专题五 第1讲 统计与统计案例

合集下载

回归课本专题答案

回归课本专题答案
相切,则 所以两圆内切. ( 3 )设 P 是椭圆上的任意一点, F 是椭圆的一个焦点, F 是椭圆的另一个焦点,则有
回归课本专题三:解析几何参考答案
一、练习 1. 2 x y 4 0 ;2.(-2,3) ;3.3 或-6 或
1 2 2 ;4. 74 ;5. ( x 4) ( y 1) 25 ; 3 1 ; 4
(2) 直线 AB 与 P 不能相切.因为 k AB b, kPB
b2 c 2 2b b c , 如果直线 AB 与 P 1 c b ( c 1) 0 2 b
xn1 2 xn
故 数 列 {xn } 为 首 项 为 1 , 公 比 为 - 2 的 等 比 数 列 所 以 : xn (2) n1
11.
1 PF , O 半径为 a ,两圆 2
1 1 PF a PF ,所以两圆相切. 2 2
Байду номын сангаас
13 31 1 , ) ;14. ;15.(1,5) , (5,9) ; 5 5 2 x2 y 2 x2 y 2 4 x2 y 2 10 1 ; 1 ; 21. 1 ; 22. 16. ; 17. 1 ; 18.17 ; 19.36 ; 20. 9 4 3 5 8 8 10 2 2 2 2 23. y 12 x ;24. x 8 y ;25. xy 2 ;26. y 4 x ;27. 2 y x 6 ;28.(-3,3).
,∴
8 1 4 1 1 1 8 1 (1 n ) ≥ (1 ) 9 2 9 d1 d 2 dn 9 2
5.⑴ an 6n 5(n N * ) ;
⑵ m 的最小整数为 10.
b(b 2 c) 1 ,解得 c=0 或 2,与 0<c<1 矛盾,所以直线 AB 与 P 不能相切. b(c 1) x2 y 2 2 . ( 1 )设椭圆方程是 2 2 1(a b 0) . 直线 3x 2 y 0 与椭圆的一个交点的坐标是 a b 3c c 2 9c 2 a2 (c, ) 代 入 椭 圆 方 程 得 : 2 2 1 , 又 4, a 2 b 2 c 2, 可 解 得 2 a 4b c 2 2 x y 1. a 2, b 3, c 1 .所以椭圆方程为 4 3 3 ( 1, 0) (2)由(1)知,.直线 3x 2 y 0 与椭圆的一个交点的坐标是 (1, ),F ,则以 PF 为 2 3 2 9 3 3 2 直径的圆的方程是 ( x 1) ( y ) ,圆心坐标为 (1, ) ,半径为 .以椭圆长轴 4 16 4 4 5 3 为直径的圆的方程是 x2 y 2 4 ,圆心坐标为 (0, 0) ,半径为 2.圆心距为 2 , 4 4

2021年高考理科数学二轮复习专题五计数原理、统计与概率

2021年高考理科数学二轮复习专题五计数原理、统计与概率

2021年高考理科数学二轮复习专题五计数原理、统计与概率(一)、计数原理一、排列数与组合数1、排列数:计算公式:2、组合数:①计算公式:()()()()()()121!1221!!mm nn mmn n n n mA nCA m m m m n m---+===--⋅-②组合数的性质:性质1:;性质2:(连续两个组合数的和)二、排列组合与两个基本原理的应用(一)、排列问题1、位置限制:解法:①先考虑限制元素,再考虑无限制的元素(加法原理)②多种限制:用二分法或枚举法2、排队限制:元素间排队的方式有限制①相邻:捆绑法(勿忘内部的排列);②互不相邻:插板法(先排无关元素再插入限制元素)③注意分类讨论以及正难则反(二)、组合问题1、分配问题: k个对象所得元素确定,即将n个不同的元素按不同数量分别分给则共有2、分组问题:将元素按一定数量方案分成k组,注意用除法,即,(t为数量一样的堆数)3、先分组再分配问题:k对象所得元素不确定,注意用乘法。

即。

(分给k个人)【典例1】①将6本书分给甲2本,乙3本,丙1本:(分配问题)②将6本书分成3堆,每堆2本:(分组问题)③将6本书分给甲乙丙,一个人4本,其他两人各一本:(先分组再分配)三、二项式定理(一)基本特征1、展开有n+1项,每项中a、b的指数和为n。

2、通项公式:第r+1项(二)常见题型1、求指定项(有理项、常数项等):通项公式2、求所以项二项式系数..的和:①二项式系数;奇数项与偶数项二项式系数之和相等。

.....、系数②系数:常用特值带入法(令x=0或1或-1)3、系数最值问题:①二项式系数:越中间,二项式系数越大。

(n为奇数,展开有偶数个项,中间两项二项式系数最大、n为偶数,展开有奇数个项,中间项二项式系数最大)②系数:写出通项,列出不等式组4、三项式展开式求指定项:组合的应用:每个括号里必须且只能选一个,根据组合得到答案。

5、求余数:将目标数写出接近除数的和或差的形式,然后计算【典例2】设已知均为整数(),若和被除所得的余数相同,则称和对模同余,记为,若,且a≡b(mod10),则b的值可以是(A)A.2011 B.2012 C .xx D.xx(二)、概率一、概率的基本性质与运算1、互斥事件与对立事件:①A 、B 为互斥事件是A 、B 为对立事件的必要不充分条件②若A 、B 为互斥事件则;③若A 、B 为对立事件则()()()()()1,1P A B P A P B P A P B ⋃==+=-即(正难则反)2、独立事件: A 、B 为独立事件,则3、条件概率:在A 事件发生的情况下,B 事件发生的概率为4、几何概型与古典概型:①古典概型:②几何概型:()()()A m P A n ==构成事件的区域的长度角度、面积、体积全部事件构成的区域的长度角度、面积、体积(常与线性规划结合) 二、随机变量及其分布列1、数学期望与方差的计算方法:①数学期望:;方差:②数学期望与方差的性质:;2、常见随机变量的概率分布:(三)、统计一、抽样方法二、用样本估计总体——统计数据的分析与应用1、茎叶图:①图像特征(读图):中间列为数据的十位数,两边为各组数据的个位数②优点:便于看出中位数以及集中程度2、频率分布直方图:①特征:纵轴:;柱形面积:对应的频率;所有柱形面积=1②频率分布直方图中数据信息的获取:A 、众数:最高柱形的中点横坐标B 、中位数:将所有柱形面积平分成一半的点的横坐标C 、平均数:每条柱形的中点×对应柱形的面积(频率)D 、方差:()()2×-每条柱形中点平均数对应柱形面积频率三、统计案例1、连续型随机变量——正态分布①正态分布表示:::数学期望;②图像特征:A 、关于直线对称;B 、越大(小),数据越分散(集中),图像越矮胖(高瘦) ③应用:利用对称性或查表获得对应概率。

(新课标)高考数学大一轮复习第九章算法初步、统计与统计案例第1节算法初步课件理

(新课标)高考数学大一轮复习第九章算法初步、统计与统计案例第1节算法初步课件理
【例 5】 设计一个计算 1×3×5×7×9×11×13 的算 法.图中给出了程序的一部分,则在横线①上不能填入的数 是( )
温馨 提 示
请 做:课 时 作 业 63
(点击进入)
3.算法与不等式的交汇问题 【例 3】 执行如图所示的程序框图,若输入 x=10, 则输出 y 的值为________.
输出语句
达式
_____________来自赋值语句变量=表达式
_____________ _____________
顺序结构和条件结构
【例 1】 如图中 x1,x2,x3 为某次考试三个评阅人对 同一道题的独立评分,p 为该题的最终得分.当 x1=6,x2 =9,p=8.5 时,x3 等于( )
A.11 C.8
A.s≤34 C.s≤1112
B.s≤56 D.s≤2254
考向 3 确定循环变量 【例 4】 (2015·安徽卷)执行如图所示的程序框图(算法 流程图),输出的 n 为________.
某程序框图如图所示,若该程序运行后输出的值是95, 则( )
A.a=4 C.a=6
B.a=5 D.a=7
基本算法语句
B.10 D.7
(2015·课标全国卷Ⅱ)如图程序框图的算法思路源于我 国古代数学名著《九章算术》中的“更相减损术”.执行该 程序框图,若输入的 a,b 分别为 14,18,则输出的 a=( )
循环结构
循环结构是高考命题的一个热点问题,多以选择题、填 空题的形式呈现,试题难度不大,多为容易题或中档题,且 主要有以下几个命题方向:
考向 1 求输出的结果 【例 2】 (2015·福建卷)阅读如图所示的程序框图,运 行相应的程序,则输出的结果为 ( )
A.2 B.1 C.0 D.-1

