单调递增C.将的图象向左平移个单位长度,所得图象关于轴对称D .当时,函数取得最大值11. 下列关于余弦函数说法正确的是( )A.最小正周期是B .最小正周期是C.值域是D.值域是E .定义域是R 12. 一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点,椭圆的短轴与半圆的直径重合.若直线与半圆交于点A,与半椭圆交于点,则下列结论正确的是()A.椭圆的离心率是B .线段长度的取值范围是C .面积的最大值是D .的周长存在最大值13. 已知函数在区间上有且仅有3个对称中心,给出下列四个结论:四、解答题①的值可能是3; ②的最小正周期可能是;③在区间上单调递减; ④图象的对称轴可能是.其中所有正确结论的序号是________.14.若的展开式中常数项为,则自然数__________.15.已知函数.若存在2个零点,则的取值范围是__________16. 如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,F为垂足.(1)求证:.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求二面角E —DC —B 的余弦值;②求点B 到平面CDE 的距离.17.已知正项等比数列的前项和为,且,(1)求的公比;(2)若,求数列的前项和.18. 手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:女性用户区间频数2040805010男性用户区间频数4575906030(1)完成下列频率分布直方图,计算女性用户评分的平均值,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“评分良好用户”与性别有关?参考公式:,其中0.100.0500.0100.0012.7063.841 6.63510.82819.已知双曲线的左、右焦点分别为,,虚轴长为,离心率为,过的直线与双曲线的右支交于,两点.(1)求双曲线的方程;(2)已知,若的外心的横坐标为0,求直线的方程.20. 医生的专业能力参数可有效衡量医生的综合能力,越大,综合能力越强,并规定: 能力参数不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力的频率分布直方图:(Ⅰ)求出这个样本的合格率、优秀率;(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.①求这2名医生的能力参数为同一组的概率;②设这2名医生中能力参数为优秀的人数为,求随机变量的分布列和期望.21. 无土栽培由于具有许多优点,在果蔬种植行业得到大力推广,无土栽培的类型主要有水培、岩棉培和基质培三大类.某农科院为了研究某种草苺最适合的无土栽培方式,种植了株这种草苺进行试验,其中水培、岩棉培、基质培的株数分别为、、.草苺成熟后,按照栽培方式用分层抽样的方法抽取了株作为样本,统计其单株产量,数据如下:(1)求、、的值;(2)从样本中单株产量在内的草莓中随机抽取株,求这株草莓中恰有株草莓采用了岩棉培的概率.。
2024年高考数学仿真模拟(一)含解析(题型同九省联考,共 19 个题)

2024年高考仿真模拟数试题(一) 试卷+答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( )3.设等差数列{}n a 的前n 项和为n S ,若789101120a a a a a ++++=,则17S =( ) A .150B .120C .75D .68A .672B .864C .936D .1056说法正确的是( )( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.10.已知复数1z ,2z ,则下列命题成立的有( )11.已知函数()f x 满足:①对任意,x y ∈R ,()()()()()2f x y f x f y f x f y +++=⋅+;②若x y ≠,则A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=三、填空题:本题共3小题,每小题5分,共15分.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.2024年高考仿真模拟数试题(一)带答案(题型同九省联考,共19个题)注意事项:].答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若一组数据1,1,,4,5,5,6,7a 的75百分位数是6,则=a ( ) A .4 B .5C .6D .7A .150B .120C .75D .68此时α与β可能平行或相交,故C 错误;对D 选项:若//l β,则必存在直线p β⊂,使//l p , 又l α⊥,则p α⊥,又p β⊂,则αβ⊥,故D 正确.故选D.5.有7个人站成两排,前排3人,后排4人,其中甲乙两人必须挨着,甲丙必须分开站,则一共有( )种站排方式. A .672 B .864 C .936 D .1056A .P 的轨迹为圆B .P 到原点最短距离为1C .P 点轨迹是一个菱形D .点P 的轨迹所围成的图形面积为4二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.A .()0f 的值为2B .()()4f x f x +−≥C .若()13f =,则()39f =D .若()410f =,则()24f −=答案 ABC解析 对于A ,令0x y ==,得()()23002f f =+ ,解得()01f =或()02f =, 若()01f =,令0y =,得()()212f x f x +=+,即()1f x ≡,三、填空题:本题共3小题,每小题5分,共15分.O O 当外接球的球心O在线段12 =OO h四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)。
2022-2023学年陕西省西安市雁塔区高三下学期5月高考模拟数学试题(PDF版)

