2014届高考理科理数学第一轮知识点总复习测试题16

合集下载

2014届高考总复习理科数学试题

2014届高考总复习理科数学试题

2014届高考总复习理科数学试题(3)本试卷共6页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()()21i 2z --=(i 为虚数单位),则z 的共轭复数z 为2.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则 3. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.对于平面α、β、γ和直线a 、b 、m 、n , 下列命题中真命题是A.若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B.若//,,,a b αβαγβγ==I I 则//a bC.若//,a b b α⊂,则//a αD.若,,//,//a b a b ββαα⊂⊂,则//βα5.某程序框图如图1所示,若该程序运行后输 出的值是95,则6.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是7.给出下列四个结论:①若命题2000:R,10p x x x ∃∈++<,则2:R,10p x x x ⌝∀∈++≥; ② “()()340x x --=”是“30x -=”的充分而不必要条件;③命题“若0m >,则方程20x x m +-=有实数根”的逆否命题为:“若方程20x x m +-=没有实数根,则m ≤0”;④若0,0,4a b a b >>+=,则ba11+的最小值为1.其中正确结论的个数为8. 已知函数)(x f 是定义在(,)-∞+∞上的奇函数,若对于任意的实数0≥x ,都有)()2(x f x f =+,且当[)2,0∈x 时,)1(log )(2+=x x f ,则)2012()2011(f f +-的值为二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.设二项式61x x ⎛⎫- ⎪⎝⎭的展开式中常数项为A ,则=A .10.一物体在力5, 02,()34, 2x F x x x ≤≤⎧=⎨+>⎩(单位:N )的作用下沿与力F 相同的方向,从0x = 处运动到4x = (单位:m )处,则力()F x 做的功为 焦.11.设z kx y =+,其中实数,x y 满足20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若z 的最大值为12,则k = .12.已知双曲线()222210,0x y a b a b-=>>的两条渐近线与抛物线()220y px p =>的准线分别交于,A B 两点,O 为坐标原点.若双曲线的离心率为2,AOB ∆的面积为3,则p = .13.在区间[]-33,上随机取一个数x ,使得125x x -++≤成立的概率为 . (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知极坐标的极点与平面直角坐标系的原点重合,极轴与x 轴的正半轴重合,且长度单位相同.圆C 的参数方程为13cos (13sin x y ααα=+⎧⎨=-+⎩为参数),点Q 的极坐标为(2,4π).若点P 是圆C 上的任意一点,,P Q 两点间距离的最小值为 .15.(几何证明选讲选做题)如图2,AB 是⊙O 的直径,P 是AB 延长线上的一点,过P 作⊙O 的切线,切点为C ,32=PC ,若︒=∠30CAP ,则⊙O 的直径=AB __________ .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c 向量()()()B A B A m --=→sin ,cos ,()B B n sin ,cos -=→,且53-=⋅→→n m .(1)求sin A 的值;(2)若42a =,5b =,求角B 的大小及向量BA −−→在BC −−→方向上的投影. 17.(本小题满分12分)为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图3是测量数据的茎叶图:规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品. (1)试用上述样本数据估计甲、乙两厂生产的优等品率;(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望()E ξ;(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率. 18.(本小题满分14分)如图4,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E 为PC 中点,底面ABCD 是直角梯形,//AB CD ,ADC ∠=︒90,1AB AD PD ===,2CD =.(1) 求证://BE 平面PAD ; (2) 求证:平面PBC ⊥平面PBD ;确定λ的值(3) 设Q 为棱PC 上一点,PQ PC λ=u u u r u u u r,试使得二面角Q BD P --为︒45.19.(本小题满分14分)若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12log n n b a =.(1)求1a ,2a 的值;(2)求数列{}n b 的通项公式;(3)若11,0,n n n c c b c +-==求证:对任意*2311132,4n n n N c c c ≥∈+++<L 都有.20.(本小题满分14分)已知椭圆R :()222210x y a b a b +=>>的长轴长为4,且过点132⎛⎫⎪⎝⎭,. (1)求椭圆R 的方程;(2)设A 、B 、M 是椭圆上的三点,若3455OM OA OB −−→−−→−−→=+,点N 为线段AB 的中点,C 、D 两点的坐标分别为6,02⎛⎫- ⎪ ⎪⎝⎭、6,02⎛⎫⎪ ⎪⎝⎭,求证:22NC ND +=.21.(本小题满分14分) 已知函数)0,0(112)1ln()(>≥-+++=a x x ax x f . (1)若)(x f 在1=x 处取得极值,求a 的值; (2)求)(x f 的单调区间;(3)若1=a 且0<b ,函数bx bx x g -=331)(,若对于)1,0(1∈∀x ,总存在)1,0(2∈x 使得)()(21x g x f =,求实数b 的取值范围.理科数学参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2. 对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号12345678答案C A C B A D CA二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

2014年高考全国卷I卷(理数)试题及答案详细解析

2014年高考全国卷I卷(理数)试题及答案详细解析

2014年普通高等学校招生全国统一考试理科数学 第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合{}{}2230,22A x x x B x x =--≥=-≤<,则A B = ( )A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,22.()()3211+-i i = ( )A .1i +B .1i -C .1i -+D .1i --3.设函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()()f x g x 是偶函数B .()()f x g x 是奇函数C .()()f x g x 是奇函数D .()()f x g x 是奇函数4.已知F 为双曲线()22:30C x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3C D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A .18 B .38 C .58 D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π的图像大致为( )7.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A .203 B .72 C .165 D .1588.设0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭且1sin tan cos βαβ+=,则( ) A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=9.不等式组1,24x y x y +≥⎧⎨-≤⎩的解集记为D,有下面四个命题()()12:,,22,:,,22,p x y D x y p x y D x y ∀∈+≥-∃∈+≥()()34:,,23,:,,21,p x y D x y p x y D x y ∀∈+≤∃∈+≤-其中的真命题是( )A .23,p pB .12,p pC . 14,p pD .13,p p10.已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =( )A .72 B .3 C . 52D .2 11.已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C . (),2-∞-D .(),1-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .6C .D .4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014年高考理科数学总复习试卷第16卷题目及其答案

2014年高考理科数学总复习试卷第16卷题目及其答案

补2014年高考理科数学总复习试卷第16卷题目及其答案本试卷满分150分,考试用时120分钟.一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.函数()x cos x sin x f 22-=的最小正周期为( )A.πB. 2πC. 2πD. 4π2. 已知函数()sin y x =ω+ϕ0,02π⎛⎫ω><ϕ≤ ⎪⎝⎭,且此函数的图象如图所示,则点(),ωϕ的坐标是( )A .2,4π⎛⎫ ⎪⎝⎭B .2,2π⎛⎫⎪⎝⎭C .4,4π⎛⎫ ⎪⎝⎭D .4,2π⎛⎫ ⎪⎝⎭3. 若0,0>>b a 且4=+b a ,则下列不等式恒成立的是( ) A .211>ab B .111≤+ba C .2≥ab D .81122≤+b a4.“(3)0-≤x x ”是“12-≤x ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知等比数列{}n a 的前n 项和为a S n n +⨯=+123,则=a ( )A. 0B.6-C. 3-D. 2-6.已知1x >,1y >,且1ln 4x ,14,ln y 成等比数列,则xy ( ) A .有最大值e B .有最大值e C .有最小值e D .有最小值e7. 设x ,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩, 若目标函数()00>>+=b ,a by ax z 的值是最大值为10,则ba 45+的最小值为( ). A .6 B .7 C .8 D .9yxO 38π 78π 1-18. 已知数列:,,,,,,,,,,, 41322314312213211211依它的前10项的规律,这个数列的第2010项2010a =( )A.577 B. 657 C. 655 D. 755 二、填空题(本大题共6小题,每小题5分,满分30分) 9.设等差数列{}n a 的前n 项和为n S ,若535a a =,则95S S = 10.海上有A 、B 两个小岛相距20海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°视角,则B 、C 间的距离是 海里. 11. 定义:()00>>=y ,x y )y ,x (F x ,已知数列{}n a 满足:()()n ,F ,n F a n 22=)(*∈N n ,若对任意正整数n ,都有k n a a ≥)(*∈N k 成立,则k a 的值为12.在下面等号右侧两个分数的分母括号处,各填上一个自然数,并且使这两个自然数的和最小:()()911+=。

