半导体物理学复习提纲(重点)
半导体器件原理课程复习提纲

半导体器件原理课程复习提纲第一篇:半导体器件原理课程复习提纲《半导体器件原理》课程复习提纲基础:半导体物理基本概念、物理效应,p-n结。
重点:双极型晶体管、JFET、GaAs MESFET、MOSFET。
了解:材料物理参数、器件直流参数和频率参数的意义。
根据物理效应、重要方程、实验修正,理解半导体器件工作原理和特性,进行器件设计、优化、仿真与建模。
第一章:半导体物理基础主要内容包括半导体材料、半导体能带、本征载流子浓度、非本征载流子、本征与掺杂半导体、施主与受主、漂移扩散模型、载流子输运现象、平衡与非平衡载流子。
半导体物理有关的基本概念,质量作用定律,热平衡与非平衡、漂移、扩散,载流子的注入、产生和复合过程,描述载流子输运现象的连续性方程和泊松方程。
(红色部分不作考试要求)第二章:p-n 结主要内容包括热平衡下的p-n结,空间电荷区、耗尽区(耗尽层)、内建电场等概念,p-n结的瞬态特性,结击穿,异质结与高低结。
耗尽近似条件,空间电荷区、耗尽区(耗尽层)、内建电势等概念,讨论pn结主要以突变结(包括单边突变结)和线性缓变结为例,电荷分布和电场分布,耗尽区宽度,势垒电容和扩散电容的概念、定义,直流特性:理想二极管IV方程的推导对于考虑产生复合效应、大注入效应、温度效应对直流伏安特性的简单修正。
PN的瞬态特性,利用电荷控制模型近似计算瞬变时间。
结击穿机制主要包括热电击穿、隧道击穿和雪崩击穿。
要求掌握隧道效应和碰撞电离雪崩倍增的概念,雪崩击穿条件,雪崩击穿电压、临界击穿电场及穿通电压的概念,异质结的结构及概念,异质结的输运电流模型。
高低结的特性。
(红色部分不作考试要求)第三章:双极型晶体管主要内容包括基本原理,直流特性,频率响应,开关特性,异质结晶体管。
晶体管放大原理,端电流的组成,电流增益的概念以及提高电流增益的原则和方法。
理性晶体管的伏安特性,工作状态的判定,输入输出特性曲线分析,对理想特性的简单修正,缓变基区的少子分布计算,基区扩展电阻和发射极电流集边效应,基区宽度调制,基区展宽效应,雪崩倍增效应,基区穿通效应,产生复合电流和大注入效应,晶体管的物理模型E-M模型和电路模型G-P模型。
半导体物理知识点及重点习题总结2023年修改整理

全然概念题:第一章 半导体电子状态1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
1.2能带晶体中,电子的能量是不连续的,在*些能量区间能级分布是准连续的,在*些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
1.2能带论是半导体物理的理论根底,试简要说明能带论所采纳的理论方法。
答:能带论在以下两个重要近似根底上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件后来给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对*一电子的库仑作用按几率分布平均地加以考虑,如此就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似感觉晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
1.2克龙尼克—纳模型解释能带现象的理论方法答案:克龙尼克—纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如以下图所示V*克龙尼克—潘纳模型的势场分布利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且*些能量区间能级是准连续的〔被称为允带〕,另一些区间没有电子能级〔被称为禁带〕。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
1.2导带与价带1.3有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的阻碍,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k 关系决定。
1.4本征半导体既无杂质有无缺陷的理想半导体材料。
1.4空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的全然电荷,并给予其与电子符号相反、大小相等的有效质量,如此就引进了一个假想的粒子,称其为空穴。
半导体物理知识点及重点习题总结

基本概念题:第一章半导体电子状态半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
能带晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。
这些区间在能级图中表现为带状,称之为能带。
能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。