西安市雁塔区2022-2023学年高三下学期5月高考模拟数学试卷一、选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的)1.在ABC △中,若222a cb ac +-=-,那么B 等于( ) A.30°B.60°C.120°D.150°2..已知椭圆22116x y m +=上的一点P 到椭圆一个焦点的距离为3,到另一焦点距离为7,则m 等于( ) A.10B.5C.15D.253.若2cos15a =︒,4sin15b =︒,a ,b 的夹角为30°,则a b ⋅=( )A. C.2D.124.已知集合{}1,0,1,2A =-,{}124xB x =≤<,则AB =( )A.{}1,0,1-B.{}0,1,2C.{}0,1D.{}1,25.在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,若22a b -=,sin C B =,则A =( )A.30°B.60°C.120°D.150°6.()40sin cos d 2x a x x -=-⎰π,则实数a 等于( )A.1C.1-D.7.运行如图所示的程序框图,输出i 和S 的值分别为( )A.2,15B.2,7C.3,15D.3,78.设()f x 是定义在R 上的增函数,且对于任意的x 都有()()110f x f x -++=恒成立.如果实数m 、n 满足不等式组()()22623803f m m f n n m ⎧-++-<⎪⎨>⎪⎩,那么22m n +的取值范围是( )A.()3,7B.()9,25C.()13,49D.()9,499.已知0a >,0b >,若不等式313ma b a b+≥+恒成立,则m 的最大值为( ) A.9B.12C.18D.2410.椭圆()222210x y a b a b +=>>中,F 为右焦点,B 为上顶点,O 为坐标原点,直线by x a=交椭圆于第一象限内的点C ,若BFO BFC S S =△△,则椭圆的离心率等于( )C.1二、填空题:本大题共7小题,每小题4分,共28分11.将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,则数列的第10项10a =______.12.从1,2,3,4,5中任取2个不同数作和,如果和为偶数得2分,和为奇数得1分,若ξ表示取出后的得分,则E ξ=______.13.从边长为10cm 16cm ⨯的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为______3cm .14.命题“x R ∀∈,212x x +≥”的否定是______.15.函数y =______;最小值是______.16.若平行四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是______.17.二项式10的展开式中含x 的正整数指幂的项数是______.三、解答题:本大题共5小题,共72分。
2022-2023学年湖南省长沙市一中多校高三下学期5月高考仿真模拟考试数学试题(PDF版)

长沙市一中多校2022-2023学年高三下学期5月高考仿真模拟考试数 学注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|01A x x =<≤,{}|21xB x =≤,设全集U =R ,则()U AB =ð( ) A .(,1)-∞ B .(,1]-∞C . (1,)+∞D .[1,)+∞2.已知复数z 满足2ii z z-=,则||z =( )AB.C .2 D . 43.已知平面向量a,b 满足2=a,=b ,且a 与-a b 的夹角为60︒,则-=a b ( )A .2 B.CD .14.李明上学有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,通过统计相关数据后,发现坐公交车用时X 和骑自行车用时Y 都近似服从正态分布. 绘制了概率分布密度曲线,如图所示,则下列哪种情况下,应选择骑自行车( )A. 有26 min 可用B. 有30 min 可用C. 有34 min 可用D. 有38 min 可用5.已知角θ的终边在直线2y x =上,则1sin 2cos2θθ+=( )A .3-B .3C .1- D .17.如图,一个由四根细铁杆PA 、PB 、PC 、PD 组成的支架(PA 、PB 、PC 、PD 按照逆时针排布),若π3APB BPC CPD DPA ∠=∠=∠=∠=,一个半径为1的球恰好放在支架上与四根细铁杆均有接触,则球心O 到点P 的距离是( )A .2B .32C .D .8.已知实数,,p q r 满足:()()()527395log (23)log 53,log (35)log 75,log (57)log 79.p p p p q qr r r q r q ⎧+=-⎪⎪+=-⎨⎪⎪+=-⎩则( )A .p q r <<B .r p q <<C .p r q <<D .r q p <<二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符15.直线:240l x y +-=与椭圆11x y m m+=+(m >0)有且仅有一个公共点P ,则m = ,点P 的坐四、解答题:本题共6小题,共70分。
2025年新高考数学模拟试题一带解析

2025年新高考数学模拟试题(卷一)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.某车间有两条生产线分别生产5号和7号两种型号的电池,总产量为8000个.质检人员采用分层抽样的方法随机抽取了一个样本容量为60的样本进行质量检测,已知样本中5号电池有45个,则估计7号电池的产量为()A .6000个B .5000个C .3000个D .2000个2.如图所示,四边形ABCD 是正方形,,M N 分别BC ,DC 的中点,若,,AB AM AN λμλμ=+∈R,则2λμ-的值为()A .43B .52C .23-D .1033.已知n S 为等差数列{}n a 的前n 项和,4920224a a a ++=,则20S =()A .60B .120C .180D .2404.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题为假命题的是()A .若,m m n α⊥⊥,则n α或n ⊂αB .若,,⊥⊥⊥m n αβαβ,则m n ⊥C .若,,m l n αββγαγ⋂=⋂=⋂=,且n β,则//l mD .若,,m n m n αβ⊥⊂⊂,则αβ⊥5.第19届亚运会于2023年9月28日至10月8日在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”“莲莲”和“宸宸”,分别代表世界遗产良渚古城遗址、西湖和京杭大运河.某同学买了6个不同的吉祥物,其中“琮琮”“莲莲”和“宸宸”各2个,现将这6个吉祥物排成一排,且名称相同的两个吉祥物相邻,则排法种数共为()A .48B .24C .12D .66.已知函数1()e 2x f x x a x ⎛⎫=-+ ⎪⎝⎭恰有2个不同的零点,则实数a 的取值范围为()A .1,ee ⎛⎫⎪⎝⎭B .(4e,)⎛∞ ⎝U C .2e ⎫⎪⎭D .