2014届高考理科数学一轮复习数列的概念与简单表示法练习题

2014届高考理科数学一轮复习数列的概念与简单表示法练习题

数列的概念与简单表示法1.数列{a n }:1,-58,715,-924,…的一个通项公式是( A .a n =(-1)n +12n -1n 2+n (n ∈N +)B .a n =(-1)n -12n +1n 3+3n(n ∈N +)C .a n =(-1)n +12n -1n 2+2n (n ∈N +)D .a n =(-1)n -12n +1n 2+2n(n ∈N +) 2. 设数列{a n }的前n 项和S n =n 2,则a 8的值为( A .15 B .16 C .49 D .643.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( A.1516 B.158 C.34 D.384.共有30项的数列{}n a 通项公式是nn a n --=9998,其中最大值项与最小值项分别是( ) A .30a ,1a B .10a ,9a C .10a ,30a D .1a ,9a5. 把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图K27-1).则第7个三角形数是( )A .27B .28C .29D .306.[2011·太原模拟] 已知S n 是非零数列{a n }的前n 项和,且S n =2a n -1,则S 2 011等于( )A .1-22 010B .22 011-1C .22 010-1D .1-22 0117.、已知数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-<≤=+)121(,12)210(,21n n n n n a a a a a ,若1a =67,则2010a 的值为( ) A.67 B.57 C.37 D.178.已知数列{a n }的前n 项和S n =n 3,则a 6+a 7+a 8+a 9等于( A .729 B .367C .604 D .8549.已知数列{a n }的通项a n =na nb +c(a ,b ,c ∈(0,+∞)),则a n 与a n +1的大小关系是( ) A .a n >a n +1 B .a n <a n +1C .a n =a n +1 D .不能确定10.已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x ≤0时,f(x)=2x ,若n ∈N *,a n =f(n),则a 2006=( )A .2006 B .4C.14D .-4 11.已知函数f(n)=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2 (当n 为偶数时),且a n =f(n)+f(n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0 B .100C .-100 D .1020012.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+lnn B .2+(n -1)lnnC .2+nlnn D .1+n +lnn13.已知数列{a n }中,a 1=1,1a n +1=1a n+3(n ∈N *),则a 10=( A .28 B .33C.133 D.128 14.2011年,我国南方省市遭遇旱灾以及洪水灾害,为防洪抗旱,某地区大面积植树造林,如图K31-1,在区域{(x ,y )|x ≥0,y ≥0}内植树,第一棵树在点A 1(0,1),第二棵树在点B 1三棵树在点C 1(1,0),第四棵树在点C 2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么第2011棵树所在的点的坐标是( )A .(13,44)B .(12,44)C .(13,43)D .(14,43)15\已知数列{a n }的前n 项和为S n ,且有a 1=3,4S n =6a n -a n -1+4S n -1,则a n =________.16.已知数列{a n }满足a 1=1,a n =12a n -1+1(n ≥2),则a n =________. 17.数列{a n }满足关系a n a n +1=1-a n +1(n ∈N *),且a 2010=2,则a 2008=________.19. 已知数列{a n }的通项a n =na nb +c(a ,b ,c ∈(0,+∞)),则a n 与a n +1的大小关系是( ) A .a n >a n +1 B .a n <a n +1C .a n =a n +1 D .不能确定20.已知数列{a n }满足a 1=2,且a n +1a n +a n +1-2a n =0(n ∈N *),则a 2=________;并归纳出数列{a n }的通项公式a n =________.21. 已知数列{a n }的前n 项和S n =n 2+2n -1,则a 1+a 3+a 5+…+a 25=________.22.若f (n )为n 2+1(n ∈N *)的各位数字之和,如62+1=37,f (6)=3+7=10.f 1(n )=f (n ),f 2(n )=f (f 1(n )),…,f k +1(n )=f (f k (n )),k ∈N *,则f 2013(4)=________.20.一同学在电脑中打出如下若干个圆(图中●表示实心圆,○表示空心圆):●○●●○●●●○●●●●○●●●●●○●●●●●●○若将此若干个圆依次复制得到一系列圆,那么在前2 013个圆中,空心圆的个数为________.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f (用n 表示)。