2021高考数学二轮专题复习专题五第1讲 统计与统计案例

2021高考数学二轮专题复习专题五第1讲 统计与统计案例

第1讲 统计与统计案例[考情分析] 高考对本讲内容的考查往往以实际问题为背景,考查随机抽样与用样本估计总体,线性回归方程的求解与运用,独立性检验问题.常与概率综合考查,中等难度. 考点一 统计图表 核心提炼1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数. 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.例1 (1)(多选)(2020·新高考全国Ⅱ)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量 答案 CD(2)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列结论正确的是( )A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸答案 A解析根据频率分布直方图可列下表:阅读时间(分钟)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]抽样人数(名)1018222520 5抽样100名学生中有50名为阅读霸,占一半,据此可判断该校约有一半学生为阅读霸.易错提醒(1)对于给出的统计图表,一定要结合问题背景理解图表意义,不能似懂非懂.(2)频率分布直方图中纵坐标不要误以为频率.跟踪演练1 (1)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温不低于20 ℃的月份有5个答案 D解析由题中雷达图易知A,C正确.七月份平均最高气温超过20 ℃,平均最低气温约为13 ℃;一月份平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月平均温差大,故B正确.由题图知平均最高气温不低于20 ℃的月份为六、七、八月,有3个.(2)(多选)(2020·重庆模拟)新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考),其中“选择考”成绩将计入高考总成绩,即将学生考试时的原始卷面分数由高到低进行排序,评定为A,B,C,D,E五个等级,再转换为分数计入高考总成绩.某试点高中2020年参加“选择考”总人数是2018年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2018年和2020年“选择考”成绩等级结果,得到如图所示的统计图.针对该校“选择考”情况,2020年与2018年比较,下列说法正确的是( ) A .获得A 等级的人数增加了 B .获得B 等级的人数增加了1.5倍 C .获得D 等级的人数减少了一半 D .获得E 等级的人数相同 答案 AB解析 设2018年参加“选择考”的总人数为x ,则2020年参加“选择考”的总人数为2x ,根据图表得出2018年和2020年各个等级的人数如表所示.等级年份 AB C D E2018 0.28x 0.32x 0.30x 0.08x 0.02x 20200.48x0.8x0.56x0.12x0.04x由表可知,获得A 等级的人数增加了,故A 正确;获得B 等级的人数增加了0.8x -0.32x0.32x=1.5倍,故B 正确;获得D 等级的人数增加了,故C 错误;获得E 等级的人数不相同,故D 错误.考点二 回归分析 核心提炼在分析两个变量的相关关系时,可根据样本数据作出散点图来判断两个变量之间是否具有相关关系.若具有线性相关关系,则回归直线过样本点的中心(x ,y ),并且可通过线性回归方程估计预报变量的值.例2 (2020·全国Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑i =120x i =60,∑i =120y i =1 200,∑i =120(x i -x )2=80,∑i =120(y i -y )2=9 000,∑i =120(x i -x )(y i -y )=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑i =1n(x i -x )(y i -y)∑i =1n(x i -x )2∑i =1n(y i -y)2,2≈1.414.解 (1)由已知得样本平均数y =120∑i =120y i =60,从而该地区这种野生动物数量的估计值为 60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑i =120(x i -x )(y i -y)∑i =120(x i -x )2∑i =120(y i -y)2=80080×9 000=223≈0.94.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关关系.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. 规律方法 样本数据的相关系数r =∑ni =1 (x i -x )(y i -y )∑n i =1(x i -x )2∑ni =1(y i -y )2,反映样本数据的相关程度,|r |越大,则相关性越强.跟踪演练2 (1)已知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为y ^=6.5x +a ^,则预计当广告费用为6万元时的销售额为( ) A .42万元 B .45万元 C .48万元 D .51万元 答案 C解析 由题意,根据上表中的数据, 可得x =2,y =22, 即样本点的中心为(2,22),又线性回归方程y ^=6.5x +a ^经过样本点的中心,所以22=6.5×2+a ^,解得a ^=9,所以y ^=6.5x +9,当x =6时,y ^=48.(2)(2020·河北衡水中学月考)有一散点图如图所示,在5个(x ,y )数据中去掉D (3,10)后,下列说法正确的是( )A.残差平方和变小B.相关系数r变小C.相关指数R2变小D.解释变量x与预报变量y的相关性变弱答案 A解析∵从散点图可分析得出:只有D点偏离直线远,去掉D点,解释变量x与预报变量y的线性相关性变强,∴相关系数变大,相关指数变大,残差平方和变小,故选A.考点三独立性检验核心提炼假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)(其中n=a+b+c+d为样本容量).例3 (2020·新高考全国Ⅰ)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:SO2 [0,50](50,150](150,475](1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),解(1)由表格可知,该市100天中,空气中的PM2.5浓度不超过75,且SO2浓度不超过150的天数为32+6+18+8=64,所以该市一天中,空气中的PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)由所给数据,可得2×2列联表:(3)根据2×2列联表中的数据可得K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(64×10-16×10)2 80×20×74×26≈7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.规律方法独立性检验的关键(1)根据2×2列联表准确计算K2,若2×2列联表没有列出来,要先列出此表.(2)K2的观测值k越大,对应的假设H0成立的概率越小,H0不成立的概率越大.跟踪演练3 (1)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.附表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关” 答案 C解析 由题意知,K 2的观测值k ≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”.(2)某校团委对“学生性别和喜欢某视频APP 是否有关”做了一次调查,其中被调查的女生人数是男生人数的一半,男生喜欢某视频APP 的人数占男生人数的16,女生喜欢某视频APP 的人数占女生人数的23,若有95%的把握认为喜欢某视频APP 和性别有关,则男生至少有( ) 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).A .12人B .6人C .10人D .18人 答案 A解析 设被调查的男生人数为x ,则被调查的女生人数为x2,则2×2列联表为若有95%的把握认为喜欢某视频APP 和性别有关,则K 2≥3.841,即K 2=3x 2⎝ ⎛⎭⎪⎫x 6×x 6-5x 6×x 32x ×x 2×x 2×x=3x8≥3.841,则x ≥3.841×83≈10.243,又x 2,x 3,x6均为整数,所以男生至少有12人. 专题强化练一、单项选择题1.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为( ) A .4 B .3 C .2 D .1 答案 A解析 依题意有x +y +10+11+95=10,(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2=5×2,解得x =8,y =12或x =12,y =8,故|x -y |=4.2.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8答案 C解析根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.3.(2020·全国Ⅰ)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图可以看出,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )A.y=a+bx B.y=a+bx2C.y=a+b e x D.y=a+b ln x答案 D解析由散点图可以看出,点大致分布在对数型函数的图象附近.4.某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85 mm,现分别从他们生产的零件中各随机抽取8件进行检测,其尺寸(单位:mm)用茎叶图表示如图所示,则估计( )A.甲、乙生产的零件尺寸的中位数相等B.甲、乙生产的零件质量相当C.甲生产的零件质量比乙生产的零件质量好D .乙生产的零件质量比甲生产的零件质量好 答案 D解析 甲生产的零件尺寸是93,89,88,85,84,82,79,78;乙生产的零件尺寸是90,88,86,85,85,84,84,78.故甲生产的零件尺寸的中位数是85+842=84.5,乙生产的零件尺寸的中位数是85+852=85,故A 错误;根据数据分析,乙的数据较稳定,故乙生产的零件质量比甲生产的零件质量好,故B ,C 错误.5.某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)之间的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为65 答案 D解析 根据频率和为1,计算(a +0.035+0.030+0.020+0.010)×10=1,解得a =0.005, 得分在[40,60)之间的频率是0.4,估计得分在[40,60)之间的有100×0.4=40(人),A 正确;得分在[60,80)之间的频率为0.5,可得从这100名参赛者中随机选取1人,得分在[60,80)之间的概率为0.5,B 正确;根据频率分布直方图知,最高的小矩形对应的底边中点为50+602=55,即估计众数为55,C 正确;根据频率分布直方图知,得分低于60分的直方图面积为(0.005+0.035)×10=0.4<0.5,而得分低于70分的直方图面积为(0.005+0.035+0.030)×10=0.7>0.5,所以100名参赛者得分的中位数估计为60+0.5-0.40.030≈63.3,D错误. 二、多项选择题6.(2020·烟台模拟)某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如下表所示的列联表,经计算K 2的观测值k ≈4.762,则可以推断出( )A.该学校男生对食堂服务满意的概率的估计值为35B .调研结果显示,该学校男生比女生对食堂服务更满意C .有95%的把握认为男、女生对该食堂服务的评价有差异D .有99%的把握认为男、女生对该食堂服务的评价有差异 答案 AC解析 对于选项A ,该学校男生对食堂服务满意的概率的估计值为3030+20=35,故A 正确;对于选项B ,该学校女生对食堂服务满意的概率的估计值为4040+10=45>35,故B 错误;因为k ≈4.762>3.841,所以有95%的把握认为男、女生对该食堂服务的评价有差异,故C 正确,D 错误.7.(2020·河北衡水中学月考)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业经济的快速增长,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图是某单位结合近几年数据,对今后几年的5G 经济产出所做的预测.结合上图,下列说法正确的是( )A.5G的发展带动今后几年的总经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.信息服务商与运营商的经济产出的差距有逐步拉大的趋势D.设备制造商在各年的经济产出中一直处于领先地位答案ABC解析由图易知A,B,C正确,而设备制造商的经济产出在2029年和2030年将低于信息服务商的经济产出,故D 错误.8.(2020·青岛模拟)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多答案ABC解析选项A,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A 正确;选项B ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B 正确;选项C ,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C 正确;选项D ,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出“80后”从事技术岗位的占比,故不能判断,所以选项D 错误. 三、填空题9.某企业的一种商品的产量与成本数据如下表:若根据表中提供的数据,求出y 关于x 的线性回归方程为y ^=-1.15x +28.1,则a 的值为________. 答案 5解析 由题意知x =14+16+18+20+225=905=18,y =12+10+7+a +35=32+a5,又y =-1.15×18+28.1=7.4, 所以32+a5=7.4,解得a =5.10.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量为________,抽取的高中生近视人数为________.答案 200 20解析 由题图甲知,总人数为3 500+2 000+4 500=10 000,所以样本容量为10 000×2%=200,抽样比例为150,所以高中生抽取的学生数为40,所以抽取的高中生近视人数为40×50%=20.11.下面的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的收盘价格波动较大;④两只股票在全年都处于上升趋势.其中正确的结论是________.(填序号)答案 ①②③解析 由题意可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的收盘价格波动较大,故③正确;通过折线图可得乙在6月到8月明显是下降趋势,故④错误.12.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是________.(填序号)①y 与x 具有正的线性相关关系; ②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ; ④若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg. 答案 ④解析 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故①正确;因为回归直线必过样本点的中心(x ,y ),所以②正确;由线性回归方程的意义知,某女生的身高增加1 cm ,其体重约增加0.85 kg ,故③正确;当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,这不是确定值,因此④不正确. 四、解答题13.某公司为了了解广告投入对销售收益的影响,在若干地区各投入3.5万元广告费用,并将各地的销售收益绘制成频率分布直方图,如图所示,由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)估计该公司投入3.5万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值); (3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x (单位:万元) 1 2 3 4 5 销售收益y (单位:万元)2327表中的数据显示,x 与y 之间存在线性相关关系,请将(2)中的结果填入空白栏,并计算y 关于x 的线性回归方程.附:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^x .解 (1)设各小长方形的宽度为m ,由频率分布直方图中各小长方形面积总和为1,可知(0.08+0.10+0.14+0.12+0.04+0.02)·m =0.5m =1,故m =2.(2)由(1)知,各分组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12],其中点值分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04,故可估计平均值为1×0.16+3×0.20+5×0.28+7×0.24+9×0.08+11×0.04=5.(3)空白栏中填5.由题意可知,x =1+2+3+4+55=3,y =2+3+2+5+75=3.8,∑5i =1x i y i =1×2+2×3+3×2+4×5+5×7=69,∑5i =1x 2i =12+22+32+42+52=55.根据公式可求得b ^=∑i =15x i y i -5 x y∑i =15x 2i -5x 2=69-5×3×3.855-5×32=1210=1.2, a ^=3.8-1.2×3=0.2,即线性回归方程为y ^=1.2x +0.2.14.(2020·全国Ⅲ)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)由频数分布表可知,该市一天的空气质量等级为1的概率为2+16+25100=0.43,等级为2的概率为5+10+12100=0.27,等级为3的概率为6+7+8100=0.21,等级为4的概率为7+2+0100=0.09.(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100×20+300×35+500×45100=350.(3)2×2列联表如下:K 2=100×(33×8-37×22)255×45×70×30≈5.820>3.841, 因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.。