答:能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。
通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。
单电子近似:将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。
绝热近似:近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。
克龙尼克—潘纳模型解释能带现象的理论方法答案:克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。
由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。
从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。
导带与价带有效质量有效质量是在描述晶体中载流子运动时引进的物理量。
它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。
其大小由晶体自身的E-k关系决定。
本征半导体既无杂质有无缺陷的理想半导体材料。
空穴空穴是为处理价带电子导电问题而引进的概念。
设想价带中的每个空电子状态带有一个正的基本电荷,并赋予其与电子符号相反、大小相等的有效质量,这样就引进了一个假想的粒子,称其为空穴。
它引起的假想电流正好等于价带中的电子电流。
空穴是如何引入的,其导电的实质是什么?答:空穴是为处理价带电子导电问题而引进的概念。
半导体物理知识点及重点习题总结周裕鸿

基本概念题:第一章 半导体电子状态 1.1 半导体通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。
例: 1简述Si Ge ,GaAs 的晶格结构。
2什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。
在一定温度下,价带电子获得足够的能量(≥Eg )被激发到导带成为导电电子的过程就是本征激发。
其结果是在半导体中出现成对的电子-空穴对。
如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。
对半导体的理解:半导体导体 半导体 绝缘体电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍 2、 微量杂质含量可以显著改变半导体导电能力例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。
另外,磁场、电场等外界因素也可显著改变半导体的导电能力。
【补充材料】半导体中的自由电子状态和能态势场 → 孤立原子中的电子——原子核势场+其他电子势场下运动 ↘ 自由电子——恒定势场(设为0)↘ 半导体中的电子——严格周期性重复排列的原子之间运动 ⅰ.晶体中的薛定谔方程及其解的形势V(x)的单电子近似:假定电子是在①严格周期性排列②固定不动的原子核势场③其他大量电子的平均势场下运动。
↓ ↓(理想晶体) (忽略振动)意义:把研究晶体中电子状态的问题从原子核—电子的混合系统中分离出来,把众多电子相互牵制的复杂多电子问题近似成为对某一电子作用只是平均势场作用。
半导体物理学知识重点总结

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==关于空气污染的资料篇一:关于环境污染的资料关于环境污染的资料说到环境污染,同学们或多或少都有切身体会,或者在电视上看到过污染的情况。
比方说汽车从我们身边开过,会扬起灰尘,汽车还排放尾气,这就是一种空气污染。
还有许多工厂都要排放废水,工厂生产需要使用干净的水,这些干净的水经过各种各样的生产工艺,水里边加进了许多污染物质,变成了废水,工厂再把这些废水排放到环境里去,就会污染河流、水渠、湖泊、水库,甚至是大海,这就是水污染。
我们生活中也产生许多废渣,我们叫它生活垃圾。
环境污染最大的危害是造成环境质量下降,从而影响我们的生活和身体健康,也影响经济发展。
现在,我国的城市空气质量良好的约占三分之一,受到轻度污染和重度污染的各占三分之一。
现代环境污染首先是伴随着工业发展而产生的,我们把它叫做工业污染。
我们把产生工业污染的工厂叫做工业污染源。
现在我国每年工业污染源排放到空气中的二氧化硫有1570万吨(201X年),工业粉尘841万吨,烟尘217万吨。
每年排放工业废水200亿吨。
每年排放工业固体废物8.9亿吨。
随着人口的增多,城市化水平的提高和生活水平的提高,生活污染也越来越严重,现在我国每年产生的城市生活污水有227亿吨,已经超过了工业废水的排放量。
生活二氧化硫排放量381万吨,烟尘217万吨。
由于现代农业的发展,化肥和农药大量使用,产生了农业污染,农业污染最可怕的是农产品有害物质含量超标。