2014届高考数学(理)第一轮复习学案——等比数列及其前n项和含解析

2014届高考数学(理)第一轮复习学案——等比数列及其前n项和含解析

等比数列及其前n 项和[知识能否忆起]1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,若m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r . 特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k ;数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时q ≠-1); a n =a m q n-m.[小题能否全取]1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝⎛⎭⎫32nB .4·⎝⎛⎭⎫23nC .4·⎝⎛⎭⎫32n -1D .4·⎝⎛⎭⎫23n -1 解析:选C (a +1)2=(a -1)(a +4)⇒a =5, a 1=4,q =32,故a n =4·⎝⎛⎭⎫32n -1. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128D .243解析:选A q =a 2+a 3a 1+a 2=2,故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =12(1-2n )1-2=2n -1-12.答案:2 2n -1-125.(2012·新课标全国卷)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-2 1.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. (2)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 2.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.等比数列的判定与证明典题导入[例1] 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.[自主解答] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列. 证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∵b n +1b n =12,∴数列{b n }是等比数列.由题悟法等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. (2012·沈阳模拟)已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }()A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 解析:选A 由log a a n +1-log a a n =2,得log aa n +1a n =2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列.等比数列的基本运算典题导入[例2] (2011·全国高考)设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .[自主解答] 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧ a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3. 当a 1=3,q =2时,a n =3×2n -1,S n =3×(2n -1);当a 1=2,q =3时,a n =2×3n -1,S n =3n -1.由题悟法1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.以题试法2.(2012·山西适应性训练)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式; (2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0). 因为a 2,a 4,a 8成等比数列, 所以(2+3d )2=(2+d )·(2+7d ), 解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n , 则S n =32+34+ (32)=9(1-9n )1-9=98(9n -1).等比数列的性质典题导入[例3] (1)(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B.32C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7 =log 3(a 1a 2…a 7)=log 3a 74 =7log 33π3=7π3,故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.[答案] (1)B (2)C由题悟法等比数列与等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以与等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,若能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7(2)(2012·成都模拟)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C.323(1-4-n )D.323(1-2-n ) 解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8, 解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.(2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝⎛⎭⎫122n -5. 故a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).1.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q 为( )A .-12 B .1C .-12或1D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3. 当q ≠1时,S 3=a 1(1-q 3)1-q =a 1(1+q +q 2)=3a 1q 2,解得q =-12,综上q =-12或q =1.2.(2012·东城模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152 B.154 C .4D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152.3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16. 又∵等比数列{a n }的各项都是正数,∴a 7=4. 又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知: 2(14-a )=(a -2)2,解得a =6或a =-4(舍去), 同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn =( )A.32 B.32或23C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.(2012·西城期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________. 解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n ,∴1a n =⎝⎛⎭⎫12n ,1a 2n =⎝⎛⎭⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列, ∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n 10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *).(2)因为S n =a 1(1-3n )1-3=12a 1·3n -12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.12. (2012·山东高考)已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5, 得⎩⎪⎨⎪⎧5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7.(2)对m ∈N *,若a n =7n ≤72m ,则n ≤72m -1.因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列, 故S m =b 1(1-q m )1-q =7×(1-49m )1-49=7×(72m -1)48=72m +1-748.1.若数列{a n }满足a 2n +1a 2n=p (p 为正常数,n ∈N *),则称数列{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若a 2n +1a 2n =p ,则a n +1a n =±p ,不是定值;若a n +1a n =q ,则a 2n +1a 2n=q 2,且q 2为正常数,故甲是乙的必要不充分条件.2.(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:法一:S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0, 解得q =32(q =-1不合题意,舍去).法二:设等比数列{a n }的首项为a 1,由S 2=3a 2+2,得 a 1(1+q )=3a 1q +2.①由S 4=3a 4+2,得a 1(1+q )(1+q 2)=3a 1q 3+2.② 由②-①得a 1q 2(1+q )=3a 1q (q 2-1). ∵q >0,∴q =32.答案:323.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:依题意S n =4a n -3(n ∈N *), n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. (2)因为a n =⎝⎛⎭⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝⎛⎭⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝⎛⎭⎫43n -11-43=3·⎝⎛⎭⎫43n -1-1(n ≥2), 当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝⎛⎭⎫43n -1-1.1.(2012·大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:选B ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n ,∴a n =S n -S n -1=2a n +1-2a n ,∴3a n =2a n +1,∴a n +1a n =32. 又∵S 1=2a 2,∴a 2=12,∴a 2a 1=12, ∴{a n }从第二项起是以32为公比的等比数列, ∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎡⎦⎤1-⎝⎛⎭⎫32n -11-32=⎝⎛⎭⎫32n -1. ( 也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,求得S n =⎝⎛⎭⎫32n -1 ) 2.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12. (2)由(1)可得a 1-a 1⎝⎛⎭⎫-122=3. 故a 1=4,从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 3.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013. 解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).∵d >0, 故解得d =2.∴a n =1+(n -1)·2=2n -1. 又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1. (2)由c 1b 1+c 2b 2+…+c n b n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n. 两式相减得:n ≥2时,c n b n=a n +1-a n =2. ∴c n =2b n =2·3n -1(n ≥2). 又当n =1时,c 1b 1=a 2,∴c 1=3. ∴c n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2. ∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.。