高考数学二轮复习专题突破—统计与统计案例(含解析)

高考数学二轮复习专题突破—统计与统计案例(含解析)

高考数学二轮复习专题突破—统计与统计案例1.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:√74≈8.602.2.(2021·江西赣州二模改编)遵守交通规则,人人有责.“礼让行人”是我国《道路交通安全法》的明文规定,也是全国文明城市测评中的重要内容.《道路交通安全法》第47条明确规定:“机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过道路,应当避让.否则扣3分罚200元”.下表是2021年1至4月份我市某主干路口监控设备抓拍到的驾驶员不“礼让行人”行为统计数据:(1)请利用所给数据求不“礼让行人”驾驶员人数y 与月份x 之间的经验回归方程y ^=b ^x+a ^,并预测该路口2021年10月不“礼让行人”驾驶员的大约人数(四舍五入);(2)交警从这4个月内通过该路口的驾驶员中随机抽查50人,调查驾驶员不“礼让行人”行为与驾龄的关系,得到下表:依据小概率值α=0.10的独立性检验,分析“礼让行人”行为是否与驾龄有关.参考公式:b ^=∑i=1nx i y i -nx y ∑i=1nx i 2-nx2=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2.χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.(2021·河北石家庄二模改编)某地区在2020年底全面建成小康社会,随着实施乡村振兴战略规划,该地区农村居民的收入逐渐增加,可支配消费支出也逐年增加.该地区统计了2016~2020年农村居民人均消费支出情况,对有关数据处理后,制作如图1的折线图[其中变量y (单位:万元)表示该地区农村居民人均年消费支出,年份用变量t 表示,其取值依次为1,2,3,…].(1)由图1可知,变量y与t具有很强的线性相关关系,求y关于t的经验回归方程,并预测2021年该地区农村居民人均消费支出;2016~2020年该地区农村居民人均消费支出图1(2)在国际上,常用恩格尔系数(其含义是指食品类支出总额占个人消费支出总额的比重)来衡量一个国家和地区人民生活水平的状况.根据联合国粮农组织的标准:恩格尔系数在40%~50%为小康,30%~40%为富裕.已知2020年该地区农村居民平均消费支出构成如图2所示,预测2021年该地区农村居民食品类支出比2020年增长3%,从恩格尔系数判断2021年底该地区农村居民生活水平能否达到富裕生活标准.2020年该地区农村居民人均消费支出构成图2参考公式:经验回归方程y ^=b ^x+a ^中斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2=∑i=1nx i y i -nx y∑i=1nx i 2-nx 2,a ^=y −b ^x .4.(2021·山东潍坊一模)在对人体的脂肪含量和年龄之间的关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据(x i ,y i )(i=1,2,…,20,25<x i <65),其中x i 表示年龄,y i 表示脂肪含量,并计算得到∑i=120x i 2=48 280,∑i=120y i 2=15 480,∑i=120x i y i =27 220,x =48,y =27,√22≈4.7.(1)请用样本相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x的经验回归方程y ^=a ^+b ^x (a ^,b ^的计算结果保留两位小数);(2)科学健身能降低人体脂肪含量,下表是甲、乙两款健身器材的使用年限(整年)统计表:某健身机构准备购进其中一款健身器材,以使用年限的频率估计概率,请根据以上数据估计,该机构选择购买哪一款健身器材,才能使用更长久?参考公式:样本相关系数r=∑i=1n(x i -x)(y i -y)√∑i=1n (x i -x)2√∑i=1n(y i -y)2=∑i=1nx i y i -nx y√∑i=1nx i 2-nx 2√∑i=1ny i 2-ny 2;对于一组具有线性相关关系的数据(x i ,y i )(i=1,2,…,n ),其经验回归直线y ^=b ^x+a ^的斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y −b ^x .答案及解析1.解 (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17. 2.解 (1)由表中数据易知:x =1+2+3+44=52,y =125+105+100+904=105,则b ^=∑i=14x i y i -4x y∑i=14x i 2-4x2=995−1 05030−25=-11,a ^=y −b ^ x =105-(-11)×52=132.5,故所求经验回归方程为y ^=-11x+132.5.令x=10,则y ^=-11×10+132.5=22.5≈23(人),预测该路口10月份不“礼让行人”的驾驶员大约人数为23. (2)零假设为H 0:“礼让行人”行为与驾龄无关.由表中数据可得χ2=50×(10×12−20×8)218×32×30×20≈0.23<2.706=x 0.10,依据小概率值α=0.10的独立性检验,没有充分证据推断H 0不成立,可以认为H 0成立,即认为“礼让行人”行为与驾龄无关.3.解 (1)由已知数据可求t =1+2+3+4+55=3, y =1.01+1.10+1.21+1.33+1.405=1.21,∑i=15t i 2=12+22+32+42+52=55,∑i=15t i y i =1×1.01+2×1.10+3×1.21+4×1.33+5×1.40=19.16,b ^=19.16−5×3×1.2155−5×32=1.0110=0.101,a ^=1.21-0.101×3=0.907,所求经验回归方程为y ^=0.101t+0.907. 当t=6时,y ^=0.101×6+0.907=1.513(万元),故2021年该地区农村居民人均消费支出约为1.513万元.(2)已知2021年该地区农村居民平均消费支出1.513万元,由图2可知,2020年该地区农村居民食品类支出为4 451元,则预测2021年该地区食品类支出为4 451×(1+3%)=4 584.53元,恩格尔系数=4 584.5315 130×100%≈30.3%∈(30%,40%),所以,2021年底该地区农村居民生活水平能达到富裕生活标准.4.解 (1)x 2=2 304,y2=729,∑i=120x i y i -20x y =1 300,∑i=120x i 2-20x 2=2 200,∑i=1ny i 2-20y 2=900,r=∑i=120x i y i -20x y√∑i=120x i 2-20x 2√∑i=1ny i 2-20y2≈0.92,因为y 与x 的样本相关系数接近1,所以y 与x 之间具有较强的线性相关关系,可用线性回归模型进行拟合.由题可得,b ^=∑i=120(x i -x)(y i -y)∑i=120(x i -x)2=∑i=120x i y i -20x y∑i=120x i 2-20x2=1322≈0.591,a ^=y −b ^ x =27-0.591×48≈-1.37,所以y ^=0.59x-1.37.(2)以频率估计概率,设甲款健身器材使用年限为X (单位:年).E (X )=5×0.1+6×0.4+7×0.3+8×0.2=6.6. 设乙款健身器材使用年限为Y (单位:年).E (Y )=5×0.3+6×0.4+7×0.2+8×0.1=6.1.因为E (X )>E (Y ),所以该健身机构购买甲款健身器材更划算.。

