半导体物理学总复习
(完整word版)半导体物理知识点总结.doc

一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge 和 GaAs 的能带结构。
在 1.1 节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在 1.3 节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。
(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理复习资料

第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
半导体物理总复习

隧道效应
单独的N型和P型半导体是电中性的,当这两 对于P型半导体和N型半导体结合面附近 种半导体结合形成PN结时,将在N型半导体和P 的电离施主和电离受主所带电荷称为空间电 型半导体的结合面上形成如下物理过程: 荷,它们所在的区域称为空间电荷区。 在空间电荷区,由于缺少多子,所以也 因浓度差 称耗尽层。 多子的扩散运动 由杂质离子形成空间电荷区 空间电荷区形成内建电场 内建电场促使少子漂移 内建电场阻止多子扩散
本征半导体: 不含杂质且结构非常完整的单晶半导体。 本征激发: 共价键上的电子激发成为准自由电子,亦即价带电子吸收能量被激发到 导带成为导带电子的过程,称为本征激发
有效质量的特点
决定于材料; E ② mn*只在能带极值附近有意义; ③ mn*可正可负; 在能带底部附近,E(k)曲线开口向上,d2E/dk2>0, mn*>0; 0 在能带顶部附近,E(k)曲线开口向下, 1/2 v a d2E/dk2<0, mn*<0; ④ mn*大小与能带宽窄有关; 0 内层:能带窄, d2E/dk2小, mn*大; 外层:能带宽, d2E/dk2大, mn*小. mn 因而,外层电子在外力作用下可以获得 + * 较大的加速度。 ⑤ 对于带顶和带底的电子,有效质量恒定。 0
本征区
● 饱和电离区的确定
载流子浓度随温度、掺杂浓度的变化规律 费米能级位置随温度、掺杂浓度的变化情况
图3-3、3-7、3-10、3-11、3-13、3-14、3-15
第四章
一、电导率、迁移率、电导率和平均自由 时间的关系 二、载流子的散射
1.电离杂质的散射:低温、掺杂浓度高 2.晶格散射:高温、掺杂浓度低
高度补偿:若施主杂质浓度与受主杂质浓度相差不大或二者相等,则不能提 供电子或空穴,这种情况称为杂质的高等补偿。
半导体物理学复习

1、 金刚石结构
半导体中的电子状态
原子在晶胞中的排列情况是:8 个原子位于立方体的 8 个角顶上,6 个原 子位于 6 个面中心处,晶胞内部有四个原子。
1、在室温下 Si 的晶格常数 a=5.43A; Ge 的晶格常数 a=5.66A,分别计算单位体积内 硅、锗的原子个数。 2、 分别计算 Si (100) , (110) , (111) 面每平方厘米内的原子个数, 即原子面密度 (提 示:先画出各晶面内原子的位置和分布图) 。 3、计算硅<100>, <110>和〈111〉晶向上单位长度内的原子数,即原子线密度。 解: 1、Si: N Si Ge: N Ge
3、n 型半导体载流子浓度
ND E - ED 1 + 2 exp( F ) k0T ① 低温弱电离区:当温度很低时,大部分施主杂质被电子占据,只有少数杂质电离,使少量电 E - EF ND + )= = nD 子进入导带,称作低温弱电离: n0 = N C exp( - C E E k0T F 1 + 2 exp( - D ) k0T 1/ 2 1/ 2 N D NC EC ED N D NC ΔED EC + ED k0T ND exp( )= exp( ) 得到: EF = + ln( ) n0 = 2 2k0T 2 2k0T 2 2 2 NC N C exp(
8
a
3
8 4.99 10 28 m 3 10 3 (5.43 10 )
2、{1 0
{1 1
{1 1
3、<100>:
<110>:
<111>:
8 4.4 10 28 m 3 10 3 a (5.66 10 ) 1 14 2 4 2 0} : 6.78 10 14 atom / cm 2 2 2 8 2 a a (5.43 10 ) 1 1 2 4 2 4 2 4 9.59 10 14 atom / cm 2 0} : 2a a 2a 2 1 1 4 2 2 4 4 2 1} : 7.83 10 14 atom / cm 2 2 3 3a a 2a 2 1 2 1 2 1 1.84 10 7 cm 1 8 a a 5.43 10 1 2 1 2 1.41 2 2.6 10 7cm 1 8 5 . 43 10 2a 2a 1 1 2 2 1.15 2 2.1 10 7cm 1 8 5.43 10 3a 3a
半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
半导体物理学期末总复习.ppt