因为农产品大量的是食品。
这几年在我国就出现了几起有毒大米、有毒猪肉、有毒食油的典型案件。
当然农业污染最普遍的是使食品中的有害物质含量增加。
这些有害物质我们食用后短时间内可能不会有什么感觉,如果时间长了,就会在身体内富集,危害我们的健康。
最可怕的还有这些有害物质会在自然界中通过食物链造成富集,长时期地积累在植物中和生物体内,最终影响到我们人类的身体健康。
半导体物理复习提纲

电离杂质散:
,温度升高散射减少。温度越高载流子热运动的平均速度越大,
于是可以很快掠过杂质中心,偏转小,受到电离杂质的影响小。 对于杂质半导体,温度低时,电离杂质散射起主要作用;温度高时,晶格振动散射起主要 作用
6. 何谓漂移运动 半导体中的载流子在外场的作用下,作定向运动。 7. 迁移率的定义、量纲。影响迁移率的因素。 漂移速度 :因电场加速而获得的平均速度。 迁移率:单位电场下,载流子的平均漂移速度(cm2/V·s)
费米分布:
玻尔兹曼分布:
空穴分布函数:
当
时有
,所以
,即玻尔兹曼分布。
(能态 E 不被电子占据的几率) ,则费米分布函数转化为
半导体中常见费米能级 位于禁带中,满足
的条件,因此导带和价带中的所有
量子态来说,电子和空穴都可以用玻尔兹曼分布描述。
5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分析半导体材料特性。
基础知识
1.导体,绝缘体和半导体的能带结构有什么不同并以此说明半导体的导电机理(两种载流子 参与导电)与金属有何不同
导体能带中一定有不满带;绝缘体能带中只有满带和空带,禁带宽度较宽一般大于 2eV; 半导体 T=0 K 时,能带中只有满带和空带,T>0 K 时,能带中有不满带,禁带宽度较小,一 般小于 2eV。(能带状况会发生变化)
10.什么是本征半导体和本征激发 本征半导体:没有杂质和缺陷的纯净半导体。 本征激发:T>0K 时,电子通过热运动从价带激发到导带,同时价带中产生空穴。
11.何谓施主杂质和受主杂质浅能级杂质与深能级杂质各自的作用。
施主杂质:电离时能够释放电子而产生导电电子,并形成正电中心的杂质。 受主杂质:电离时能够获取电子而产生导电空穴,并形成负电中心的杂质。 浅能级杂质:电离能小的杂质称为浅能级杂质。所谓浅能级,是指施主能级靠近导带底,受 主能级靠近价带顶。可以通过控制掺杂杂质数量控制载流子数量,并可以通过补偿掺杂进行 追加式的浓度控制。 深能级杂质:非 III、V 族元素在硅、锗的禁带中产生的施主能级距离导带底较远和受主能级 距离价带顶较远,形成深能级,称为深能级杂质。深能级能起到减少非平衡载流子寿命的作 用。 12.何谓杂质补偿举例说明有何实际应用。 半导体中同时存在施主杂质和受主杂质时,施主和受主之间有相互抵消的作用。利用杂质的 补偿作用,根据扩散或离子注入的方法来改变半导体某一区域的导电类型,制成各种器件。 在一块 n 型半导体基片的一侧掺入较高浓度的受主杂质,由于杂质的补偿作用,该区就成为 p型半导体。 13.金原子的带电状态与浅能级杂质的关系 不容易电离,对载流子浓度影响不大。 深能级杂质能够产生多次电离,每次电离均对应一个能级,甚至既产生施主能级也产生受主 能级。 深能级杂质的复合作用比浅能级杂质强,可作为复合中心。 14.画出(a)本征半导体、(b)n 型半导体、(c)p 型半导体的能带图,标出费米能级、导 带底、价带顶、施主能级和受主能级的位置
半导体物理学知识重点总结(精)
半導體物理知識點總結附重要名詞解釋是过剩硅离子。
霍尔效应将通有 x 方向电流的晶体置于 z 方向的磁场中,则在洛仑磁力作用下在 y 方向会产生附加电场,这种现象被称为霍尔效应。
霍尔角在磁场作用下,半导体中的电流可能与电场不在同一方向上,两者间的夹角称为霍尔角。
以 p 型半导体为例,简要说明霍耳效应的形成机理。
若半导体沿 x 方向通电流,z 方向加磁场,则在 y 方向将产生横向电场,该现象称为霍耳效应产生的横向电场称为霍耳电场 Ey,它与 x 方向电流密度 Jx 和 z 方向磁感应强度 Bz 成正比,比例系数成为霍耳系数。
是由于运动电荷受落仑兹力作用的结果。
稳定条件下,横向电流为零,则由此可得:显然,对于 p 型半导体:简并半导体&非简并半导体:若费米能级进入了导带,说明 n 型杂质掺杂浓度很高(即ND 很大;也说明了导带底附近的量子态基本上被电子所占据了。
若费米能级进入了价带,说明 P 型杂质掺杂浓度很高(即 NA 很大;也说明了价带顶附近的量子态基本上被空穴所占据了。
此时要考虑泡利不相容原理,而玻尔兹曼分布不适用,必须用费米分布函数。
这此情况称为载流子的简并化。
发生载流子简并化的半导体称为简并半导体. 简并化的标准重要名詞解釋 161. 有效质量: 粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。
2. 费米能级: 费米能级是 T=0 K 时电子系统中电子占据态和未占据态的分界线,是 T=0 K 时系统中电子所能具有的最高能量。