高中数学【统计与统计案例】专题练习

高中数学【统计与统计案例】专题练习

高中数学【统计与统计案例】专题练习1.(多选)下列统计量中,能度量样本x 1,x 2,…,x n 的离散程度的是( ) A.样本x 1,x 2,…,x n 的标准差 B.样本x 1,x 2,…,x n 的中位数 C.样本x 1,x 2,…,x n 的极差 D.样本x 1,x 2,…,x n 的平均数 答案 AC解析 由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选AC.2.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x -和y -,样本方差分别记为s 21和s 22. (1)求x -,y -,s 21,s 22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y --x -≥2s 21+s 2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).解 (1)x -=9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.710=10,y -=10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.510=10.3,s 21=0.22+0.32+0+0.22+0.12+0.22+0+0.12+0.22+0.3210=0.036,s 22=0.22+0.12+0.22+0.32+0.22+0+0.32+0.22+0.12+0.2210=0.04. (2)由(1)知,y --x -=0.3; 2s 21+s 2210=20.036+0.0410=20.007 6.又(y --x -)2=0.09>(20.007 6)2=0.030 4,则y --x ->2s 21+s 2210,所以新设备生产产品的该项指标的均值较旧设备有显著提高.3.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑20i =1x i =60,∑20i =1y i =1 200,∑20i =1(x i -x -)2=80,∑20i =1(y i-y -)2=9 000,∑20i =1(x i -x -)(y i -y -)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑ni =1 (x i -x -)(y i -y -)∑n i =1(x i -x -)2∑n i =1 (y i -y -)2,2≈1.414.解 (1)由已知得样本平均数y -=120∑20i =1y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑20i =1 (x i -x -)(y i -y -)∑20i =1(x i -x -)2∑20i =1(y i -y -)2=80080×9 000=223≈0.94.(3)分层随机抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关性.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.1.抽样方法抽样方法包括简单随机抽样、分层随机抽样,两种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 2.统计中的五个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:在样本数据中,将数据按大小顺序排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. (3)平均数:样本数据的算术平均数,即x -=1n (x 1+x 2+…+x n ).(4)第p 百分位数:将一组数据(共n 个)按从小到大排列,计算i =n ×p %,若i 不是整数,而大于i 的比邻整数为j ,则第p 百分位数为第j 项数据;若i 是整数,则第p 百分位数为第i 项与第(i +1)项数据的平均数.(5)方差与标准差.s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],s =1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].3.频率分布直方图的两个结论 (1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1. 4.回归分析与独立性检验(1)回归直线y ^=b ^x +a ^经过样本点的中心(x -,y -),若x 取某一个值代入回归直线方程y ^=b ^x +a ^中,可求出y 的估计值. (2)独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是:X Y 合计 y 1 y 2 x 1 a b a +b x 2 c d c +d 合计a +cb +dn则χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).热点一 用样本估计总体考向1 数字特征与统计图表的应用【例1】 (1)空气质量指数分为六级,指数越大说明污染的情况越严重,对人体危害越大,其中指数范围[0,50],[51,100],[101,150],[151,200],[201,300]分别对应“优”“良”“轻度污染”“中度污染”“重度污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下列说法不正确的是( )A.这14天中有4天空气质量为“良”B.这14天中空气质量指数的中位数是103C.从2日到5日空气质量越来越差D.连续三天中空气质量指数方差最小的是9日到11日(2)2020年我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层随机抽样的方法抽取4%的学生进行调查,则抽取的样本容量、抽取的高中生中参与“家务劳动”的人数分别为()A.2 750,200B.2 750,110C.1 120,110D.1 120,200答案(1)B(2)C解析(1)在这14天中,1日、3日、12日、13日的空气质量为良,共4天,故A正确.14天中空气质量指数的中位数为86+1212=103.5,故B错误.从2日到5日,空气质量指数越来越高,故空气质量越来越差,C正确.观察题图可得,9日至11日空气质量指数偏差最小,因此方差最小,D正确.综上知,说法不正确的是B.(2)学生总数为15 500+5 000+7 500=28 000(人),由于抽取4%的学生进行调查,则抽取的样本容量为28 000×4%=1 120.故高中生应抽取的人数为5 000×4%=200,而抽取的高中生中参与“家务劳动”的比率为0.55,故抽取的高中生中参与“家务劳动”的人数为200×0.55=110.探究提高 1.解题的关键是理解统计图表的含义,从中提取数字信息,平均数、众数、中位数描述数据的集中趋势,方差与标准差描述数据的波动大小,标准差、方差越小,数据的离散程度越小,越稳定.2.进行分层随机抽样的相关计算时,常用到的两个关系:(1)样本容量n总体的个数N=该层抽取的个体数该层的个体数;(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.【训练1】(1)以下数据为参加数学竞赛决赛的15人的成绩:(单位:分)78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90B.90.5C.91D.91.5(2)(多选) 2020年上半年,中国养猪企业受猪价高位的利好影响,大多收获史上最佳半年报业绩,部分企业半年报营业收入同比增长超过1倍.某养猪场抓住机遇,加大了生猪养殖规模,为了检测生猪的养殖情况,该养猪场对2 000头生猪的体重(单位:kg)进行了统计,得到如图所示的频率分布直方图,则下列说法正确的是()A.这2 000头生猪体重的众数为160 kgB.这2 000头生猪中体重不低于200 kg的有80头C.这2 000头生猪体重的中位数落在区间[140,160)内D.这2 000头生猪体重的平均数为152.8 kg答案(1)B(2)BCD解析(1)把成绩按从小到大的顺序排列为:56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位数是90+912=90.5.(2)由频率分布直方图可知,[140,160)这一组的数据对应的小长方形最高,所以这2 000头生猪的体重的众数为150 kg,A错误;这2 000头生猪中体重不低于200 kg的有0.002×20×2 000=80(头),B正确;因为生猪的体重在[80,140)内的频率为(0.001+0.004+0.01)×20=0.3,在[140,160)内的频率为0.016×20=0.32,且0.3+0.32=0.62>0.5,所以这2 000头生猪体重的中位数落在区间[140,160)内,C正确;这2 000头生猪体重的平均数为(0.001×90+0.004×110+0.01×130+0.016×150+0.012×170+0.005×190+0.002×210)×20=152.8(kg),D正确.考向2用样本的频率分布估计总体分布【例2】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.探究提高 1.平均数与方差都是重要的数字特征,是对数据的一种简明描述,它们所反映的情况有着重要的实际意义.2.在例2中,抓住频率分布直方图各小长方形的面积之和为1,这是求解的关键;本题易混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.【训练2】(多选)为了更好地支持中小型企业的发展,某市决定对部分企业的税收进行适当的减免,现调查了当地100家中小型企业年收入(单位:万元)情况,并根据所得数据画出了如图所示的频率分布直方图,则下列结论正确的是()A.样本在区间[500,700]内的频数为18B.如果规定年收入在300万元以内的企业才能享受减免税收政策,估计有30%的当地中小型企业能享受到减免税收政策C.样本的中位数大于350万元D.可估计当地中小型企业年收入的平均数超过400万元(同一组中的数据用该组区间的中点值作代表)答案ABC解析依题意,(0.001+0.002+0.002 6×2+a+0.000 4)×100=1,所以a=0.001 4.对于A,样本在[500,700]内的频率为(0.001 4+0.000 4)×100=0.18,故频数为0.18×100=18,故A正确.对于B,年收入在300万元以内的频率为(0.001+0.002)×100=0.3,故B正确. 对于C,设样本的中位数为x,易知中位数位于[300,400]内,则0.3+(x-300)×0.002 6=0.5,解得x≈376.9,376.9>350,故C正确.因为样本的平均数为150×0.1+250×0.2+350×0.26+450×0.26+550×0.14+650×0.04=376<400,所以估计当地中小型企业年收入的平均数小于400万元,故D 错误. 热点二 回归分析【例3】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据进行了初步处理,得到如图所示散点图及一些统计量的值.x -y -w -∑8i =1(x i -x -)2∑8i =1(w i -w -)2∑8i =1(x i -x -)·(y i -y -) ∑8i =1(w i -w -)·(y i -y -) 46.65636.8289.8 1.61 469108.8表中w i =x i ,w -=18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个更适宜作为年销售量y 关于年宣传费x 的回归方程?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β^=∑ni =1(u i -u -)(v i -v -)∑n i =1(u i -u -)2,α^=v --β^u -.解 (1)由散点图可以判断,y =c +d x 更适宜作为年销售量y 关于年宣传费x 的回归方程.(2)易知w =x ,则y ^=d ^w +c ^.由题意得d ^=∑8i =1(w i -w -)(y i -y -)∑8i =1(w i -w -)2=108.81.6=68,所以c ^=y --d ^w -=563-68×6.8=100.6.所以y 关于w 的线性回归方程为y ^=100.6+68w , 所以y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值为y ^=100.6+6849=576.6,年利润z 的预报值为z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12,所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 探究提高 1.求回归直线方程的关键及实际应用 (1)关键:正确理解b ^,a ^的计算公式并准确地计算.(2)实际应用:在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 2.相关系数(1)当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关. (2)当|r |>0.75时,认为两个变量具有较强的线性相关关系.【训练3】 (多选)我国5G 技术研发试验在2016~2018年进行,分为5G 关键技术试验、5G 技术方案验证和5G 系统验证三个阶段.2020年初以来,5G 技术在我国已经进入高速发展的阶段,5G 手机的销量也逐渐上升.