(2e,)⎛∞ ⎝U7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点()3,4A -的直线l 的一个法向量为()1,2-,则直线l 的点法式方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上做法,在空间直角坐标系中,经过点()1,2,3M 的平面的一个法向量为()1,4,2m =-,则该平面的方程为()A .4210x y z -++=B .4210x y z --+=C .4210x y z +-+=D .4210x y z +--=8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为12,F F ,过1F 的直线与双曲线C 分别在第一、二象限交于,A B 两点,2ABF △内切圆的半径为r ,若1||2BF a =,r =,则双曲线C 的离心率为()AB.2CD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()A .()f x 的最小正周期为πB .当π0,2⎡⎤∈⎢⎥⎣⎦x 时,()f x 的值域为11,22⎡⎤-⎢⎥⎣⎦C .将函数()f x 的图象向右平移π6个单位长度可得函数()sin 2g x x =的图象D .将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点5π,06⎛⎫⎪⎝⎭对称10.已知12,z z 是两个虚数,则下列结论中正确的是()A .若12z z =,则12z z +与12z z 均为实数B .若12z z +与12z z 均为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数11.已知函数()y f x =在R 上可导且(0)2f =-,其导函数()f x '满足:22()21()exf x f x x -=-',则下列结论正确的是()A .函数()f x 有且仅有两个零点B .函数2()()2e g x f x =+有且仅有三个零点C .当02x ≤≤时,不等式4()3e (2)f x x ≥-恒成立D .()f x 在[1,2]上的值域为22e ,0⎡⎤-⎣⎦第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为.13.已知M ,N 是抛物线()2:20C x py p =>上两点,焦点为F ,抛物线上一点(),1P t 到焦点F 的距离为32,下列说法正确的是.(把所有正确结论的编号都填上)①1p =;②若OM ON ⊥,则直线MN 恒过定点()0,1;③若MOF △的外接圆与抛物线C 的准线相切,则该圆的半径为12;④若2MF FN = ,则直线MN 的斜率为4.14.如图,在正方体1111ABCD A B C D -,中,M ,N 分别为线段11A D ,1BC 上的动点.给出下列四个结论:①存在点M ,存在点N ,满足MN ∥平面11ABB A ;②任意点M ,存在点N ,满足MN ∥平面11ABB A ;③任意点M ,存在点N ,满足1MN BC ⊥;④任意点N ,存在点M ,满足1MN BC ⊥.其中所有正确结论的序号是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数31()ln 222f x ax x x x=--+.(1)当1a =时,求()f x 的单调区间;(2)对[1,)x ∀∈+∞,()0f x ≥恒成立,求a 的取值范围.16.(15分)我国老龄化时代已经到来,老龄人口比例越来越大,出现很多社会问题.2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线总计愿生40y60不愿生x2240总计5842100(1)求x和y的值.(2)分析调查数据,是否有95%以上的把握认为“生育意愿与城市级别有关”?(3)在以上二孩生育意愿中按分层抽样的方法,抽取6名育龄妇女,再选取两名参加育儿知识讲座,求至少有一名来自一线城市的概率.参考公式:22()()()()()n ad bca b c d a c b dχ-=++++,()2P kχ≥0.0500.0100.001k 3.841 6.63510.82817.(15分)在直角梯形ABCD 中,//AD BC ,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BNBC的值;若不存在,说明理由.18.(17分)已知椭圆22:143x y C +=的左右焦点分别为12,F F ,点()00,P x y 为椭圆C 上异于顶点的一动点,12F PF ∠的角平分线分别交x 轴、y 轴于点M N 、.(1)若012x =,求1PF ;(2)求证:PM PN为定值;(3)当1F N P 面积取到最大值时,求点P 的横坐标0x .19.(17分)已知数列12:,,,n A a a a L 为有穷正整数数列.若数列A 满足如下两个性质,则称数列A 为m 的k 减数列:①12n a a a m +++= ;②对于1i j n ≤<≤,使得i j a a >的正整数对(,)i j 有k 个.(1)写出所有4的1减数列;(2)若存在m 的6减数列,证明:6m >;(3)若存在2024的k 减数列,求k 的最大值.2025年新高考数学模拟试题(卷一)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题及答案

全国新高考一卷地区2024届普通高等学校招生模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ). A .复数z 为实数 B .2024i i = C .复数z 为纯虚数D .6i z =−2.已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A .2A −∈ B .2023A ∉ C .231k A +∉D .35A −∉3.已知正三棱台的高为1,上、下底面边长分别为上,则该球的表面积为( ) A .100πB .128πC .144πD .192π4.若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A .4B .8C .D .5.神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ). A .39200B .129200C .12950D .39506.椭圆()2222:10x y E a b a b+=>>的左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A .18B 4C .78D .147.