3. 准费米能级: 半导体处于非平衡态时,导带电子和价带空穴不再有统一的费米能级,但可以认为它们各自达到平衡,相应的费米能级称为电子和空穴的准费米能级。
4. 金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。
每个原子周围都有4 个最近邻的原子,组成一个正四面体结构。
湖南大学半导体物理考试重点(全)
半导体物理第一章半导体中的电子状态单电子近似:即假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场是具有与晶格同周期的周期性势场。
1.1半导体的晶格结构和结合性质1.大量的硅、锗原子组合成晶体靠的是共价键结合,他们的晶体结构与碳原子组成的一种金刚石晶格都属于金刚石型结构。
2.闪锌矿型结构(见课本8页)1.2半导体中电子的状态和能带1.Φ(r,t)=Ae i(k.r−wt) k为平面波的波数2.k=|k|=2л/λ波的传播方向为与波面法线平行3.在晶体中波函数的强度也随晶格周期性变化,所以在晶格中各点找到该电子的概率也具有周期性变化的性质。
这反映了电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动,这种运动称为电子在晶体内的公有化运动。
1.3半导体中的电子的运动有效质量1.导带低电子的有效能量1h2(d2Edk2)k=0=1m n∗2.引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中的电子外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
3.能量带越窄二次微商越小,有效质量越大。
内层电子的能量带越窄,有效质量大;外层电子的能量带宽,有效质量小。
1.4本征半导体的到点机构空穴1.可以认为这个空状态带有正电。
2.正电荷为空状态所有,它带的电荷是+q。
3.空穴:通常把价带中空着的状态看成是带正电的粒子,称为空穴。
.空穴不仅带有正电荷+q,而且还具有正的有效质量。
4引进空穴概念后,就可以把价带中大量电子对电流的贡献用少量的空穴表达出来。
半导体中除了导电带上电子导体作用外,价带中还有空穴的导电作用,这就是本征半导体的导电机构。
1.6 硅和锗的能带结构硅和锗的禁带宽度是随温度变化的,在T=0K时,硅和锗的禁带宽度E g分别趋近于1.70eV和0.7437eV.随着温度的升高,E g按如下规律减小E g(T)=E g(0)- -aT2T+β,式中E g(T)和E g(0)分别表示温度为T和0K时的禁带宽度,a,β为温度系数。
半导体物理复习要点 河北大学
第一章1.电子的共有化运动原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体上运动。
这种运动称为电子的共有化运动。
2.准动量(hk)m*v = hk3.有效质量的表达式*nm= h2(d2E/dk2)-1引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
4.本征激发价键上的电子激发成为准自由电子,亦即价带电子激发成为导带电子的过程,称为本征激发。
5.硅的能带结构(导带、价带)Si的导带极小值在【100】方向及其对称方向上,共有六个等价能谷。
Si的价带顶位于K=0处,在价带极值处有两个简并化的能谷,产生重空穴、轻空穴两类空穴。
还有一个能带是由于自旋-轨道耦合分裂出来的。
6.导体、半导体、绝缘体的导电性能差别原因(从能带)金属中,由于组成金属的原子中的价电子占据的的能带是部分占满的,所以金属是良好的导体。
绝缘体的禁带宽度很大,激发电子需要很大的能量,在通常温度下,能激发到导带去的电子很少,所以导电性很差。
半导体禁带宽度比较小,数量级在1eV 左右,在通常温度下已有不少电子被激发到导带中去,所以具有一定的导电能力。
P16图 1-12第二章1.杂质的补偿作用当半导体中既掺入施主杂质,又掺入受主杂质时,施主与受主杂质之间有互相抵消的作用,称为杂质的补偿作用。
2.深能级、浅能级的定义及对材料的影响杂质的施主能级Ed距导带底很近,受主能级EA距价带顶很近,通常称这样的杂质能级为浅能级。
浅能级杂质能够提供载流子,提高导电性能,改变导电类型。
非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带底较远,它们产生的受主能级距价带顶也较远。
通常称这样的能级为深能级。
深能级杂质,一般情况下含量极少,而且能级较深,对于载流子的复合作用比浅能级杂质强,故这些杂质也称为复合中心(减少非平衡载流子寿命)。
半导体物理(刘恩科第七版)复习重点PPT47页
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
பைடு நூலகம்
谢谢你的阅读
半导体物理(刘恩科第七版)复 习重点
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 半导体中的电子状态§1。