P型半导体
P型半导体
杂质的补偿作用
▪ 半导体中同时存在施主和受主杂质时,半 导体是N型还是P型由杂质的浓度差决定
▪ 半导体中净杂质浓度称为有效杂质浓度 (有效施主浓度;有效受主浓度)
▪ 杂质的高度补偿( NA ND )
点缺陷
▪ 弗仓克耳缺陷
➢ 间隙原子和空位成对出现
▪ 肖特基缺陷
➢ 只存在空位而无间隙原子 ▪ 间隙原子和空位这两种点缺陷受温度影响较
▪ 对于能量为E的一个量子态被一个电子占据的概
率 f (E) 为
f (E)
1
E EF
1 e k0T
▪ f (E)称为电子的费米分布函数
▪ 空穴的费米分布函数? 1 f (E)
费米分布函数
▪ EF 称为费米能级或费米能量
➢ 温度
➢ 导电类型
➢ 杂质含量
➢ 能量零点的选取
f (Ei ) N
i
k2 kx2 ky2 kz2
▪ 导带底附近
E(k)
E(0)
h2 2mn*
(kx2
ky2
kz2 )
K空间等能面
▪ 对应于某一 E(k) 值,有许多组不同的
(kx , k y , kz ),这些组构成一个封闭面,
在着个面上能量值为一恒值,这个面称 为等能量面,简称等能面。
▪ 等能面为一球面(理想)
EF
(
dF dN
)T
▪ 处于热平衡状态的电子系统有统一的费米能级
费米分布函数
▪ 当T 0K 时
➢ 若 E EF ,则 f (E) 1
f (E)
1
E EF
➢ 若 E EF ,则 f (E) 0
1 e k0T
半导体物理总复习

f外 m a
* n
(3)电子的有效质量与晶体的能带结构有关
h2 m 2 d E dk 2
* n
利用有效质量可以对半导体的能带结构进 行研究 (4)有效质量可以通过回旋共振实验测得,并 椐此推出半导体的能带结构
4.空穴:空穴是几乎被电子填满的能带中未被电子占据的
少数空量子态,这少量的空穴总是处于能带顶附近。是价
高温本征激发区
n0= p0=ni
EF=Ei
费米能级仍用前面的公式得到EF=Ei
例题1 (同类型题103页1题)
导出能量在Ec和Ec+kT之间时,导带上的有效状 态总数(状态数/cm3)的表达式, 是任意常数。
例题2
(a)在热平衡条件下,温度T大于0K,电子能量位于费米 能级时,电子态的占有几率是多少?
n p 中处于准平衡分布,可以有各自的费米能级 E F 和E F
称为准费米能级,准费米能级分离的程度,即
n p 的大小,反映了与平衡态分离的程度 EF EF
4. 解释载流子的产生和复合,直接复合,间接复合,复合率
产 生:电子和空穴被形成的过程,如电子从价带跃迁到导 带,或 电子从杂质能级跃迁到导带的过程或空穴从 杂质能级跃迁到价带的过程 复 合:电子和空穴被湮灭或消失的过程
MIN
0
所以布里渊区边界为
k (2n 1)
a
(n=0,1,2……)
1.能带宽度为
E(k ) MAX E (k ) MIN
2 2 ma 2
2电子在波矢k状态的速度
1 dE 1 v (sin ka sin 2ka) dk ma 4
3、电子的有效质量 能带底部
半导体物理复习
半导体物理基础 总复习