若直线π4x =是πsin()4y x ω=−(0)>ω的一条对称轴,且在区间π[0,]12上不单调,则ω的最小值为( )A .9B .7C .11D .38.设函数()f x 在R 上满足()()22f x f x −=+,()()77f x f x −=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023−,上根的个数为( ). A .806 B .810 C .807 D .811二、多选题9.如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A .B .C .D .10.已知直线2:0l mx ny r +−=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ).A .若点P 在圆C 外,则直线l 与圆C 相离B .若点P 在圆C 内,则直线l 与圆C相交C .若点P 在圆C 上,则直线l 与圆C 相切D .若点P 在直线l 上,则直线l 与圆C 相切11.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅,a ≡b (mod 10),则b 的值可以是( ). A .2019 B .2023 C .2029 D .2033三、填空题12.已知向量a 与b 相互垂直,且3a =,2b =,则()()a b a b +⋅−= . 13.已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx→=;②1lim(1)e xx x →+=,则依据两个公式,类比求0sin cos lim x x xx→= ;1sin cos 0lim(1sin 2)x xx x →+= .14.已知函数()2e e e x x xg x x x =−−,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题15.当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示.(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.附:相关系数公式:()()nniii it t y y t y nt yr−−−==∑∑.0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线方程y bx a =+的斜率和截距的最小二乘估计公式分别为1221ni ii nii x y nx yb xnx==−=−∑∑,a y bx =−. 2.91≈. 16.已知数列{}n a 是公差为d 的等差数列,2n na b n−=. (1)证明:数列{}n b 也为等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥.17.如图,在三棱柱111ABC A B C 中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18.已知1(2,0)F −,2(2,0)F ,点P 满足122PF PF −=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 的值;(2)在(1)的条件下,求MPQ 面积的最小值.19.已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πx f x =,()sin g x x =,()h x x =.(1)证明:()()()f x g x h x <<; (2)已知()()()0f x g x h x −−<,证明:()π()2πh x g x −>(π可近似于3.14).参考答案:1.A【分析】借助复数的运算法则计算即可得. 【详解】()()1012101220242i i 11==−=,故6z =,故A 正确,B 、C 、D 错误. 故选:A. 2.A【分析】令31k +分别为选项中不同值,求出k 的值进行判定. 【详解】当1k =−时,2x =−,所以2A −∈,故A 正确; 当674k =时,367412023x =⨯+=,所以2023A ∈,故B 错误; 当1k =或0k =时,23131k k +=+,所以231k A +∈,故C 错误; 当12k =−时,123135x =−⨯+=−,所以35A −∈,故D 错误. 故选:A 3.A【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =故121d d −=或121d d +=,1=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .4.A【分析】将1ab =代入,利用基本不等式直接求解即可得出结论. 【详解】若a ,b 都是正数,且1ab =∴11888422222b a a b a b a b a b a b +++=++=+=+++≥, 当且仅当4a b +=时等号成立, 故选:A. 5.D【分析】分别求出答对4道题,答对3道题的概率,再求和事件的概率即可. 【详解】若u 和v 两位同学答对4道题,则其概率为224395425⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭;若u 和v 两位同学答对3道题,则其概率为22143134212255444550⎛⎫⎛⎫⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;故u 和v 两位同学至少答对3道题的概率为92139255050+=. 故选:D. 6.C【分析】根据题意得到,,M A B 的坐标,进而利用两点距离公式与点在椭圆上得到关于,a b 的齐次方程,从而得解.【详解】由题可得(),0M a −,设()()0000,,,A x y B x y −.则20002200018AM BMy y y k k x a a x a x ⋅=⋅==+−−, 又222222000022222118x y y a x b a b b a a −+=⇒=⇒=, 则22222287a b c a b b ==−=,. 则222227788c b e a b ===. 故选:C 7.C【分析】根据给定条件求出ω的关系式,再求出函数πsin()4y x ω=−含0的单调区间即可判断作答.