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014年高考全国Ⅰ理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年全国Ⅰ,理1,5分】已知集合{}2230A x x x =--≥,{}22B x x =-≤<,则A B =( )(A )[]2,1-- (B )[)1,2- (C )[]1,1- (D )[)1,2 【答案】A【解析】∵{}{}223013A x x x x x x =--≥=≤-≥或,{}22B x x =-≤<,∴{}21AB x x =-≤≤-,故选A .(2)【2014年全国Ⅰ,理2,5分】()()321i 1i +=-( )(A )1i + (B )1i - (C )1i -+ (D )1i -- 【答案】D【解析】∵32(1i)2i(1i)1i (1i)2i++==----,故选D . (3)【2014年全国Ⅰ,理3,5分】设函数()f x ,()g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函 数,则下列结论中正确的是( )(A )()()f x g x 是偶函数 (B )()()f x g x 是奇函数 (C )()|()|f x g x 是奇函数 (D )|()()|f x g x 是奇函数 【答案】C【解析】∵()f x 是奇函数,()g x 是偶函数,∴()f x 为偶函数,()g x 为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得()|()|f x g x 为奇函数,故选C .(4)【2014年全国Ⅰ,理4,5分】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )(A (B )3 (C (D )3m 【答案】A【解析】由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+)F ,一条渐近线y =,即0x =,则点F 到C 的一条渐近线的距离d =,故选A .(5)【2014年全国Ⅰ,理5,5分】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )(A )18 (B )38 (C )58(D )78【答案】D【解析】由题知()1F ,)2F 且220012x y -=,所以())120000,,MF MF x y x y ⋅=-⋅-2220003310x y y =+-=-<,解得0y <<,故选D . (6)【2014年全国Ⅰ,理6,5分】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( )(A ) (B ) (C ) (D )【答案】B【解析】如图:过M 作MD OP ⊥于D ,则sin PM x =,cos OM x =,在Rt OMP ∆中,cos sin 1cos sin sin 212x x OM PM MD x x x OP ⋅⋅===⋅=,∴()1sin 2(0)2f x x x π=≤≤,故选B . (7)【2014年全国Ⅰ,理7,5分】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )(A )203(B )165 (C )72 (D )158【答案】D【解析】输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===;2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M =,故选D .(8)【2014年全国Ⅰ,理8,5分】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )(A )32παβ-= (B )22παβ-=(C )32παβ+=(D )22παβ+=【答案】B 【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+,()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<,∴2παβα-=-,即22παβ-=,故选B .(9)【2014年全国Ⅰ,理9,5分】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )(A )2p ,3p (B )1p ,4p (C )1p ,2p (D )1p ,3p 【答案】C【解析】作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,故选C . (10)【2014年全国Ⅰ,理10,5分】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )(A )72 (B )52(C )3 (D )2【答案】C【解析】过Q 作QM l ⊥于M ,∵4FP FQ =,∴34PQ PF =,又344QM PQ PF ==,∴3QM =, 由抛物线定义知3QF QM ==,故选C .(11)【2014年全国Ⅰ,理11,5分】已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >, 则a 的取值范围为( )(A )()2,+∞ (B )(),2-∞- (C )()1,+∞ (D )(),1-∞-【答案】B【解析】解法一:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭;且(0)10f =>,()f x 有小于零的零点,不符合题意.当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭要使()f x 有唯一的零点0x 且00x >,只需2()0f a>,即24a >,2a <-,故选B .解法二:由已知0a ≠,()3231f x ax x =-+有唯一的正零点,等价于3113a x x =⋅-有唯一的正零根,令1t x=,则问题又等价于33a t t =-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->, ()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,故选B .(12)【2014年全国Ⅰ,理12,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )(A ) (B ) (C )6 (D )4 【答案】C【解析】如图所示,原几何体为三棱锥D ABC -,其中4,AB BC AC DB DC =====6DA ==,故最长的棱的长度为6DA =,故选C .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分 (13)【2014年全国Ⅰ,理13,5分】8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案) 【答案】20-【解析】8()x y +展开式的通项为818(0,1,,8)r r r r T C x y r -+==,∴777888T C xy xy ==,626267828T C x y x y ==, ∴8()()x y x y -+的展开式中27x y 的项为7262782820x xy y x y x y ⋅-⋅=-,故系数为20-.(14)【2014年全国Ⅰ,理14,5分】甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 . 【答案】A【解析】由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A .(15)【2014年全国Ⅰ,理15,5分】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【答案】090【解析】∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径,∴090BAC ∠=,∴AB 与AC 的夹角为090.(16)【2014年全国Ⅰ,理16,5分】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【解析】由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221c o s 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2014年全国Ⅰ,理17,12分】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(1)证明:2n n a a λ+-=;(2)是否存在λ,使得{}n a 为等差数列?并说明理由.解:(1)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减()121n n n n a a a a λ+++-=,由于0n a ≠,所以2n n a a λ+-=.……6分(2)由题设11a =,1211a a S λ=-,可得211a λ=-,由(1)知31a λ=+假设{}n a 为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=;证明4λ=时,{}n a 为等差数列:由24n n a a +-=知:数列奇数项构成的数列{}21m a -是首项为1,公差为 4的等差数列2143m a m -=-,令21,n m =-则12n m +=,∴21n a n =-(21)n m =- 数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列241m a m =-,令2,n m =则2n m =, ∴21n a n =-(2)n m =,∴21n a n =-(*n N ∈),12n n a a +-=因此,存在存在4λ=,使得{}n a 为等差数列. ……12分(18)【2014年全国Ⅰ,理18,12分】从某企业的某种产品中抽取500件,测 量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<; (ii )某用户从该企业购买了100件这种产品,记X 表示100件产品中质量指标值为区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .12.2.若2(,)ZN μδ,则()0.6826P Z μδμδ-<<+=,(22)P Z μδμδ-<<+=0.9544.解:(1)抽取产品质量指标值的样本平均数x 和样本方差2s 分别为:()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=.……6分 (2)(ⅰ)由(1)知(200,150)Z N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=. ……9分 (ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知(100,0.6826)X B ,所以1000.682668.26EX =⨯=. ……12分 (19)【2014年全国Ⅰ,理19,12分】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (1)证明:1AC AB =;(2)若1AC AB ⊥,o 160CBB ∠=,AB BC =,求二面角111A A B C --的余弦值. 解:(1)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO⊥又 1B O CO =,故1AC AB =. ……6分 (2)因为1AC AB ⊥且O 为1B C 的中点,所以AO CO =,又因为AB BC =,所以BOA BOC ∆≅∆,故OA OB ⊥,从而OA ,OB ,1OB 两两互相垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -. 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB BC =,则0,0,A ⎛ ⎝⎭,()1,0,0B ,1B ⎛⎫⎪ ⎪⎝⎭,0,C ⎛⎫ ⎪ ⎪⎝⎭,1AB ⎛= ⎝⎭,111,0,A B AB ⎛== ⎝⎭,111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭,设(),,n x y z =是平面的法向量,则11100nAB nA B ⎧=⎪⎨=⎪⎩,即00y x -=⎨⎪-=⎪⎩所以可取(1,3,n =,设m 是平面的法向量,则11110m A B n B C ⎧=⎪⎨=⎪⎩,同理可取(1,m =,则1cos ,7n m n m n m ==,所以二面角111A A B C --的余弦值为17. ……12分(20)【2014年全国Ⅰ,理20,12分】已知点()0,2A -,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆的焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解:(1)设(),0F c,由条件知2c=,得c c a =, 所以2a =,2221b a c =-=,故E 的方程2214x y +=. ……6分(2)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y ,将2y kx =-代入2214x y +=, 得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,1,2x = 从而21221434k PQ x k -=-=,又点O到直线PQ的距离d =,所以OPQ ∆的 面积12OPQ S d PQ ∆==,设243k t -,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,k =等号成立,且满足0∆>,所以当OPQ ∆的面积最大时,l 的方程为:2y x - 或2y =-..……12分 (21)【2014年全国Ⅰ,理21,12分】设函数()1ln x xbe f x ae x x-=+,曲线()y f x =在点()()1,1f 处的切线为(1)2y e x =-+. (1)求,a b ;(2)证明:()1f x >.解:(1)函数()f x 的定义域为()0,+∞,112()ln x x x x a b bf x ae x e e e x x x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b ==. ……6分 (2)由(1)知,12()ln x xe f x e x x -=+,从而()1f x >等价于2ln x x x xe e ->-,设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫⎪⎝⎭单调减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e =-. (8)分设函数2()x h x xe e-=-,则()()1xh x e x -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值为1(1)h e=-.综上:当0x >时,()()g x h x >,即()1f x > .……12分请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)【2014年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =. (1)证明:D E ∠=∠;(2)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ABC ∆为等边三角形. 解:(1)由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE =,CBE E ∴∠=∠,所以D E ∠=∠ ……5分(2)设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥,故O 在直线MN 上,又AD 不是O 的直径,M 为AD 的中点,故OM AD ⊥,即MN AD ⊥, 所以//AD BC ,故A CBE ∠=∠,又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以ADE ∆为等边三角形. ……10分(23)【2014年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线22:149x y C +=,直线2:22x tl y t =+⎧⎨=-⎩(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值. 解:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=.……5分(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为4cos 3sin 6|d θθ=+-,则||5sin()6|sin30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA当sin()1θα+=时,||PA . ……10分(24)【2014年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)若0a >,0b >且 11a b+=.(1)求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.解:(111a b +,得2ab ≥,且当a b ==时等号成立.故33a b +≥,且当a b ==时等号成立,所以33a b +的最小值为 ……5分(2)由(1)知,23a b +≥,由于6,从而不存在,a b ,使得236a b +=. ……10分。