某手机商城统计了2021年5个月5G 手机的实际销量,如下表所示:若y 与x 线性相关,且求得线性回归方程为y ^=45x +5,则下列说法正确的是( ) A.a =142 B.y 与x 正相关C.y 与x 的相关系数为负数D.2021年7月该手机商城的5G 手机销量约为365部 答案 AB解析 x -=1+2+3+4+55=3,y -=50+96+a +185+2275=558+a 5,因为点(x -,y -)在回归直线上,所以558+a5=45×3+5,解得a =142,所以选项A 正确;从表格数据看,y 随x 的增大而增大,所以y 与x 正相关,所以选项B 正确;因为y 与x 正相关,所以y 与x 的相关系数为正数,所以选项C 错误;2021年7月对应的月份编号x =7,当x =7时,y ^=45×7+5=320,所以2021年7月该手机商城的5G 手机销量约为320部,所以选项D 错误.故选AB.热点三 独立性检验【例4】 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,依据小概率值α=0.01的χ2独立性检验,能否认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解 (1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO 2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150的概率的估计值为64100=0.64. (2)根据抽查数据,可得2×2列联表:(3)零假设为H 0:该市一天空气中PM2.5浓度与SO 2浓度无关.根据(2)的列联表得χ2=100×(64×10-16×10)280×20×74×26≈7.484>6.635=x 0.01.根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为该市一天空气中PM2.5浓度与SO 2浓度有关,此推断犯错误的概率不超过0.01. 探究提高 1.独立性检验的一般步骤 (1)根据样本数据列成2×2列联表; (2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.2.χ2的值越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.【训练4】 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)依据小概率值α=0.01的χ2独立性检验,能否认为甲机床的产品质量与乙机床的产品质量有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),α 0.050 0.010 0.001 x α3.8416.63510.828解 (1)根据2×2列联表知:甲机床生产的产品中一级品的频率为150200=75%, 乙机床生产的产品中一级品的频率为120200=60%.(2)零假设为H 0:甲机床的产品质量与乙机床的产品质量没有差异.由2×2列联表,得χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=400×(150×80-120×50)2270×130×200×200=40039≈10.256>6.635=x 0.01.根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为甲机床的产品质量与乙机床的产品质量有差异,此推断犯错误的概率不超过0.01.一、选择题1.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A.0.01 B.0.1 C.1 D.10答案 C解析 10x 1,10x 2,…,10x n 的方差为102×0.01=1.2.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑10i =1x i =225,∑10i =1y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( ) A.160 B.163 C.166 D.170答案 C解析 ∵x -=110∑10i =1x i =110×225=22.5,y -=110∑10i =1y i=160, ∴a ^=y --b ^x -=160-4×22.5=70, ∴回归直线方程为y ^=4x +70. 因此估计其身高y ^=4×24+70=166.3.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36答案 B解析 因为直径落在区间[5.43,5.47)内的频率为0.02×(6.25+5.00)=0.225,所以零件的个数为0.225×80=18.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案 D解析由雷达图易知A,C正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,B正确;由雷达图知平均最高气温超过20 ℃的月份有3个月,D错误.5.(多选) 5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出作出预测.由上图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 答案 ABD解析 对于A ,由图知,运营商的经济产出逐年增加,故A 正确;对于B ,由图知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,故B 正确;对于C ,由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C 错误;对于D ,由图知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两者间的差距有逐步拉大的趋势,故D 正确.综上所述,选ABD.6.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则( )A.x -=4,s 2<2B.x -=4,s 2>2 C.x ->4,s 2<2 D.x ->4,s 2>2答案 A解析 ∵某7个数的平均数为4,∴这7个数的和为4×7=28.∵加入一个新数据4,∴x -=28+48=4.又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+(4-4)28=74<2,故选A.二、填空题 7.给出如下列联表非 30 50 80 合计5060110根据独立性检验,__________在犯错误的概率不超过0.01的前提下认为“高血压与患心脏病有关”(填“能”或“不能”). 答案 能解析 零假设为H 0:高血压与患心脏病无关. 由列联表中的数据可得 χ2=110×(20×50-10×30)230×80×50×60≈7.486>6.635=x 0.01,根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为高血压与患心脏病有关,此推断犯错误的概率不超过0.01,即能在犯错误的概率不超过0.01的前提下,认为高血压与患心脏病有关.8.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则m e ,m 0与x -的大小关系是________.答案 m 0<m e <x -解析 由图可知,30名学生的得分情况依次为得3分的有2人,得4分的有3人,得5分的有10人,得6分的有6人,得7分的有3人,得8分的有2人,得9分的有2人,得10分的有2人.中位数为第15、16个数(分别为5、6)的平均数,即m e =5.5.5出现的次数最多,故m 0=5,x -=2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m 0<m e <x -.9.下面的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的收盘价格波动较大;④两只股票在全年都处于上升趋势.其中正确的结论是________(填序号).答案 ①②③解析 由题意可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的收盘价格波动较大,故③正确;通过折线图可得乙在6月到8月明显是下降趋势,故④错误. 三、解答题10.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:性别对该商场的服务 合计满意不满意(1)分别估计男、女顾客对该商场服务满意的概率;(2)依据小概率值α=0.05的χ2独立性检验,能否认为男、女顾客对该商场服务的评价有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)零假设为H 0:男、女顾客对该商场服务的评价没有差异. 由列联表中的数据,得 χ2=100×(40×20-30×10)250×50×70×30≈4.762>3.841=x 0.05.根据小概率值α=0.05的χ2独立性检验,我们推 断H 0不成立,即认为男、女顾客对商场服务的评价有差异,此推断犯错误的概率不大于0.05.11.某互联网公司为了确定下季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如表:他们分别用两种模型①y =bx +a ,②y =a e bx 进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值.x -y -∑6i =1x i y i∑6i =1x 2i7301 464.24 364(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由; (2)残差绝对值大于2的数据被认为是异常数据,需要剔除. (ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程; (ⅱ)若广告投入量x =18,则该模型收益的预报值是多少?附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为:b ^=∑n i =1(x i -x -)(y i -y -)∑n i =1(x i -x -)2=∑ni =1x i y i -nx -·y -∑n i =1x 2i -n ·x -2,a ^=y --b ^x -. 解 (1)由于模型①残差波动小,应该选择模型①. (2)(ⅰ)剔除异常数据,即3月份的数据, 剩下数据的平均数为x -=15×(7×6-6)=7.2,y -=15×(30×6-31.8)=29.64,∑5i =1x i y i -5x -·y -=206.4,∑5i =1x 2i -5·x -2=68.8. ∴b ^=206.468.8=3,a ^=y --b ^x -=29.64-3×7.2=8.04.∴所选模型的回归方程为y ^=3x +8.04. (ⅱ)若广告投入量x =18,则该模型收益的预报值是3×18+8.04=62.04(万元).12.(多选)2020年7月国家统计局发布了我国2020年上半年国内经济数据,图1为国内三大产业生产总值的比重,图2为第三产业中各行业生产总值的比重.以下关于我国2020年上半年经济数据的说法正确的是()A.在第三产业中,“批发和零售业”与“金融业”的生产总值之和同“其他服务业”的生产总值基本持平B.若“租赁和商务服务业”生产总值为15 000亿元,则“房地产业”生产总值为32 500亿元C.若“金融业”的生产总值为42 000亿元,则第三产业生产总值为262 500亿元D.若“金融业”的生产总值为42 000亿元,则第一产业生产总值为45 000亿元答案ABC解析对于选项A,在第三产业中,“批发和零售业”与“金融业”的生产总值之和占比为16%+16%=32%,“其他服务业”的生产总值占比为32%,所以“批发和零售业”与“金融业”的生产总值之和同“其他服务业”的生产总值基本持平,故选项A正确.对于选项B,若“租赁和商务服务业”生产总值为15 000亿元,在第三产业中,因为“租赁和商务服务业”生产总值占比为6%,所以第三产业生产总值为15 000=250 000(亿元),又“房地产业”生产总值占比为13%,所以“房地产6%业”生产总值为13%×250 000=32 500(亿元),故选项B正确.对于选项C ,在第三产业中,若“金融业”的生产总值为42 000亿元,因为“金融业”生产总值占比为16%,所以第三产业生产总值为42 00016%=262 500(亿元),故选项C 正确.对于选项D ,第三产业生产总值在三大产业中占比为57%,第一产业生产总值在三大产业中占比为6%,由C 选项知第三产业生产总值为262 500亿元,所以第一产业生产总值为262 50057%×6%≈27 632(亿元),所以选项D 错误.13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将A 地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为m ,中位数为n ,则m -n =________.答案 360解析 第一块小矩形的面积S 1=0.3,第二块小矩形的面积S 2=0.4,故n =2 000+0.5-0.30.000 2=3 000;又第四、五块小矩形的面积均为S =0.06,故a =12 000[1-(0.3+0.4+0.06×2)]=0.000 09,所以m =1 000×0.3+3 000×0.4+5 000×0.18+(7 000+9 000)×0.06=3 360,故m -n =360.14.某公司为了预测下月产品销售情况,找出了近7个月的产品销售量y (单位:万件)的统计表:月份代码t 1 2 3 4 5 6 7 销售量y (万件)y 1y 2y 3y 4y 5y 6y 7但其中数据污损不清,经查证∑7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1(y i -y -)2=0.55.。