【详解】因直线π4x =是πsin (0)4y x ωω⎛⎫=−> ⎪⎝⎭的一条对称轴,则ππππ,Z 442k k ω−=+∈,即43,Z k k ω=+∈,由πππ242x ω−≤−≤,得π3π44x ωω−≤≤,则πsin()4y x ω=−在π3π[,]44ωω−上单调递增, 而πsin()4y x ω=−在区间π[0,]12上不单调,则3ππ412ω<,解得9ω>, 综上,ω的最小值为11. 故选:C 8.B【分析】先根据条件确定函数周期,然后确定一个周期内的根的个数,进而得到在闭区间[]20232023−,上根的个数. 【详解】因为()()22f x f x −=+,所以()()4f x f x −=+, 又()()77f x f x −=+,所以()()14f x f x −=+, 所以()()414f x f x +=+,即()()10f x f x =+, 所以函数()f x 的周期为10,在区间[]07,上只有()()130f f ==, 所以()0f x =在(]4,7上无解, 则()70f x −=在(]0,3上无解,又()()77f x f x −=+,所以()70f x +=在(]0,3上无解,,即()0f x =在(]7,10上无解, 即一个周期[]0,10内,方程的根只有1,3,闭区间[]20202020−,上含有404个周期,此时有4042808⨯=个根, 在区间(]20202023,内,()()()()202110,202330,f f f f ==== 对于区间[)2023,2020−−,根据周期等价于区间[)7,10,该区间上无解, 故方程()0f x =在闭区间[]20232023−,上根的个数为810. 故选:B. 9.CD【分析】建立适当空间直角坐标系,利用空间向量分析判断即可. 【详解】设正方体的棱长为2,对A :建立如图所示空间直角坐标系,则(2,2,2),(0,2,0),(0,0,1),(1,1,0)M N P O , 可得(2,0,2),(1,1,1)MN OP =−−=−−,则2020MN OP ⋅=+−=, 所以MN OP ⊥,即MN OP ⊥,故A 错误;对B :建立如图所示空间直角坐标系,则(0,0,2),(2,0,0),(2,0,1),(1,1,0)M N P O , 可得(2,0,2),(1,1,1)MN OP =−=−,则2020MN OP ⋅=+−=, 所以MN OP ⊥,即MN OP ⊥,故B 错误;对C :建立如图所示空间直角坐标系,则(0,2,0),(0,0,2),(2,1,2),(1,1,0)M N P O , 可得(0,2,2),(1,0,2)MN OP =−=,则0040MN OP ⋅=++≠, 所以MN 与OP 不垂直,即MN 与OP 不垂直,故C 正确;对D :建立如图所示空间直角坐标系,则(2,0,2),(0,2,2),(0,2,1),(1,1,0)M N P O , 可得(2,2,0),(1,1,1)MN OP =−=−,则2200MN OP ⋅=++≠, 所以MN 与OP 不垂直,即MN 与OP 不垂直,故D 正确.故选:CD. 10.AB【分析】根据直线和圆相切、相交、相离的等价条件进行求解即可. 【详解】对于A ,因为点(),P m n 在圆C 外,所以222m n r +>,则圆心()0,0C 到直线l 的距离为d r ==<,所以直线l 与圆C 相交,故命题A 是假命题;对于B ,因为点(),P m n 在圆C 内,所以222m n r +<,则圆心()0,0C 到直线l 的距离为d r ==>,所以直线l 与圆C 相离,故命题B 是假命题; 对于C ,因为点(),P m n 在圆C 上,所以222m n r +=,则圆心()0,0C 到直线l 的距离为d r ===,所以直线l 与圆C 相切,故命题C 是真命题;对于D ,因为点(),P m n 在直线l 上,所以2220m n r +=−,即222m n r +=,则圆心()0,0C 到直线l 的距离为d r ===,所以直线l 与圆C 相切,故命题D 是真命题; 故选:AB. 11.AC【分析】先利用二项式定理化简得223a =;再利用二项式定理将()11221139101==−展开可得到a 除以10所得的余数是9,进而可求解.【详解】因为()22012222222222222222C C 2C 2C 2123a =+⋅+⋅++⋅=+=()()112211011110101101019101111111111111139101C 10C 10C 10C 10C 10C 10C 19==−=⨯−⨯++⨯−=⨯−⨯++−+所以a 除以10所得的余数是9. 又因为a ≡b (mod 10) 所以b 除以10所得的余数是9.而2019201109=⨯+,2023202103=⨯+,2029202109=⨯+,2033203103=⨯+ 故选:AC. 12.5【分析】根据向量的数量积运算法则即可求解.【详解】()()2222325a b a b a a b b a b +⋅−=⋅−⋅=−=−=,故答案为:5 13. 1 2e【分析】根据题意,结合极限的运算法则,准确计算,即可求解.【详解】由极限的定义知:①0sin lim1x xx→=;②10lim(1)e x x x →+=, 因为sin cos sin 22x x x x x =,sin 2t x =,可得sin 2sin 2x tx t=, 则00sin cos sin limlim 1x t x x tx t→→==;又因为12sin cos sin 2(1sin 2)(1sin 2)x x x x x +=+,令sin 2t x =,可得22sin 2(1sin 2)(1)x t x t +=+, 所以12122sin cos 0lim(1sin 2)lim(1)lim (1e [)]x xt t x t t x t t →→→+=+=+=.故答案为:1;2e . 14.()20,5e−【分析】通过求导得出函数的单调性和极值,即可得出有三个实根时实数k 的取值范围. 【详解】由题意,在()2e e e x x x g x x x =−−中,()()2e 2x g x x x '=+−,当()0g x '=时,解得2x =−或1,当()0g x '<即2<<1x −时,()g x 单调递减, 当()0g x '>即<2x −,1x >时,()g x 单调递增,∵()()()2222222e 2e e 5e g −−−−−=−−−−=,()1111e e e e g =−−=−,当()()22,1e 0xx g x x x −=−−,方程()g x k =有三个不同的实根, ∴()02k g <<−即205e k −<<, 故答案为:()20,5e−.【点睛】易错点点点睛:本题考查函数求导,两函数的交点问题,在研究函数的图象时很容易忽略()()22,1e 0xx g x x x −=−−这个条件.15.