2014年高考理科数学试题全国大纲卷试题及参考答案

2014 年高考理科数学试题全国纲领卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页。

2.答题前,考生务必然自己的姓名、准考证号填写在本试题相应的地址。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12 个小题 , 每题 5 分, 共 60 分. 在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.1.设 z10i,则 z 的共轭复数为()3iA . 1 3i B. 1 3i C.1 3i D. 1 3i2.设会集 M{ x | x23x 4 0} , N { x | 0x5},则M N ()A.(0, 4]B.[0,4)C.[1,0)D.(1,0]3.设 a sin 330, b cos550, c tan 350,则()A . a b c B. b c a C. c b a D. c a b4.若向量 a, b 满足: | a |1, (a b) a , (2 a b) b ,则 | b |()A.2B.2C.1D.2 25.有 6 名男医生、 5 名女医生,从中选出 2 名男医生、 1 名女医生组成一个医疗小组,则不同的选法共有()A.60 种 B.70 种C.75 种 D .150 种6.已知椭圆 C:x2y21( a b0) 的左、右焦点为 F1、F2,离心率为3,过 F2的直线l交a2b23C 于 A、B 两点,若AF1B 的周长为 4 3 ,则C的方程为()A. x2y21B. x2y21C. x2y21D.x2y 213231281247.曲线 y xe x 1在点(1,1)处切线的斜率等于()A .2e B. e C.2 D.18.正四棱锥的极点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.81B.16 C.9D.27 449.已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若| F1A | 2 | F2 A|,则 cos AF2 F1()A .1B.1C.2D.2 434310.等比数列 { a n} 中, a4 2, a5 5 ,则数列 {lg a n} 的前8项和等于()A .6B.5C.4 D.311.已知二面角l为 600,AB,AB l ,A 为垂足,CD,C l ,ACD1350,则异面直线 AB 与 CD 所成角的余弦值为()A .1B.2C.3D.1 444212.函数 y f ( x) 的图象与函数 y g(x) 的图象关于直线 x y 0对称,则 y f ( x) 的反函数是()A .y g(x)B.y g( x)C.y g(x)D.y g( x)第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.( x y )8的张开式中x2y2的系数为. y x14. 设 x、y 满足拘束条件x y0x 2 y 3 ,则x 2y1z x 4y的最大值为.15.直线l1和 l 2是圆x2y2 2 的两条切线,若l1与 l2的交点为(1,3),则l1与 l2的夹角的正切值等于 .16. 若函数 f ( x)cos2x asin x 在区间(6,2) 是减函数,则 a 的取值范围是.三、解答题(本大题共 6 小题,共70 分. 解答应写出文字说明、证明过程或演算步骤. )17. (本小题满分10 分)ABC 的内角A、B、C的对边分别为a、b、c,已知3a cosC2c cos A, tan A 1 ,求B. 318. (本小题满分12 分)等差数列{ a n}的前n 项和为S n,已知a110 , a2为整数,且S n S4.(1)求{ a n}的通项公式;(2)设b n1,求数列 { b n} 的前n项和 T n. anan 119.(本小题满分 12 分)如图,三棱柱ABC A1B1C1中,点 A1在平面ABC 内的射影 D 在 AC 上,ACB900,BC 1,AC CC12.(1)证明:AC1A1 B ;(2)设直线AA1与平面BCC1B1的距离为 3 ,求二面角A1AB C的大小.20.(本小题满分 12 分)设每个工作日甲、乙、丙、丁 4 人需使用某种设备的概率分别为0.6、0.5、0.5、0.4 ,各人是否需使用设备相互独立 .(1)求同一工作日最少 3 人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学希望 .21.(本小题满分 12 分)已知抛物线 C:y 2的焦点为,直线y 4 与y轴的交点为,与C的交点2 px( p 0)F P5为 Q,且|QF ||PQ|.4(1)求 C 的方程;(2)过 F 的直线 l 与 C 订交于 A 、 B 两点,若 AB 的垂直均分线l'与 C 相较于 M 、N 两点,且 A 、M 、B、 N 四点在同一圆上,求 l 的方程 .22.(本小题满分 12 分)函数 f ( x) ln( x 1)ax(a 1) .x a(1)谈论f (x)的单调性;(2)设a11,a n 1ln( a n1) ,证明:23a n. n+2n 22014 年高考理科数学试题全国纲领卷参照答案一、选择题:1. D2.B3.C4.B5.C6.A7.C8.A9.A10.C11.B12.D二、填空:13. 70 14. 5416. (,2] 15.3三、解答:17.(本小分 10 分)解:由和正弦定理得 3sin A cosC2sin C cos A 故 3tan A cosC2sin C因tan A 1,所以 cosC2sin C 3即tan C 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26 分所以tan B tan[180( A C )]tan(A C )tan A tan C ⋯⋯⋯⋯⋯8分tan A tan C11即 B 135 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分18.(本小分12 分)解:(Ⅰ)由 a110 , a2整数知,等差数列 { a n } 的公差d整数又 S n S4,故 a40, a50即103d0,104d0解得10d532所以d3数列 { a n } 的通公式 a n133n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ) b n13n)1(13n1313n) ⋯⋯⋯⋯⋯⋯⋯⋯⋯8分(133n)(10310于是T n b1b2...b n111(11...(113[()4)103n13)] 71073n1( 1 13 3n )1010n.1210(10 3n)分19.(本小题满分 12 分)解法一:(Ⅰ)由于 A 1 D 平面 ABC , A 1D 平面AAC C ,故平面 AA C C平面 ABC ,1 11 1又 BC AC ,所以 BC 平面AAC C , 3 分1 1连结 A C ,由于侧面 AAC C 为菱形,故1 1 1AC 1A 1C由三垂线定理得AC 1A 1B5分(Ⅱ)BC平面AAC C,BC1 1平面 BCCB ,11故平面AA 1C 1C平面 BCC 1B 1作 A 1ECC 1, E为垂足,则A 1E平面BCC 1B 1又直线AA 1 //平面BCC 1 B 1 ,所以 A 1 E 为直线AA 1 与平面BCC 1B 1 的距离, A 1E3由于A 1C 为ACC 1 的均分线,故A 1DA 1 E38 分作DFAB, F 为垂足,连结A 1F,由三垂线定理得A 1FAB ,故 A 1FD 为二面角 A 1 AB C 的平面角由 ADAA 12 A 1D 2 1得D 为 AC 中点,DF1 AC BC 5, tan A 1FDA 1D152 AB5DF所以二面角 A 1 AB C 的大小为 arctan 15 12 分解法二:以 C 为坐标原点,射线 CA 为 x 轴的正半轴,以 CB 的长为单位长,建立以下列图的空间直角坐标系 C xyz ,由题设知与 z 轴平行, x 轴在平面 1 1 内A 1 DAAC C(Ⅰ) A1(a,0, c) ,由有a 2 ,A(2,0,0),B(0,1,0) ,AB(2,1,0),AC(2,0,0),AA1(a2,0, c) ,AC1AC AA1 ( a4,0, c) ,BA1(a,1,c) ⋯⋯⋯⋯⋯⋯ 2 分由 | AA1 | 2 得 (a 2)2c2 2 ,即a24a c20 ①于是 AC1BA1a24a c20 ,所以AC1A1B ⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(Ⅱ)平面 BCC1 B1的法向量 m(x, y, z) ,m CB,m BB1,即m CB0 ,m BB10因 CB(0,1,0) ,BB1AA1 (a2,0, c) ,故y0 ,且 ( a 2) x cz0令 x c ,z 2 a ,m(c,0,2a) ,点A到平面 BCC1 B1的距离|CA || cos m, CA| | CA m |c22c c| m |(2a)2又依, A 到平面BCC1B1的距离 3 ,所以 c3代入①解得 a 3 (舍去)或 a 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分于是 AA1( 1,0, 3)平面 ABA1的法向量 n( p, q, r ) ,n A n1,AB,即 nAA 10 ,n AB 0,p3r0 且 2 p q0,令 p3, q 2 3 ,r 1, n( 3, 2 3,1),又 p (0,0,1) 平面ABC的法向量,故n p1cos n, p| p |4| n |所以二面角A1AB C 的大小arccos 1 ⋯⋯⋯⋯⋯⋯⋯⋯12 分420.(本小分12 分)解:Ai表示事件:同一工作日乙、丙中恰有i 人需使用,i0,1,2 ,B表示事件:甲需使用,C 表示事件:丁需使用 ,D 表示事件:同一工作日最少 3 人需使用(Ⅰ)DA 1BCA 2BA 2B CP( B)0.6, P(C)0.4, P( A i )C 2i 0.52 ,i0,1,2 ⋯⋯⋯ 3 分所以 P(D )P( A 1B CA 2BA 2B C )P( A 1B C )P( A 2B)P( A 2 B C )P( A 1) P( B) P(C)P( A 2) P( B) P( A 2 ) P(B) P(C)0.31⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分(Ⅱ)的可能取 0,1,2,3,4,其分布列P(0)P(B A 0 C)P(B) P(A 0 ) P(C)(1 0.6) 0.52 (1 0.4)0.06P(1) P(BA 0C BA 0C BA 1C)P(B) P( A 0 ) P(C) P( B) P( A 0 ) P(C) P( B) P( A 1) P(C)0.6 0.52 (1 0.4)(1 0.6) 0.520.4 (1 0.6) 0.52 (1 0.4)0.25P( 4) P(A 2 B C) P( A 2 ) P(B) P(C) 0.520.6 0.4 0.06P( 3)P(D )P(4)0.25P(2) 1 P(0) P( 1) P(3) P( 4)1 0.06 0.25 0.25 0.060.38 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分数学希望 EX0 P( 0) 1P(1)2P(2)3P(3)4P(4)0.25 2 0.38 3 0.25 4 0.062 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分21.(本小 分 12 分)解:(Ⅰ) Q(x 0 , 4) ,代入 y 22 px 得 x 08p所以|PQ| 8,|QF |p x 0p 8 p22 p由 得p8 5 8,解得 p2 (舍去)或 p22p4p所以 C 的方程 y 24x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分(Ⅱ)依 意知 l与坐 不垂直,故可 l 的方程 xmy 1(m0)代入 y 24 x 得y 24 m y 4 0A( x 1 , y 1 ), B( x 2 , y 2 ) , y 1y 2 4m, y 1 y 24故 AB 的中点 D (2m 2 1.2m),| AB | m 2 1 | y 1 y 2 | 4(m 21)又 l 的斜率m ,所以 l 的方程 x1 y 2m 23m将上式代入 y 24 x ,并整理得 y 24 y 4(2m 2 3)mM (x 3, y 3), N ( x 4 , y 4 ) , y 3y 44, y 3 y 44(2 m 23)m故 MN 的中点E(22m 23,2),|MN |11| yy | 4(m 2 1) 2m 21⋯10分m2mm234 m 2由于 MN 垂直均分 AB ,故 A, M , B, N 四点在同一 上等价于 | AE ||BE | 1|MN |,2从而 1| AB|2|DE|21|MN |244即 4(m21)2(2 m 2 ) 2(22)24(m 2 1)2 (2 m 2 1)mm 2m 4化 得 m 21 0 ,解得 m 1或 m1所求直 l 的方程 x y1 0 或 x y1 0 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分22.(本小 分 12 分)解:(Ⅰ) f (x) 的定 域 ( 1,), f ( x)2[ x (a 2 2a 2)] ⋯⋯⋯⋯⋯⋯⋯ .2 分(x 1)(x a)(ⅰ)当 1 a 2 ,若 x( 1,a 22a) , f(x)0 , f (x) 在 ( 1,a 22a) 是增函数;若 x (a 2 2a,0) , f (x) 0 , f ( x) 在 ( a 22a,0) 是减函数;若 x(0,) , f ( x)0 , f ( x) 在 (0,) 是增函数; ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(ⅱ)当 a2 , f( x) 0 , f ( x)0 建立当且 当 x 0 , f (x) 在 ( 1, ) 是增函数;(ⅲ)当 a 2 时,若x (1,0),则 f(x) 0 , f ( x) 在(1,0)是增函数;若 x(0, a22a) ,则 f(x)0 , f ( x) 在 (0, a22a) 是减函数;若x(a22a, ) ,则 f ( x)0 , f ( x) 在 (a22a,) 是增函数;6 分(Ⅱ)由(Ⅰ)知,当 a 2 时,f (x)在( 1,) 是增函数,当 x (0,) 时, f ( x) f (0)0,即 ln( x2x(x0) 1)2x又由(Ⅰ)知,当 a3时,f ( x)在[0,3)是减函数,当 x (0,3) 时, f (x) f (0)0 ,即 ln( x1)3x(0x3)9分x 3下面用数学归纳法证明2a n3 n2n 2(ⅰ)当 n1时,由已知2a11,故结论建立;3(ⅱ)设当 n k 时结论建立,即2a k3 k2k 2当 n k 1 时,2222a k 1ln(a k1)1)k2ln(22k3k2k23333ak 1ln(a k1)1)k2ln(23k3 k3k2即当 n k 1 时有2ak 13,结论建立。