2019届一轮复习人教A版 统计与统计案例 课件

2019届一轮复习人教A版    统计与统计案例  课件

第一部分 专题突破——破译命题密码
高考·题型突破
高考·专题集训
高考·题型突破
第一部分 专题突破——破译命题密码
高考·题型突破
高考·专题集训
题型一 抽样方法 抽样方法主要有简单随机抽样、系统抽样和分层抽样三种,这三种抽样方法 各自适用不同特点的总体,但无论哪种抽样方法,每一个个体被抽到的概率都是 相等的,都等于样本容量和总体容量的比值.
第一部分 专题突破——破译命题密码
高考·题型突破
高考·专题集训
1.众数、中位数、平均数与直方图的关系 (1)众数为频率分布直方图中最高矩形的底边中点的横坐标. (2)中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐 标. (3)平均数等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横 坐标之积的和.
抽取次序 9
10 11 12 13 14 15 16
零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
第一部分 专题突破——破译命题密码
高考·题型突破
ቤተ መጻሕፍቲ ባይዱ
高考·专题集训




x

1 16
16
x
i=1
i

9.97

s

1 16
16i=1
xi- x 2 =
第一部分 专题突破——破译命题密码
高考·题型突破
高考·专题集训
3.(2017·成都市第二次诊断性检测)在一个容量为 5 的样本中,数据均为整 数,已测出其平均数为 10,但墨水污损了两个数据,其中一个数据的十位数字 1 未被污损,即 9,10,11,1 ,那么这组数据的方差 s2 可能的最大值是________.