(1)0.962r ≈−,y 与t 具有很强的线性相关关系(2)0.28 3.12y t =−+,10月收入从预测看不能突破1.5万元,理由见解析【分析】(1)直接套公式求出y 与t 之间的线性相关系数,即可判断; (2)套公式求出系数b 、a ,即可得到回归方程,并求出10月份的收入. 【详解】(1)(1)由5月至9月的数据可知1234535t ++++==,3 2.4 2.22 1.82.285y ++++==,51132 2.43 2.2425 1.831.4i i i t y ==⨯+⨯+⨯+⨯+⨯=∑,()5214101410i i t t=−=++++=∑,()522222210.720.120.080.280.480.848ii y y =−=++++=∑,所以所求线性相关系数为550.962i it y t yr −===≈−∑.因为相关系数的绝对值0.9620.9620.75r =−=>, 所以认为y 与t 具有很强的线性相关关系.(2)由题得522222211234555i i t ==++++=∑,51522215 3.1453 2.28 2.80.285553105i ii i i t y t yb t t==−−⨯⨯−====−−⨯−∑∑,所以()2.280.283 3.12a y bt =−=−−⨯=, 所以y 关于t 的回归直线方程为0.28 3.12y t =−+. 当6t =时,0.286 3.12 1.44y =−⨯+=,因为144 15<..,所以10月收入从预测看不能突破1.5万元. 16.(1)证明见解析; (2)证明见解析.【分析】(1)通过计算1n n b b +−为定值可证明等差数列;(2)先求出数列的通项公式,然后利用错位相减法求n T ,根据n T 的结构即可证明不等式.【详解】(1)∵2n na b n−=, ∴2n n b a n =−,∴()()1112122n n n n n n b b a n a n a a +++⎡⎤−=−+−−=−−⎣⎦, 又∵数列{}n a 是公差为d 的等差数列, ∴1n n a a d +−=, ∴12n n b b d +−=−,∴数列{}n b 是以2d −为公差的等差数列; (2)∵13a d ==,∴112321b a =−=−=,2321d −=−=, ∴数列{}n b 是以1为首项,1为公差的等差数列. ∴1(1)1n b n n =+−⨯=,∴数列{}n c 是以1为首项,2为公比的等比数列,∴11122n n n c −−=⨯=,∴1·2n n n b c n −=, ∴1121112222n n T n −−−=⨯+⨯++⨯①,∴2n T =()21112122n n n n −−⨯+++⨯⨯−②,∴②−①得,11222n n n T n n −=−−−−⨯+⨯()11222n n n n −=−+++⨯+⨯12212n n n −=−+⋅−122n n n =−+⋅()121n n =−+,∵1n ≥且n 为正整数, ∴10n −≥,20n >,∴()1211nn T n =−+≥(当1n =时取等).17.(1)见解析 (2)见解析【分析】(1)取AB 的中点为K ,连接,MK NK ,可证平面//MKN 平面11BCC B ,从而可证//MN 平面11BCC B .(2)选①②均可证明1BB ⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.【详解】(1)取AB 的中点为K ,连接,MK NK , 由三棱柱111ABC A B C 可得四边形11ABB A 为平行四边形, 而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B , 而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B , 而,,NKMK K NK MK =⊂平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B , (2)因为侧面11BCC B 为正方形,故1CB BB ⊥, 而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A , 平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A , 因为//NK BC ,故NK ⊥平面11ABB A , 因为AB ⊂平面11ABB A ,故NK AB ⊥, 若选①,则AB MN ⊥,而NK AB ⊥,NKMN N =,故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===, 设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎨⋅=⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯. 若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面11ABB A , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =, 而12B B MK ==,MB MN =,故1BB M MKN ≅, 所以190BB M MKN ∠=∠=︒,故111A B BB ⊥, 而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M , 故()()()0,2,0,1,1,0,0,1,2BA BN BM ===, 设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎪⎨⋅=⎪⎩,从而020x y y z +=⎧⎨+=⎩,取1z =−,则()2,2,1n =−−,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n BA θ===⨯.18.(1)1m =−(2)9【分析】(1)由双曲线定义即可得点P 的轨迹方程,设出直线l 方程,联立双曲线方程可得与x 有关韦达定理,借助向量垂直数量积为0可计算出M 点坐标;(2)借助弦长公式与点到直线的距离公式可表示出面积,再借助换元法计算即可得解. 【详解】(1)由12122PF PF F F −=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线的右支,设轨迹E 的方程为22221(1)x y x a b−=≥,0a >,0b >,2c =,22a =,23b ∴=,故轨迹E 的方程为221(1)3y x x −=≥,当直线l 的斜率存在时,设直线方程为(2)y k x =−,()11,P x y ,()22,Q x y ,与双曲线方程联立2213(2)y x y k x ⎧−=⎪⎨⎪=−⎩,可得()222234430k x k x k −−++=, 有()()24222122212230Δ16434304034303k k k k k x x k k x x k ⎧−≠⎪=−−+>⎪⎪⎪⎨+=>⎪−⎪+⎪⋅=>⎪−⎩,解得23k >, ()()()12121MP MQ x m x m y y x m ⋅=−−+=−.