2014届高考理科理数学第一轮知识点总复习测试题2-推荐下载

【选题明细表】
一、选择题
第 节 命题及其关系、充要条件
知识点、方法
四种命题
充分必要条件的判断
充分必要条件的探求
充分必要条件的应用
1.“若 b2-4ac<0,则 ax2+bx+c=0 没有实根”,其否命题是( C )
(A)若 b2-4ac>0,则 ax2+bx+c=0 没有实根
(B)若 b2-4ac>0,则 ax2+bx+c=0 有实根
(C)若 b2-4ac≥0,则 ax2+bx+c=0 有实根
(D)若 b2-4ac≥0,则 ax2+bx+c=0 没有实根
解析:由原命题与否命题的关系知选 C. 2.(2012 年高考山东卷)设 a>0 且 a≠1,则“函数 f(x)=ax 在 R 上是
减函数”是“函数 g(x)=(2-a)x3 在 R 上是增函数”的( A )
3
3
8.(2012 长沙模拟)若方程 x2-mx+2m=0 有两根,其中一根大于 3 一根 小于 3 的充要条件是 . 解析:方程 x2-mx+2m=0 对应二次函数 f(x)=x2-mx+2m,∵方程 x2mx+2m=0 有两根,其中一根大于 3 一根小于 3,∴f(3)<0,解得 m>9, 即:方程 x2-mx+2m=0 有两根,其中一根大于 3 一根小于 3 的充要条 件是 m>9. 答案:m>9 9.已知 α:x≥a,β:|x-1|<1.若 α 是 β 的必要不充分条件,则实数 a 的取值范围为 . 解析:α:x≥a,可看作集合 A={x|x≥a}, β:|x-1|<1, ∴0<x<2, ∴β 可看作集合 B={x|0<x<2}. 又∵α 是 β 的必要不充分条件,

近三年高考(2014-2016)数学(理)试题分项版解析:专题01+集合和常用逻辑用语(原卷版)

三年高考(2014-2016)数学(理)试题分项版解析第一章 集合和常用逻辑用语一、选择题1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[2. 【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭3. 【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈ 4. 【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) 5. 【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )66. 【2014高考重庆理第6题】 已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7. 【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则() A 、A =B B 、A ⋂B =∅ C 、A B D 、BA 8. 【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的() A 、充要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件9. 【2014】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{10. 【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 11. 【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 12. 【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2] 13. 【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >14. 【2016年高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-15. 【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件16. .【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,817. 【2014天津,理7】设,a b R ,则|“a b ”是“a a b b ”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要又不必要条件 18. 【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞19. 【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <20. 【2014四川,理1】已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=( )A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-21.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x << 22. 【2014高考广东卷.理.1】已知集合{}1,0,1M =-,{}0,1,2N =,则M N =( )A .{}1,0,1-B .{}1,0,1,2-C .{}1,0,2-D .{}0,1 23. 【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 24. 【2015高考广东,理1】若集合{|(4)(1)0}Mx x x ,{|(4)(1)0}N x x x ,则M N( ) A .∅ B .{}1,4-- C .{}0 D .{}1,425. 【 2014湖南5】已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④26. 【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件27. 【2016高考天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1} (B ){4} (C ){1,3} (D ){1,4}29. 【2014山东.理2】设集合{}{}]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( )A. ]2,0[B. )3,1(C. )3,1[D. )4,1(30. 【2013高考陕西版理第1题】设全集为R ,函数f (x )=21x -的定义域为M ,则R M 为( ).A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 31. 【2014高考陕西版理第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D32. 【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞33. 【2014陕西理8】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假34. 【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,235. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}36. 【2014高考北京理第1题】 已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}37. 【2014湖北卷3】设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件38. 【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件39. 【2014上海,理15】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件48. 【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( ) A .{}1- B .{}1 C .{}1,1- D .φ49. 【2015高考四川,理8】设a ,b 都是不等于1的正数,则 “333a b >>”是“log 3log 3a b <”的 ( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件50. 【2014,安徽理2】“0<x ”是“0)1ln(<+x ”的 ( )A .充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 52. 【2015高考安徽,理3】设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件54. 【2014辽宁理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 55. 【2014辽宁理5】设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝56. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}57. 【2015湖南理2】设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )二、填空题1. 【2014高考重庆理第11题】设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===则______.2. 【2015高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .3. 【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 4. 【2016高考江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ______________. 5. 【2014江苏,理1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= . 6. 【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 7. 【2014上海,理11】. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += . 8. 【2014福建,理15】若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.。