1 锗和硅的晶体结构特征 金刚石结构的基本特征§1.2 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§1.3 半导体中电子的运动 有效质量导带底和价带顶附近的E(k )~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =.§1.4本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§1.5 回旋共振§1。
6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§2。
1 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§2。
2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§3.1状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4ncc m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4p v Vm g E V E E hπ=-§3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。
1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
费米能级位置较高,说明有较多的能量较高的量子态上有电子.Boltzmann 分布函数:0()FE E k TB f E e--=;导带底、价带顶载流子浓度表达式:0()()ccE B c E n f E g E dE '=⎰00exp F cc E E n N k T -= , ()3*2322nc m kT N h π=导带底有效状态密度00exp v Fv E E p N k T-= , ()320322p v m k T N hπ*=价带顶有效状态密度载流子浓度的乘积0000exp exp g C V C V C V E E E n p N N N N k T k T ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭的适用范围.§3.3. 本征半导体的载流子浓度 本征半导体概念;本征载流子浓度:⎪⎪⎭⎫ ⎝⎛-===T k E N N p n n g V C i 021002exp )(;载流子浓度的乘积200i n p n =;它的适用范围。
§3.4杂质半导体的载流子浓度电子占据施主杂质能及的几率是⎪⎪⎭⎫⎝⎛-+=T k E E E f F D D 0exp 2111)(空穴占据受主能级的几率是⎪⎪⎭⎫ ⎝⎛-+=T k E E E f A F A 0exp 2111)(施主能级上的电子浓度D n 为: ⎪⎪⎭⎫⎝⎛-+==T k E E N E f N n F D DD D D 0exp 211)(受主能级上的空穴浓度A p 为0()11exp 2AA A A F A N p N f E E E k T ==⎛⎫-+ ⎪⎝⎭电离施主浓度+D n 为:D D D n N n +=- 电离受主浓度-A p 为:A A A p N p -=-费米能级随温度及杂质浓度的变化§3.5 一般情况下的载流子统计分布§3。
6. 简并半导体1、重掺杂及简并半导体概念;2、简并化条件(n 型):0C F E E -≤,具体地说:1)N D 接近或大于N C 时简并;2)ΔE D 小,则杂质浓度N D 较小时就发生简并;3)杂质浓度越大,发生简并的温度范围越宽;4)简并时杂质没有充分电离;5)简并半导体的杂质能级展宽为能带,带隙宽度会减小.3、杂质能带及杂质带导电。
第四章 半导体的导电性§4。
1 载流子的漂移运动 迁移率 欧姆定律的微分形式:J E σ=;漂移运动;漂移速度d v E μ=;迁移率μ,单位 22//m V s cm V s ⋅⋅或; 不同类型半导体电导率公式:n p nq pq σμμ=+§4.2. 载流子的散射.半导体中载流子在运动过程中会受到散射的根本原因是什么? 主要散射机构有哪些?电离杂质的散射:32i i P N T -∝晶格振动的散射:32s P T ∝§4.3 迁移率与杂质浓度和温度的关系描述散射过程的两个重要参量:平均自由时间τ,散射几率P.他们之间的关系,1pτ=;1、电导率、迁移率与平均自由时间的关系。
22**;p nn n p p n ppq nq nqu pqu m m ττσσ====22**p p n p npnq pq nqu pqu mmττσ=+=+2、(硅的)电导迁移率及电导有效质量公式:n c c q m τμ=、11123c l t m m m ⎛⎫=+ ⎪⎝⎭3、迁移率与杂质浓度和温度的关系§4。
4 电阻率及其与杂质浓度和温度的关系 各种半导体的电阻率公式:1n pnq pq ρμμ=+;不同温区电阻率的变化/不同温区载流子的散射机制。