统计与统计案例PPT课件

统计与统计案例PPT课件
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
用样本估计总体
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
用样本估计总体 (文)某学校为了调查学生平均每周的上网时间(单 位:h)对学习产生的影响,从高三年级随机抽取了 100 名学生, 将所得数据整理后,画出频率分布直方图(如图),其中频率分 布直方图从左到右前 3 个小矩形的面积之比为 1:3:5,试估 计:
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
疑难误区警示 1.当总体数 N 不能被样本容量整除,用系统抽样法剔除 多余个体时,必须随机抽样. 2.注意中位数与平均数的区别,中位数可能不在样本数 据中.
专题七 第一讲
走向高考 ·二轮专题复习 ·新课工厂甲、乙、丙三个车
间生产了同一种产品,数量分别为 120 件,80 件,60 件,为
了解它们的产品质量是否存在显著差异,用分层抽样方法抽
取了一个容量为 n 的样本进行调查,其中从丙车间的产品中
抽取了 3 件,则 n=( )
A.9
B.10
C.12
D.13
[答案] D
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
某市有大型超市 200 家、中型超市 400 家、小型超市 1400 家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个 容量为 100 的样本,应抽取中型超市________家.
[答案] 20
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
[解析] 属简单题,关键是清楚每一层的抽取比例都一样 是Nn .
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本资料分享自千人QQ 群323031380 期待你的加入与分享第1讲 统计与统计案例[考情分析] 高考对本讲内容的考查往往以实际问题为背景,考查随机抽样与用样本估计总体,线性回归方程的求解与运用,独立性检验问题.常与概率综合考查,中等难度. 考点一 统计图表 核心提炼1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数. 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.例1 (1)(多选)(2020·新高考全国Ⅱ)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量答案CD(2)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列结论正确的是()A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸答案 A解析根据频率分布直方图可列下表:阅读时间(分钟)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60] 抽样人数(名)1018222520 5抽样100名学生中有50名为阅读霸,占一半,据此可判断该校约有一半学生为阅读霸.易错提醒(1)对于给出的统计图表,一定要结合问题背景理解图表意义,不能似懂非懂.(2)频率分布直方图中纵坐标不要误以为频率.跟踪演练1(1)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温不低于20 ℃的月份有5个答案 D解析由题中雷达图易知A,C正确.七月份平均最高气温超过20 ℃,平均最低气温约为13 ℃;一月份平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月平均温差大,故B正确.由题图知平均最高气温不低于20 ℃的月份为六、七、八月,有3个.(2)(多选)(2020·重庆模拟)新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考),其中“选择考”成绩将计入高考总成绩,即将学生考试时的原始卷面分数由高到低进行排序,评定为A,B,C,D,E五个等级,再转换为分数计入高考总成绩.某试点高中2020年参加“选择考”总人数是2018年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2018年和2020年“选择考”成绩等级结果,得到如图所示的统计图.针对该校“选择考”情况,2020年与2018年比较,下列说法正确的是()A.获得A等级的人数增加了B.获得B等级的人数增加了1.5倍C.获得D等级的人数减少了一半D.获得E等级的人数相同答案AB解析设2018年参加“选择考”的总人数为x,则2020年参加“选择考”的总人数为2x,根据图表得出2018年和2020年各个等级的人数如表所示.等级 年份 A B C D E 2018 0.28x 0.32x 0.30x 0.08x 0.02x 20200.48x0.8x0.56x0.12x0.04x由表可知,获得A 等级的人数增加了,故A 正确;获得B 等级的人数增加了0.8x -0.32x0.32x =1.5倍,故B 正确;获得D 等级的人数增加了,故C 错误;获得E 等级的人数不相同,故D 错误.考点二 回归分析 核心提炼在分析两个变量的相关关系时,可根据样本数据作出散点图来判断两个变量之间是否具有相关关系.若具有线性相关关系,则回归直线过样本点的中心(x ,y ),并且可通过线性回归方程估计预报变量的值.例2 (2020·全国Ⅱ)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑i =120x i =60,∑i =120y i =1 200,∑i =120(x i -x )2=80,∑i =120(y i -y)2=9 000,∑i =120 (x i -x )(y i -y )=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x)2∑i =1n(y i -y )2,2≈1.414.解 (1)由已知得样本平均数y =120∑i =120y i =60,从而该地区这种野生动物数量的估计值为 60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑i =120(x i -x )(y i -y )∑i =120(x i -x )2∑i =120(y i -y )2=80080×9 000=223≈0.94.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样. 理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关关系.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. 规律方法 样本数据的相关系数r =∑ni =1 (x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2,反映样本数据的相关程度,|r |越大,则相关性越强.跟踪演练2 (1)已知某产品的销售额y 与广告费用x 之间的关系如下表:若求得其线性回归方程为y ^=6.5x +a ^,则预计当广告费用为6万元时的销售额为( ) A .42万元 B .45万元 C .48万元 D .51万元 答案 C解析 由题意,根据上表中的数据, 可得x =2,y =22, 即样本点的中心为(2,22),又线性回归方程y ^=6.5x +a ^经过样本点的中心, 所以22=6.5×2+a ^,解得a ^=9, 所以y ^=6.5x +9,当x =6时,y ^=48.(2)(2020·河北衡水中学月考)有一散点图如图所示,在5个(x ,y )数据中去掉D (3,10)后,下列说法正确的是()A.残差平方和变小B.相关系数r变小C.相关指数R2变小D.解释变量x与预报变量y的相关性变弱答案 A解析∵从散点图可分析得出:只有D点偏离直线远,去掉D点,解释变量x与预报变量y的线性相关性变强,∴相关系数变大,相关指数变大,残差平方和变小,故选A.考点三独立性检验核心提炼假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+dK2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)(其中n=a+b+c+d为样本容量).例3(2020·新高考全国Ⅰ)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:SO2PM2.5[0,50](50,150](150,475][0,35]3218 4(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),解(1)由表格可知,该市100天中,空气中的PM2.5浓度不超过75,且SO2浓度不超过150的天数为32+6+18+8=64,所以该市一天中,空气中的PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(2)由所给数据,可得2×2列联表:(3)根据2×2列联表中的数据可得K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100×(64×10-16×10)2 80×20×74×26≈7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.规律方法独立性检验的关键(1)根据2×2列联表准确计算K2,若2×2列联表没有列出来,要先列出此表.(2)K2的观测值k越大,对应的假设H0成立的概率越小,H0不成立的概率越大.跟踪演练3(1)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.附表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关” 答案 C解析 由题意知,K 2的观测值k ≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”.(2)某校团委对“学生性别和喜欢某视频APP 是否有关”做了一次调查,其中被调查的女生人数是男生人数的一半,男生喜欢某视频APP 的人数占男生人数的16,女生喜欢某视频APP的人数占女生人数的23,若有95%的把握认为喜欢某视频APP 和性别有关,则男生至少有( ) 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).A .12人B .6人C .10人D .18人 答案 A解析 设被调查的男生人数为x ,则被调查的女生人数为x2,则2×2列联表为喜欢某视频APP不喜欢某视频APP总计 男生 x6 5x 6 x 女生 x 3 x 6 x 2 总计x 2x3x 2若有95%的把握认为喜欢某视频APP 和性别有关,则K 2≥3.841,即K 2=3x 2⎝⎛⎭⎫x 6×x 6-5x 6×x 32x ×x 2×x 2×x =3x 8≥3.841,则x ≥3.841×83≈10.243,又x 2,x 3,x6均为整数,所以男生至少有12人. 专题强化练一、单项选择题1.