高考理科数学第一轮复习测试题16

A 级 基础达标演练(时间:40分钟 满分:60分)一、选择题(每小题5分,共25分) 1.下列命题中的假命题是( ). A .∃x 0∈R ,lg x 0=0 B .∃x 0∈R ,tan x 0=1 C .∀x ∈R ,x 3>0D .∀x ∈R,2x >0解析 对于A ,当x 0=1时,lg x 0=0正确;对于B ,当x 0=π4时,tan x 0=1,正确;对于C ,当x <0时,x 3<0错误;对于D ,∀x ∈R,2x >0,正确. 答案 C2.(2012·杭州高级中学月考)命题“∀x >0,x 2+x >0”的否定是( ). A .∃x 0>0,x 20+x 0>0 B .∃x 0>0,x 20+x 0≤0 C .∀x >0,x 2+x ≤0D .∀x ≤0,x 2+x >0解析 根据全称命题的否定是特称命题,可知该命题的否定是:∃x 0>0,x 20+x 0≤0. 答案 B3.(★)(2012·郑州外国语中学月考)ax 2+2x +1=0至少有一个负的实根的充要条件是( ). A .0<a ≤1 B .a <1C .a ≤1D .0<a ≤1或a <0解析 (筛选法)当a =0时,原方程有一个负的实根,可以排除A 、D ;当a =1时,原方程有两个相等的负实根,可以排除B ,故选C. 答案 C4.(2012·合肥质检)已知p :|x -a |<4;q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则a 的取值范围为( ). A .a <-1或a >6 B .a ≤-1或a ≥6 C .-1≤a ≤6D .-1<a <6解析 解不等式可得p :-4+a <x <4+a ,q :2<x <3,因此綈p :x ≤-4+a 或x ≥4+a ,綈q :x ≤2或x ≥3,于是由綈p 是綈q 的充分不必要条件,可知2≥-4+a 且4+a ≥3,解得-1≤a ≤6. 答案 C5.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ).A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数解析 对于A 只有在a ≤0时f (x )在(0,+∞)上是增函数,否则不成立;对于B ,如果a ≤0就不成立;对于D 若a =0,则f (x )为偶函数了,因此只有C 是正确的,即对于a =0时有f (x )=x 2是一个偶函数,因此存在这样的a ,使f (x )是偶函数. 答案 C二、填空题(每小题4分,共12分)6.(2012·西安模拟)若命题“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________.解析 因为“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则“∀x ∈R,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2. 答案 -22≤a ≤227.已知命题p :x 2+2x -3>0;命题q :13-x >1,若綈q 且p 为真,则x 的取值范围是________.解析 因为綈q 且p 为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是x ≥3或1<x ≤2或x <-3. 故填(-∞,-3)∪(1,2]∪[3,+∞). 答案 (-∞,-3)∪(1,2]∪[3,+∞)8.(2012·南京五校联考)令p (x ):ax 2+2x +a >0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是________.解析 ∵对∀x ∈R ,p (x )是真命题. ∴对∀x ∈R ,ax 2+2x +a >0恒成立, 当a =0时,不等式为2x >0不恒成立, 当a ≠0时,若不等式恒成立,则⎩⎪⎨⎪⎧a >0,Δ=4-4a 2<0,∴a >1. 答案 a >1三、解答题(共23分)9.(11分)已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,求实数a 的取值范围. 解 由“p 且q ”为真命题,则p ,q 都是真命题. p :x 2≥a 在[1,2]上恒成立,只需a ≤(x 2)min =1,所以命题p :a ≤1;q :设f (x )=x 2+2ax +2-a ,存在x 0∈R 使f (x 0)=0, 只需Δ=4a 2-4(2-a )≥0, 即a 2+a -2≥0⇒a ≥1或a ≤-2, 所以命题q :a ≥1或a ≤-2.由⎩⎪⎨⎪⎧a ≤1,a ≥1或a ≤-2得a =1或a ≤-2 ∴实数a 的取值范围是a =1或a ≤-2. 10.(12分)写出下列命题的否定,并判断真假. (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x 0∈R ,|x 0|>0.解 (1)綈q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分) 1.下列命题错误的是( ).A .命题“若m >0,则方程x 2+x -m =0有实数根”的逆否命题为:“若方程x 2+x -m =0无实数根,则m ≤0”B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .若p ∧q 为假命题,则p ,q 均为假命题D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析 依次判断各选项,易知只有C 是错误的,因为用逻辑联结词“且”联结的两个命题中,只要一个为假整个命题为假. 答案 C2.(★)(2011·广东广雅中学模拟)已知p :∃x 0∈R ,mx 20+2≤0.q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( ). A .[1,+∞) B .(-∞,-1] C .(-∞,-2]D .[-1,1]解析 (直接法)∵p ∨q 为假命题,∴p 和q 都是假命题.由p :∃x 0∈R ,mx 20+2≤0为假,得∀x ∈R ,mx 2+2>0,∴m ≥0.①由q :∀x ∈R ,x 2-2mx +1>0为假,得∃x 0∈R ,x 20-2mx 0+1≤0,∴Δ=(-2m )2-4≥0⇒m 2≥1⇒m ≤-1或m ≥1.② 由①和②得m ≥1. 答案 A【点评】 本题采用直接法,就是通过题设条件解出所求的结果,多数选择题和填空题都要用该方法,是解题中最常用的一种方法. 二、填空题(每小题4分,共8分)3.命题“∃x 0∈R ,x 0≤1或x 20>4”的否定是______________. 解析 已知命题为特称命题,故其否定应是全称命题. 答案 ∀x ∈R ,x >1且x 2≤44.(2012·太原十校联考)已知命题“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,则实数a 的取值范围是________. 解析 由“∀x ∈R ,x 2-5x +152a >0”的否定为假命题,可知命题“∀x ∈R ,x 2-5x +152a >0”必为真命题,即不等式x 2-5x +152a >0对任意实数x 恒成立.设f (x )=x 2-5x +152a ,则其图象恒在x 轴的上方.故Δ=25-4×152a <0,解得a >56,即实数a 的取值范围为⎝⎛⎭⎫56,+∞. 答案 ⎝⎛⎭⎫56,+∞ 三、解答题(共22分)5.(10分)已知两个命题r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.如果对∀x ∈R ,r (x )与s (x )有且仅有一个是真命题.求实数m 的取值范围.