§4.7 多能谷散射 耿氏效应用多能谷散射理论解释GaAs 的负微分电导。
第五章 非平衡载流子§5.1 非平衡载流子的注入与复合 非平衡态与非平衡载流子或过剩载流子; 小注入;附加电导率:()n p np nq pq pq σμμμμ∆=∆+∆=∆+§5。
2非平衡载流子的寿命 非平衡载流子的衰减、寿命τ;复合几率:表示单位时间内非平衡载流子的复合几率,1τ;复合率:单位时间、单位体积内净复合消失的电子-空穴对数。
p τ∆.§5.3 准Fermi 能级 1、“准Fermi 能级”概念 2、非平衡状态下的载流子浓度:0000exp ()exp ()nC F C pF V V E E n N n n n k T E E p N p p p k T ⎛⎫-=-=+∆ ⎪⎝⎭⎛⎫-=-=+∆ ⎪⎝⎭000000exp exp exp exp n nF i F F i p pi F F F i E E E E n n n k T k T E E E E p p n k T k T ⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭3、“准Fermi 能级”的含义1)从(5-10)可以看出,E F n -E F ,E F —E F p 越大,n 和p 值越大,越偏离平衡状态。
反之也可以说,n 和p 越大,E F n 和E F p 偏离E F 越远。
2)E F n 和E F p 偏离E F 的程度不同 如n —type 半导体n 0〉p 0.小注入条件下:◆ Δn 〈〈n 0,n=n 0+Δn ,n>n 0,n≈n 0,E F n 比E F 更靠近导带底,但偏离E F 很小。
◆ Δp>〉p 0,p=p 0+Δp ,p>p 0,E F p 比E F 更靠近价带顶,且比E F n 更偏离E F 。
可以看出:一般情况下,在非平衡状态时,往往总是多数载流子的准Fermi 能级和平衡时的Fermi 能级偏离不多,而少数载流子的准Fermi 能级则偏离很大。
3)20000exp exp n p n pF F F F i E E E E np n p n k T k T ⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭反映了半导体偏离热平衡态的程度。
E F n —E F p 越大,np 越偏离n i 2.E F n =E F p 时,np=n i 2.§5.4。
复合理论非平衡载流子复合的分类以及复合过程释放能量的方式 1、直接复合 2、间接复合定量说明间接复合的四个微观过程:俘获电子过程:电子俘获率=r n n (N t —n t ) 发射电子过程:电子产生率=s -n t ,1n s r n -= 俘获空穴过程:空穴俘获率=r p pn t发射空穴的过程:空穴产生率=s +(N t —n t ),s +=r p p 1 有效复合中心能级的位置为禁带中线附近。
§5.6. 载流子的扩散运动。
1、扩散流密度:()p p d p x S D dx ∆=-;()n n d n x S D dx∆=-⋅(单位时间通过单位面积的粒子数)。
2、空穴的扩散电流()()p pd p x J qD dx∆=-扩。
电子的扩散电流()()n n nd n x J qS qD dx∆=-=扩 3、光注入下的稳定扩散:稳定扩散:若用恒定光照射样品,那么在表面处非平衡载流子浓度保持恒定值()0p ∆,半导体内部各点的空穴浓度也不随时间改变,形成稳定的分布。
这叫稳定扩散。
稳态扩散方程及其解。
§5。
7。
载流子的漂移运动 爱因斯坦关系爱因斯坦关系的表达式:0nn D k Tq μ=,0p p D k T qμ=§5.8。
连续性方程式 1、连续性方程式的表达式()22p p p p E p x p pp D E p g t x x x μμτ∂∂∂∂∆=---+∂∂∂∂ 其中()22p p x D x ∂∂的含义是单位时间单位体积由于扩散而积累的空穴数;p pE pE p x xμμ∂∂--∂∂的含义是单位时间单位体积由于漂移而积累的空穴数;pτ∆的含义是单位时间单位体积由于复合而消失的电子—空穴对数。
2、稳态连续性方程及其解 3、连续性方程式的应用.牵引长度()P L E 和扩散长度Lp 的差别。
()p Lp E E u τ=;Lp =第六章 p-n 结§6.1 p-n 结及其能带图 1、p-n 结的形成和杂质分布 2、空间电荷区 3、p-n 结能带图 4、p —n 结接触电势差 5、p —n 结的载流子分布§6。
2 p-n 结的电流电压特性 1、非平衡状态下的p —n 结 非平衡状态下p-n 结的能带图2、理想p-n 结模型及其电流电压方程式 ● 理想p-n 结模型 1) 小注入条件2) 突变耗尽层近似:电荷突变、结中载流子耗尽(高阻)、电压全部降落在耗尽层上、耗尽层外载流子纯扩散运动;3) 不考虑耗尽层中载流子的产生与复合作用;4) 玻耳兹曼边界条件:在耗尽层两端,载流子分布满足玻耳兹曼统计分布。