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为( ) A .4 B .3 C .2 D .1 答案 A 解析 依题意有x +y +10+11+95=10,(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2=5×2,解得x =8,y =12或x =12,y =8,故|x -y |=4.2.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8 答案 C解析 根据题意阅读过《红楼梦》《西游记》的人数用韦恩图表示如下:所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.3.(2020·全国Ⅰ)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图可以看出,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e x D .y =a +b ln x答案 D解析 由散点图可以看出,点大致分布在对数型函数的图象附近.4.某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85 mm ,现分别从他们生产的零件中各随机抽取8件进行检测,其尺寸(单位:mm)用茎叶图表示如图所示,则估计( )A .甲、乙生产的零件尺寸的中位数相等B .甲、乙生产的零件质量相当C .甲生产的零件质量比乙生产的零件质量好D .乙生产的零件质量比甲生产的零件质量好 答案 D解析 甲生产的零件尺寸是93,89,88,85,84,82,79,78;乙生产的零件尺寸是90,88,86,85,85,84,84,78.故甲生产的零件尺寸的中位数是85+842=84.5,乙生产的零件尺寸的中位数是85+852=85,故A 错误;根据数据分析,乙的数据较稳定,故乙生产的零件质量比甲生产的零件质量好,故B ,C 错误.5.某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)之间的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为65 答案 D解析 根据频率和为1,计算(a +0.035+0.030+0.020+0.010)×10=1,解得a =0.005, 得分在[40,60)之间的频率是0.4,估计得分在[40,60)之间的有100×0.4=40(人),A 正确; 得分在[60,80)之间的频率为0.5,可得从这100名参赛者中随机选取1人,得分在[60,80)之间的概率为0.5,B 正确;根据频率分布直方图知,最高的小矩形对应的底边中点为50+602=55,即估计众数为55,C正确;根据频率分布直方图知,得分低于60分的直方图面积为(0.005+0.035)×10=0.4<0.5,而得分低于70分的直方图面积为(0.005+0.035+0.030)×10=0.7>0.5,所以100名参赛者得分的中位数估计为60+0.5-0.40.030≈63.3,D 错误.二、多项选择题6.(2020·烟台模拟)某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如下表所示的列联表,经计算K 2的观测值k ≈4.762,则可以推断出( )满意 不满意 男 30 20 女4010P (K 2≥k 0)0.100 0.050 0.010 k 02.7063.8416.635A.该学校男生对食堂服务满意的概率的估计值为35B .调研结果显示,该学校男生比女生对食堂服务更满意C .有95%的把握认为男、女生对该食堂服务的评价有差异D .有99%的把握认为男、女生对该食堂服务的评价有差异 答案 AC解析 对于选项A ,该学校男生对食堂服务满意的概率的估计值为3030+20=35,故A 正确;对于选项B ,该学校女生对食堂服务满意的概率的估计值为4040+10=45>35,故B 错误;因为k ≈4.762>3.841,所以有95%的把握认为男、女生对该食堂服务的评价有差异,故C 正确,D 错误.7.(2020·河北衡水中学月考)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业经济的快速增长,进而对GDP 增长产生直接贡献,并通过产业间的关联效应和波及效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图是某单位结合近几年数据,对今后几年的5G 经济产出所做的预测.结合上图,下列说法正确的是( )A .5G 的发展带动今后几年的总经济产出逐年增加B .设备制造商的经济产出前期增长较快,后期放缓C .信息服务商与运营商的经济产出的差距有逐步拉大的趋势D .设备制造商在各年的经济产出中一直处于领先地位 答案 ABC解析 由图易知A ,B ,C 正确,而设备制造商的经济产出在2029年和2030年将低于信息服务商的经济产出,故D 错误.8.(2020·青岛模拟)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论正确的是( ) 注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A .互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多 答案 ABC解析 选项A ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的56%×(39.6%+17%)≈31.7%.“80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成,故选项A 正确;选项B ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B 正确; 选项C ,“90后”从事运营岗位的人数占总人数的比为56%×17%≈9.5%,大于“80前”的总人数所占比3%,故选项C 正确;选项D ,“90后”从事技术岗位的人数占总人数的56%×39.6%≈22.2%,“80后”的总人数所占比为41%,条件中未给出“80后”从事技术岗位的占比,故不能判断,所以选项D 错误. 三、填空题9.某企业的一种商品的产量与成本数据如下表:若根据表中提供的数据,求出y 关于x 的线性回归方程为y ^=-1.15x +28.1,则a 的值为________. 答案 5解析 由题意知x =14+16+18+20+225=905=18,y =12+10+7+a +35=32+a5,又y =-1.15×18+28.1=7.4, 所以32+a5=7.4,解得a =5.10.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量为________,抽取的高中生近视人数为________.答案 200 20解析 由题图甲知,总人数为3 500+2 000+4 500=10 000,所以样本容量为10 000×2%=200,抽样比例为150,所以高中生抽取的学生数为40,所以抽取的高中生近视人数为40×50%=20.11.下面的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的收盘价格波动较大;④两只股票在全年都处于上升趋势.其中正确的结论是________.(填序号)答案 ①②③解析 由题意可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的收盘价格波动较大,故③正确;通过折线图可得乙在6月到8月明显是下降趋势,故④错误.12.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是________.(填序号) ①y 与x 具有正的线性相关关系; ②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ; ④若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg. 答案 ④解析 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故①正确;因为回归直线必过样本点的中心(x ,y ),所以②正确;由线性回归方程的意义知,某女生的身高增加1 cm ,其体重约增加0.85 kg ,故③正确;当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,这不是确定值,因此④不正确. 四、解答题13.某公司为了了解广告投入对销售收益的影响,在若干地区各投入3.5万元广告费用,并将各地的销售收益绘制成频率分布直方图,如图所示,由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)估计该公司投入3.5万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x (单位:万元) 1 2 3 4 5 销售收益y (单位:万元)2327表中的数据显示,x 与y 之间存在线性相关关系,请将(2)中的结果填入空白栏,并计算y 关于x 的线性回归方程.附:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .解 (1)设各小长方形的宽度为m ,由频率分布直方图中各小长方形面积总和为1,可知(0.08+0.10+0.14+0.12+0.04+0.02)·m =0.5m =1,故m =2.(2)由(1)知,各分组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12],其中点值分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04,故可估计平均值为1×0.16+3×0.20+5×0.28+7×0.24+9×0.08+11×0.04=5. (3)空白栏中填5.由题意可知, x =1+2+3+4+55=3,y =2+3+2+5+75=3.8,∑5i =1x i y i =1×2+2×3+3×2+4×5+5×7=69, ∑5i =1x 2i =12+22+32+42+52=55. 根据公式可求得b ^=∑i =15x i y i -5 x y∑i =15x 2i -5x2=69-5×3×3.855-5×32=1210=1.2,a ^=3.8-1.2×3=0.2, 即线性回归方程为y ^=1.2x +0.2.14.(2020·全国Ⅲ)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)由频数分布表可知,该市一天的空气质量等级为1的概率为2+16+25100=0.43,等级为2的概率为5+10+12100=0.27,等级为3的概率为6+7+8100=0.21,等级为4的概率为7+2+0100=0.09.(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100×20+300×35+500×45100=350.(3)2×2列联表如下:K 2=100×(33×8-37×22)255×45×70×30≈5.820>3.841,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.。

相关文档
最新文档