掌握熟悉了解第一章半导体物理基础一、能带理论1、能带的形成、结构:导带、价带、禁带•当原子结合成晶体时,原子最外层的价电子实际上是被晶体中所有原子所共有,称为共有化。
•共有化导致电子的能量状态发生变化,产生了密集能级组成的准连续能带---能级分裂•价带:绝对0度条件下被电子填充的能量最高的能带;结合成共价键的电子填充的能带。
•导带:绝对0度条件下未被电子填充的能量最低的能带2、导体、半导体、绝缘体的能带结构特点•禁带的宽度区别了绝缘体和半导体;而禁带的有无是导体和半导体、绝缘体之间的区别;绝缘体是相对的,不存在绝对的绝缘体。
3、导电的前提:不满带的存在二、掺杂半导体1、两种掺杂半导体的能级结构。
2、杂质补偿的概念三、载流子统计分布1、费米函数、费米能级:公式1-7-9和1-7-10,及其简化公式1-7-11和1-7-122、质量作用定律,只用于本征半导体:公式1-7-273、用费米能级表示的载流子浓度:公式1-7-28和1-7-294、杂质饱和电离的概念(本征激发)5、杂质半导体费米能级的位置:公式1-7-33和1-7-37。
意义(图1-13,费米能级随着掺杂浓度和温度的变化)。
6、杂质补充半导体的费米能级四、载流子的运输1、(1.8节)载流子的运动模式:散射-漂移-散射。
平均弛豫时间的概念2、迁移率,物理意义:公式1-9-4和1-9-5(迁移率与电子自由运动时间和有效质量有关),迁移率与温度和杂质浓度的关系3、电导率,是迁移率的函数:公式1-9-10和1-9-114、在外电场和载流子浓度梯度同时存在的条件下,载流子运输公式:1-9-24~1-9-275、费米势:公式1-10-5:电势与费米能级的转换6、以静电势表示的载流子浓度1-10-6和1-10-7或1-10-9和1-10-107、爱因斯坦关系:反映了扩散系数和迁移率的关系。
在非热平衡状态下也成立。
公式1-10-11和1-10-12 五、非平衡载流子1、概念:平衡与非平衡(能带间的载流子跃迁);过剩载流子2、大注入和小注入3、产生率、复合率、净复合率4、非平衡载流子的寿命:从撤销外力,到非平衡载流子消失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.半导体中的电子状态
二.半导体中杂质和缺陷能级
三.半导体中载流子的统计分布
四.半导体的导电性
五.非平衡载流子
六.pn结
七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
纯度
极高,杂质<1013cm-3
结构
晶体结构
单胞
对于任何给定的晶体,可以用来形成其晶体结构的
p E 2m0
i ( K r t )
2
p K E hv
k E 2m0
2 2
(r, t ) Ae
半导体中电子的平均速度
在周期性势场内,电子的平均速度u可表示 为波包的群速度
dv u dk
h 2k 2 E (k ) E (0) 2mn*
E hv
1 dE u dk
费米分布函数
当 T 0K 时
是否被电子占据的一个界限 当 T 0K 时 若 E EF ,则 f ( E ) 1/ 2 若 E EF ,则 f ( E ) 1/ 2 若 E EF ,则 f ( E ) 1/ 2 费米能级是量子态基本上被 电子占据或基本上是空的一 个标志
态密度的概念
能带中能量 E 附近每单位能量间隔内的量子态 数。 ( 能带中能量为 E E dE) 无限小的能量间隔内 有 dz 个量子态,则状态密度 g ( E ) 为
dz g (E) dE
态密度的计算
状态密度的计算 单位 k 空间的量子态数 能量 E E dE) k 空间中所对应 在 (
的体积 前两者相乘得状态数 dz 根据定义公式求得态密度 g ( E )
k 空间中的量子态
/ 在 k 空间中,电子的允许能量状态密度为V (8 ) , 考虑电子的自旋情况,电子的允许量子态密度 3 / 为 V (4 ) ,每个量子态最多只能容纳一个电子。
3
nx k x 2 (nx 0, 1, 2, ) L ny k y 2 (ny 0, 1, 2, ) L nz k z 2 (nz 0, 1, 2, ) L
位错
施主情况 受主情况
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性
五.非平衡载流子
六.pn结
七.金属和半导体的接触
八.半导体表面与MIS结构
热平衡状态
在一定温度下,载流子的产生和载流子的复 合建立起一动态平衡,这时的载流子称为热 平衡载流子。 半导体的热平衡状态受温度影响,某一特定 温度对应某一特定的热平衡状态。 半导体的导电性受温度影响剧烈。
f ( E ) 称为电子的费米分布函数 空穴的费米分布函数? 1 f ( E )
费米分布函数
EF 称为费米能级或费米能量
温度 导电类型 杂质含量 能量零点的选取
f (E ) N
i i
dF E F ( )T dN
处于热平衡状态的电子系统有统一的费米能级
k u * mn
自由电子的速度
微观粒子具有波粒二象性
p m0u
p E 2m0
i ( K r t )
2
p K E hv
k u m0
(r, t ) Ae
半导体中电子的加速度
半导体中电子在一强度为 E的外加电场作用 下,外力对电子做功为电子能量的变化
点缺陷
弗仓克耳缺陷
间隙原子和空位成对出现
肖特基缺陷
只存在空位而无间隙原子