解 ∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4≥-2,∴当r (x )是真命题时,m <- 2.又∵对∀x ∈R ,当s (x )为真命题时,即x 2+mx +1>0恒成立有Δ=m 2-4<0,∴-2<m <2.∴当r (x )为真,s (x )为假时,m <-2,同时m ≤-2或m ≥2,即m ≤-2.当r (x )为假,s (x )为真时,m ≥-2且-2<m <2,即-2≤m <2. 综上,实数m 的取值范围是m ≤-2或-2≤m <2.6.(12分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.解 由命题p 知:0<c <1.由命题q 知:2≤x +1x ≤52要使此式恒成立,则2>1c ,即c >12.又由p 或q 为真,p 且q 为假知,p 、q 必有一真一假, 当p 为真,q 为假时,c 的取值范围为0<c ≤12.当p 为假,q 为真时,c ≥1.综上,c 的取值范围为⎩⎨⎧⎭⎬⎫c ⎪⎪0<c ≤12或c ≥1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第节函数y=Asin(ωx+φ)的图象
及三角函数模型的简单应用
【选题明细表】
一、选择题
1.(2012北京东城区综合练习)将函数y=sin x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动个单位长度,所得图象的函数解析式是( B)
(A)y=sin(B)y=sin
(C)y=sin(D)y=sin
解析:将函数y=sin x的图象上所有点的横坐标伸长到原来的2倍(纵
坐标不变)得到y=sin x,再把所得各点向右平行移动个单位长度,所得图象的函数解析式是y=sin =sin.故选B.
2.(2012三明模拟)如图是函数y=Asin(ωx+φ)在一个周期内的图象,
此函数的解析式可为( B)
(A)y=2sin
(B)y=2sin
(C)y=2sin
(D)y=2sin
解析:由题图可知A=2,=-=,
∴T=π,ω=2,
∴f(x)=2sin(2x+φ),
又f=2,
即2sin=2,
∴φ=+2kπ(k∈Z),
结合选项知选B.
3.(2012潍坊模拟)如图所示,为了研究钟表与三角函数的关系,建立
如图所示的坐标系,设秒针针尖位置P(x,y).若初始位置为P0(,),当秒针从P0(注此时t=0)正常开始走时,那么点P的纵坐标y与时间t 的函数关系为( C)
(A)y=sin(B)y=sin
(C)y=sin(D)y=sin
解析:由题意知,∠P 0Ox=,即初相为.
又函数周期为60,∴T=,∴|ω|=.
因为秒针按顺时针旋转,
∴ω=-,
∴y=sin.故选C.
4.(2013北大附中河南分校月考)定义行列式运算=a1a4-a2a3.将函数f(x)=的图象向左平移个单位长度,以下是所得函数图象的一个对称中心是( B)
(A)(B)(C)(D)
解析:根据行列式的定义可知
f(x)=sin 2x-cos 2x=2sin(2x-),
向左平移个单位长度得到g(x)=2sin[2(x+)-]=2sin 2x,所以
g=2sin=2sin π=0,
所以是函数的一个对称中心.故选B.
5.(2012福建福州模拟)函数f(x)=2cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,点A、B分别为该部分图象的最高点与最低点,且这两点间的距离为4,则函数f(x)图象的一条对称轴的方程为( D)
(A)x=(B)x=(C)x=4 (D)x=2
解析:由题意知|AB|=4,
即最值之差为4,
故=4,T=8,
所以f(x)=2cos(0<φ<π),
又f(x)=2cos(0<φ<π)为奇函数,
故φ=,
令x+=kπ,k∈Z,
得x=-2+4k,k∈Z,
故x=2是一条对称轴.
故选D.
6.(2012山西四校联考)将函数f(x)=1+cos 2x-2sin2的图象向左平移m(m>0)个单位后所得图象关于y轴对称,则m的最小值为( A) (A)(B)(C)(D)
解析:依题意得f(x)=cos 2x+cos 2=
cos 2x+cos=
cos.
把函数y=f(x)的图象向左平移m个单位后得到
y=cos的图象,
要使其图象关于y轴对称,
则有cos=±,
2m-=kπ,
即m=+,其中k∈Z.
因为m>0,
所以m的最小值为.故选A.
二、填空题
7.(2011年高考江苏卷)函数f(x)=Asin(ωx+φ)(A、ω、φ为常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是.
解析:由题图知A=,
=-=,T=π,
∴ω=2,
∴f(x)=sin(2x+φ),将代入得
π×2+φ=,
∴φ=.∴f(x)=sin,
∴f(0)=sin =.
答案:
8. 如图所示,点P是半径为r cm的砂轮边缘上的一个质点,它从初始位置P0开始,按逆时针方向以角速度ω rad/s做圆周运动,则点P的纵坐标y关于时间t的函数关系式为,该点的运动周期为.
解析:当质点P从点P0转到点P位置时,点P转过的角度为ωt,则∠POx=ωt+φ.由任意角的三角函数得点P的纵坐标为y=rsin(ωt+φ),故点P的运动周期为T=.
答案:y=rsin(ωt+φ)
9.(2012衡阳六校联考)给出下列命题:
①函数f(x)=4cos的一个对称中心为;②若α,β为第一象限角,且α>β,则tan α>tan β;③函数y=sin的最小正周期为5π;④函数y=cos是奇函数;⑤函数y=sin 2x的图象向左平移个单位长度,得到y=sin的图象.
其中正确命题的序号是(把你认为正确的序号都填上).
解析:①f=4cos=
4cos=0.
∴点是函数f(x)=4cos的一个对称中心.故①正确.
②令α=,β=,
则α>β,但tan α=,tan β=,tan α<tan β,故②不正确.
③函数的周期为T===5π,
故最小正周期为5π,故③正确.
④y=cos=cos=sin x.
∴函数为奇函数,故④正确.
⑤函数y=sin 2x的图象向左平移个单位长度得到y=sin的图象,故⑤不正确.
答案:①③④
三、解答题
10.已知函数f(x)=sin+1.
(1)求它的振幅、最小正周期、初相;
(2)画出函数y=f(x)在上的图象.
解:(1)振幅为,最小正周期T=π,初相为-.
(2)图象如图所示.
11.已知函数f(x)=Asin(ωx+φ)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.
解:(1)由题图知A=2,f(x)的最小正周期
T=4×=π,
故ω==2,
将点代入f(x)的解析式并整理得
sin=1,
又|φ|<,∴φ=,
故函数f(x)的解析式为f(x)=2sin(x∈R).
(2)g(x)为偶函数,理由如下:
g(x)=f
=2sin
=2sin
=2cos 2x(x∈R).
∴g(-x)=g(x),故g(x)为偶函数.
12.函数f(x)=Acos(ωx+φ)(其中A>0,ω>0,-π<φ<π)在x=处取得最大值2,其图象中相邻的两个最低点之间的距离为π.
(1)求f(x)的解析式;
(2)求函数f的单调递减区间和对称中心.
解:(1)由题意知f(x)的最小正周期T==π,
所以ω=2.
因为f(x)在x=处取得最大值2,
所以A=2,且2cos=2,
所以cos=1,
即sin φ=-1,
因为-π<φ<π,
所以φ=-,
所以f(x)=2cos=2sin 2x.
(2)由(1)得
f =2sin =2sin,
由2kπ+≤2x+≤2kπ+,k∈Z得
kπ+≤x≤kπ+,k∈Z,
所以函数f的单调递减区间为
,k∈Z.
由2x+=kπ得x=-,k∈Z,
所以函数f 的对称中心为,k∈Z.。

相关文档
最新文档