()()()221222x m k x x −+−−()()()22221212124k x x k m x x m k =+−++++()()()222222214342433k k k kmmk k k +++=−++−−2223(45)3m k m k −+=+− ()()222245313m m k m k −−+−=−MP MQ ⊥,0MP MQ ∴⋅=,故得()()22231450m k m m −+−−=对任意的23k >恒成立,2210,450,m m m ⎧−=∴⎨−−=⎩解得1m =−,∴当1m =−时,MP MQ ⊥.当直线l 的斜率不存在时,可得(2,3)P ,则(2,3)Q −, 此时有()()3312121−⋅=−−−−−,即此时结论也成立,综上,当1m =−时,MP MQ ⊥;(2)由(1)知(1,0)M −,当直线l的斜率存在时,()2122613k PQ x k +=−=−,点M 到直线PQ 的距离为d,则d =1||2MPQSPQ d ∴===令23(0)k t t−=>,则MPQS=10t>,9MPQS ∴=>, 当直线l 的斜率不存在时,13692MPQS =⨯⨯=, 综上可知,MPQS的最小值为9.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19.(1)证明见解析; (2)证明见解析.【分析】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=−=−∈ ⎪⎝⎭,,求导得到函数单调性,得到sin x x >,要证()()f x g x <,只需证2sin πx x <,构造πsin 2()x G x x =−,π(0)2x ∈,,二次求导得到单调性,得到π()02G x G ⎛⎫= ⎪⎝⎭>,证明出()(),(0)π2f x g x x ∈<,,证明出不等式;(2)变形得到0ππ(2)sin x x −−<,两边同时除以(2)s πin 0x −<得到:πsin 2πx x −>,证明出不等式.【详解】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=−=−∈ ⎪⎝⎭,,∴()1cos 0F x x =−>'在π02x ⎛⎫∈ ⎪⎝⎭,上恒成立,∴()F x 在π02x ⎛⎫∈ ⎪⎝⎭,上单调递增,∴()(0)0F x F =>, ∴sin x x >,∴π()(),(0)2g x h x x ∈<,,要证()()f x g x <,只需证2sin πxx <, ∵π02x ⎛⎫∈ ⎪⎝⎭,,∴只需证2sin πxx<,令πsin 2()x G x x =−,π(0)2x ∈,,∴2cos sin ()x x x G x x −'=,∴22cos tan cos cos ()(tan )x x x x xG x x x x x−'==−,令()tan M x x x =−,π(0)2x ∈,,∴2221cos 1()1cos cos x M x x x −'=−=, 又∵当π(0)2x ∈,时,20cos 1x <<,∴当π(0)2x ∈,时,()0M x '<,∴()M x 在(0)π2,上单调递减,∴()(0)0M x M =<,∴当π(0)2x ∈,时,()0G x '<,∴()G x 在(0)π2,上单调递减∴π()02G x G ⎛⎫= ⎪⎝⎭>,∴2sin πx x <, ∴()(),(0)π2f xg x x ∈<,,∴综上所述,当π(0)2x ∈,时,()()()f x g x h x <<,证毕.(2)∵当π(0)2x ∈,时,()()()0f x g x h x −−<,∴2sin 0πxx x −−<, ∴2sin 0πππx x x−−<,∴0ππ2)i π(s n x x−−<,①将①式两边同时乘以π得到:0ππ(2)sin x x −−<,② ∵20π−<,但当π(0)2x ∈,时,sin 0x >,∴(2)s πin 0x −<,将②式两边同时除以(2)s πin 0x −<得到:(2)sin 0(2)n ππsi πx xx−−>−,∴0πsin 2πx x −>−, ∴πsin 2πx x −>, ∴当π(0)2x ∈,时,()π()2πh x g x −>,证毕. 【点睛】方法点睛:证明不等式或比较两函数大小,需构造函数,并根据导函数得到函数单调性,结合特殊点函数值得到结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学海无涯
21、已知抛物线 C : x2 = 2 py( p 0) 上一点 A(m, 4) 到其焦点的距离为 17 。 4
(I)求 p 与 m 的值; (II)设抛物线 C 上一点 P 的横坐标为 t (t 0) ,过 P 的直线交 C 于另一点 Q ,交 x 轴于点
sinAsinC= 3 . 4
又由 b2 =ac 及正弦定理得 sin2 B = sin Asin C,
故 sin2 B = 3 , 4
于是 又由
sin B = 3 或 sin B = − 3 (舍去),
2
2
π B=
或
B= 2π.
3
3
b2 = ac 知 b a 或 b c
所 以 B =π。 3
18、解:(1) f '(x) = 3x2 − 9x + 6 = 3(x −1)(x − 2) ,
5、已知盒中装有 3 只螺口与 7 只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现
需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第 3 次才取得卡口
灯炮的概率为(
)
21
17
3
7
A. 4 0
B. 4 0
C. 1 0
D. 1 2 0
6、已知 f (x)= 1− x ,当θ∈( 5 π, 3 π)时,f (sin2θ)-f (-sin2θ)可化简为(
xf (x +1) = (1+ x) f (x) ,则 f (5) 的值是( 2
A. 0
B. 1 C. 1 2
二、填空题:
) D. 5 2
11、一条光线从点(5,3)射入,与 x 轴正方向成α角,遇 x 轴后反射,若 tanα=3,则反射光 线所在直线方程是______________.
12、已知⊙M:x2+(y-2)2=1,Q 是 x 轴上动点,QA、QB 分别切⊙M 于 A、B 两点,则直 线 AB 恒过定点______________.