间隙原子和空位这两种点缺陷受温度影响较 大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
点缺陷
替位原子(化合物半导体)
位错
位错是半导体中的一种缺陷,它严重影 响材料和器件的性能。
态密度
导带底附近状态密度(理想情况)
V 2 dz 3 4 k dk 4
k E (k ) EC * 2mn
2 2
mn dE kdk 2 ( E EC ) dE
1/ 2
*
V (2mn ) dz 2 3 2
* 3/ 2
态密度
dz V (2mn* )3/ 2 gc ( E ) 2 ( E EC )1/ 2 dE 2 3
2 2 2 E (k ) E (0) (k x k y k z ) * 2mn
2
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性
五.非平衡载流子
六.pn结
七.金属和半导体的接触
八.半导体表面与MIS结构
与理想情况的偏离
施主:掺入在半导体中的杂质原子,能够向半导体中提供导电的电子, 并成为带正电的离子。如Si中的P 和As
ED
As
EC ED EV
N型半导体
施主能级
半导体的掺杂
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
EC
B
EA
EA EV
P型半导体
受主能级
半导体的掺杂
u
dE fds fudt
1 dE dk
dk f dt 2 2 du 1 d dE 1 d E dk f d E a ( ) 2 2 dt dt dk dk dt dk 2
f dE dE dt dk
半导体中电子的加速度
2
令
1 1 d E 2 * mn dk 2
孤立原子的能级 4个原子能级的分裂
原子的能级的分裂
原子能级分裂为能带
半导体的能带结构
导带 Eg
Hale Waihona Puke 价带价带:0K条件下被电子填充的能量的能带
导带:0K条件下未被电子填充的能量的能带
带隙:导带底与价带顶之间的能量差
自由电子的运动
微观粒子具有波粒二象性
p m0u
p E 2m0
i ( K r t )
N D N A
半导体中同时存在施主和受主杂质, 且 N D N A 。
N型半导体
N型半导体
N A N D
半导体中同时存在施主和受主杂质, 且 N A N D 。
P型半导体
P型半导体
杂质的补偿作用
半导体中同时存在施主和受主杂质 时,半导体是N型还是P型由杂质的 浓度差决定 半导体中净杂质浓度称为有效杂质 浓度(有效施主浓度;有效受主浓 度) 杂质的高度补偿( N A N D )
GaAs材料中的离子锂(0.068nm)。
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
替位式杂质原子的大小和价电子壳层结构
要求与被取代的晶格原子相近。如Ⅲ、Ⅴ 族元素在Si、Ge晶体中都为替位式杂质。
间隙式杂质、替位式杂质
单位体积中的杂质原子数称为杂质浓度
半导体的掺杂
2
2
半导体中E(K)与K的关系
1 d 2E 2 E (k ) E (0) ( 2 ) k 0 k 2 dk
1 d 2E 1 ( 2 )k 0 * 代入上式得 令 2 dk mn
k E (k ) E (0) * 2mn
2 2
自由电子的能量
微观粒子具有波粒二象性
p m0u
最小单元
注:(a)单胞无需是唯一的
( b)单胞无需是基本的
晶体结构
三维立方单胞
简立方、
体心立方、
面立方
金刚石晶体结构
原子结合形式:共价键 形成的晶体结构: 构成一个正四 面体,具有 金 刚 石 晶 体 结 构
金刚石结构
金刚石晶体结构
半 导 体 有: 元 素 半 导 体 如Si、Ge
闪锌矿晶体结构
晶格原子是振动的 材料含杂质 晶格中存在缺陷
点缺陷(空位、间隙原子) 线缺陷(位错) 面缺陷(层错)
与理想情况的偏离的影响
极微量的杂质和缺陷,会对半导体材料 的物理性质和化学性质产生决定性的影 响,同时也严重影响半导体器件的质量。 105个Si原子 1个B原子/ 3 在室温下电导率提高10 倍 103 cm2 Si单晶位错密度要求低于
即
f a * mn
mn 2 d E 2 dk
*
2
有效质量的意义
自由电子只受外力作用;半导体中的电子 不仅受到外力的作用,同时还受半导体内 部势场的作用 意义:有效质量概括了半导体内部势场的 作用,使得研究半导体中电子的运动规律 时更为简便(有效质量可由试验测定)
空穴
只有非满带电子才可导电
金刚石型 闪锌矿型
半 导 体 有: 化 合 物 半 导 体 如GaAs、InP、ZnS
原子的能级
电子壳层
不同支壳层电子
1s;2s,2p;3s,2p,3d;…
共有化运动
Si原子的能级
电子的能级是量子化的
n=2 8个电子 +14 n=3 四个电子
H
n=1 2个电子 Si
原子的能级的分裂
与理想情况的偏离的原因
理论分析认为,杂质和缺陷的存在使得 原本周期性排列的原子所产生的周期性 势场受到破坏,并在禁带中引入了能级, 允许电子在禁带中存在,从而使半导体 的性质发生改变。
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、
f (E) E EF 若 E EF ,则 f ( E ) 1 若 E EF ,则 f ( E ) 0 1 e k0T 在热力学温度为0度时,费米能级 EF 可看成量子态