21、解:(Ⅰ)由抛物线方程得其准线方程: y = − p ,根据抛物线定义 2
点 A(m,4) 到焦点的距离等于它到准线的距离,即 4 + p = 17 ,解得 p = 1
24
2
抛物线方程为: x2 = y ,将 A(m,4) 代入抛物线方程,解得 m = 2
(Ⅱ)由题意知,过点 P(t,t 2 ) 的直线 PQ斜率存在且不为 0,设其为 k 。
18、设函数 f (x) = x3 − 9 x2 + 6x − a 。 2
(1)对于任意实数 x , f (x) m 恒成立,求 m 的最大值;
(2)若方程 f (x) = 0 有且仅有一个实根,求 a 的取值范围。
2 0 0 9 0 4
20、如图,四棱锥 P−ABCD的底面是正方形2 , PD⊥底 面 ABCD,点 E 在棱 PB 上。 (Ⅰ)求证:平面 AEC⊥平 面 PD B; 3
)
4
2
A.2sinθ
B.-2cosθ C.2cosθ D.-2sinθ
7、已知双曲线
x2 2
−
y2 b2
= 1(b 0) 的左、右焦点分别是 F1、 F2 ,其一条渐近线方程为 y =
x ,点
P( 3, y0 ) 在双曲线上.则 PF1 · PF2 =(
)
A. -12
B. -2
C. 0
D. 4
8、在半径为 3 的球面上有 A、B、C 三点, ABC =90°, BA = BC , 球心 O 到平面 ABC 的距离
M ,过点 Q 作 PQ 的垂线交 C 于另一点 N 。若 MN 是 C 的切线,求 t 的最小值。
2 0 0 9 0 4 2 3
学海无涯
2012高考数学模拟试卷答案(一)
一、选择题
1、D 2、B 3、C 4、C 5、D 6、C 7、C 8、D 9、C 10、D
二、填空题
11、 y=−3x+12 12、 0 ,3
学海无涯
2012 高考数学模拟试卷(一)
一、选择题:
1、设 a =(2,-3), b =(-4,3), c =(5,6),则( a +3 b )· c 等于(
)
A.(-50,36) B.-12
C.0
D.-14
1
a
2、“a= 8 ”是“对任意的正数 x,2x+ x ≥1”的(
)
A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件
2
三、解答题:
1 (n = 1)
13、
n
!
2
(n 2)
14、2+ 3
15、 1
4
16、解:(Ⅰ)记甲、乙两人同时参加 A
岗位服务为事件 E
A
,那么
P(EA)
=
A33 C52A44
=1, 40
即甲、乙两人同时参加 A 岗位服务的概率是 1 . 40
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件 E
n 2, an = Sn − Sn−1 = kn2 + n − [k(n −1)2 + (n −1)] = 2kn − k + 1( )
经验, n = 1, ( )式成立,
an = 2kn − k +1
(Ⅱ) am , a2m , a4m 成等比数列,
a2m2 = am .a4m ,
即 (4km − k +1)2 = (2km − k +1)(8km − k +1) ,
=
(k 2 − kt + 1)2 k(t 2 − k 2 −1)
k
k
而抛物线在点
N
处切线斜率: k切
=
y
x=− k (k −t )+1 k
=
− 2k(k − t) − 2 k
MN
是抛物线的切线,
(k 2 − kt k(t 2 − k
+ 1)2 2 −1)
=
− 2k(k − t) − 2 , k
整理得 k 2 + tk +1− 2t 2
15、若直角三角形的周长为 2 +1.则它的最大面积为_______________.
三、解答题:
16、甲、乙等五名志愿者被随机地分到 A、B、C、D 四个不同的岗位服务,每个岗位至少有 一名志愿者。 (Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率。
学海无涯
则 lPQ
:
y
−t2
=
k(x
− t) ,当
y
=
0,
x
=
−t2 + k
kt ,
则 M ( − t 2 + kt ,0) 。 k
联立方程
y
−
t2 = k(x x2 = y
−
t ) ,整理得:
x2
−
kx
+
t(k
−
t)
=
0
即: (x − t)[x − (k − t)] = 0,解得 x = t, 或 x = k − t
[kx+ k(k − t) +1][x − (k − t)] = 0,解得: x = − k(k − t) +1 ,或 x = k − t k
[k(k − t) + 1]2
N
(−
k(k
− t) k
+1
,
[k(k
− t) k2
+
1]2
)
,
K
NM
=
k2 − k(k − t) +1 − − t 2
+ kt
,那么
P(E)
=
A44 C52 A44
=1, 10
所以,甲、乙两人不在同一岗位服务的概率是 P(E)=1−P(E)= 9 10
17、解:由 cos(A −C)+cosB= 3 及 B=π −(A+C)得 2
cos(A −C) −cos(A+C)= 3 , 2
cosAcosC+sinAsinC −(cosAcosC −sinAsinC)= 3 , 2
3、曲线 y=x3-x2+4 在点(2,8)处的切线与两坐标轴所围成的三角形的面积是(
)
A.1
B.2
C.4
D.8
4、关于
x
的不等式 ax+b0的解集为{x | x
1} ,则关于
x
的不等式
ax − b x−2
0
的解集为(
)
A. {x|1x2}
B.{x|x−1,或 x2} C.{x|−1x2} D.{x | x 2}
是 3 2 ,则 B、C 两点的球面距离是(
)
2
A. 3
B.
4 C. 3
D.2
9、2 位男生和 3 位女生共 5 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女
生相邻,则不同排法的种数是(
)
A. 60
B. 48
C. 42
D. 36
10、已知函数 f (x) 是定义在实数集 R 上的不恒为零的偶函数,且对任意实数 x 都有
=0
= t2
− 4(1 − 2t 2 ) 0 ,解得 t
− 2 (舍去),或 t 3
2 3
,
t min
=
2 3Βιβλιοθήκη 所以 当 x =1 时, f (x) 取极大值 f (1) = 5 − a 。 2