集美大学 船舶结构力学(48学时)第一章 绪论(2014年)

合集下载

第一章船舶常识

第一章船舶常识

勘定干舷高度的主管
Tropical Load Line
机关标记。ZC/CS
Summer Load Line
(2)干舷甲板线: 干舷甲板线是与载重 线圆盘外径等长的一
Winter Load Line
条水平线,其上边缘
Winter North Atlantic Load Line
与干舷甲板的上表面
等高并绘制在船壳板 的表面上,宽25MM。
集美大学航海学院
Page 8
3登记尺度(国内航行船舶,了解)
登记长度(registered length) 在量吨甲板上表面,从首柱前缘量至舵柱后缘的水
平距离。没有舵柱的船舶量至舵杆中心。
登记宽度(registered breadth) 在中剖面的最宽处两舷的壳板内缘间的水平距离。
登记深度(registered depth) 在登记长度中点处,自舷侧处甲板下缘至内底板上
规范规定,仅需勘划淡水载重线的载重线标志称为全季节载 重线标志
度量最大吃水限制线时,是以载重线的上边缘为准
当船舷为暗色时应漆成黄色或白色,当船舷为亮色时应漆成 黑色。
2020/4/10
集美大学航海学院
Page 20
内容介绍
船舶尺度
船舶吨位
尺度的关系
船舶标识
(1)载重线圆盘 :载 (3)最大吃水限制线:位于载重线圆盘上朝向船
船舶尺度
球鼻首标志
船舶吨位
尺度的关系
船舶标识
2020/4/10
集美大学航海学院
Page 15
内容介绍
船舶尺度
球鼻首标志
船舶吨位
尺度的关系
船舶标识
2020/4/10
集美大学航海学院

船舶结构力学习题集答案

船舶结构力学习题集答案

目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (16)第4章力法 (18)第5章位移法 (29)第6章能量法 (42)第7章矩阵法 (57)第9章矩形板的弯曲理论 (70)第10章杆和板的稳定性 (76)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl plV EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292(0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EIEI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1 图、2.2 图和2.3 图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.3 2.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Mllq EI EI EIEIθ⎡⎤=-++-⎢⎥⎣⎦ =3311117131824360612080q l q l EI EI ⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图 3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl ql ql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql qlEI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+= ⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s s s d b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx ql v x xEI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++ ⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIaxbxv cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j iEI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例 2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kg q hs cmγ==⨯⨯=形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()322186101449.45.940.3660.988,()0.980Iw cm y u x u u ϕ======== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。

集美大学 船舶结构力学(48学时)第二章 单跨梁(3)2014年 4学时

集美大学 船舶结构力学(48学时)第二章 单跨梁(3)2014年  4学时

3)单跨梁弯曲要素表类同 《材力》的对应表,但要 注意船舶结构力学符号法 则。 4)注意弯矩图的叠加;剪力 图的叠加(正负抵消)。
五、弯矩图与剪力图 1) 定义:载荷作用下梁 截面的弯矩和剪力沿梁轴 线的分布图形。 2)绘制目的:
a. 最为直观地描述弯曲梁的 内力分布; b. 帮助工程师预测和分析载 荷作用下结构的基本变形情 况。
3
求梁右端转角
梁右端的转角,用叠加法求 得如下:
Ml Ql Pl l 6 EI 24EI 16EI 2 Ql 32EI
2
2
画梁的弯矩图也采用
叠加法:先分别画出M、Q、 P单独作用下简支梁的弯矩、 剪力图,
P
M图
中点挠度
端点转角大小
0.25 Pl
Pl3 48EI
m l2 16EI
六、单跨梁的弯曲要素 表及叠加原理应用
1.(普通)叠加法: 仅应用弯曲要素表及 叠加原理求静定或超静定 单跨梁特殊点的弯曲要素 并画内力图的方法。
2.单跨梁力法: 应用简支梁弯曲要素 表、叠加原理及变形协调 条件或静力平衡条件求超 静定单跨梁特殊点的弯曲 要素并画内力图的方法。
3、在应用弯曲要素表及 叠加原理解题时,应充 分了解已有的弯曲要素 表的种类、应用范围、 坐标及符号法则。
EI , l
P ql
q
EI , l
P ql
解:据叠加原理有
q
q
vq
EI , l
P
vP
P
EI , l
P
EI ,ቤተ መጻሕፍቲ ባይዱl
M图
中点挠度
端点转角大小
0.25 Pl
Pl3 48EI
m l2 中点挠度 16EI

船舶结构力学

船舶结构力学

1.2 船体结构的计算图形
(2)骨架 骨架大都为细长的型钢或组合型材,称为杆件或杆。 一般分析时,杆的截面形状如下:
骨架带板
1.2 船体结构的计算图形
(2)骨架 实际中的杆件系统简化为规则的简单计算图形。
上甲板纵骨(杆件)
中间有支柱的舱口杆系
舱口杆系(交叉杆系)
横梁与肋骨组成的刚架
1.2 船体结构的计算图形
(2)骨架
船底交叉杆系
大舱口货船悬臂梁结构
基本理论和方法;
结合杆及杆系的强度问题讲述力法、位移法、矩阵法和 能量法;
板的强度; 杆和板的稳定性及薄壁杆件的扭转。
船舶结构力学
张娟
第一章 绪论
第一章 绪论
研究船舶结构力学主要是为了保证船体结构具有一定的强度, 保证船舶在正常的使用过程和一定的年限内具有不破坏或不发 生过大变形的能力。
船体强度包括:总纵强度、局部强度、稳定性、扭转、应力集 中、动力响应等。 船舶结构力学只研究静力响应,包括外力计算、结构在外力作 用下的响应、许用应力的确定等。
1.2 船体结构的计算图形
(1)板
1.2 船体结构的计算图形
(1)板 一般考虑受骨架支撑的矩形平板问题;此时骨架支撑很重要。
另外还有矩形平板上的开口问题;此时骨架边界不是很重要,主要考虑开 口的形状、大小。
板的边界根据研究问题的不同而不同。 ?当研究板受垂向力的弯曲与变形时,此时的边界条件刚性固定; ?当研究板的稳定性问题时,此时的边界条件为自由支持。
第一章 绪论
船舶结构力学的任务: ① 阐明结构力学的基本原理和方法,包括力法、位移法
和能量原理; ② 应用上述原理解决船舶结构力学所要研究的问题; ③ 阐明有限单元法的基本原理及其在船体结构计算中的

船舶结构力学课后题答案

船舶结构力学课后题答案

目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b) 2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++ =2220.157316206327Pl Pl Pl EI EI EI-+=⨯2291()(1)3366Ml Ml Pl l EI EI EIθ-=+-+ =2220.1410716206327Pl Pl Pl EI EI EI---=⨯()()()2222133311121333363l l p l l v m m EIl EI ⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+ ⎪⎣⎦⎝⎭=2372430pl EIc) ()44475321927682304ql ql qll v EI EI EI=-=()23233'11116(0)962416683612lq l ql plqlql v EI EI EIEIEI ⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图 2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-=⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。

船舶结构力学课件

船舶结构力学课件

教学中具体方法包括: 力法(Force method) 位移法(Displacement) 能量法(Energy method) 矩阵法(Matrix method) 有限元法(Finite element)
一、结构的几何不变性 ① 几何不变的意义 ② 几何不变系统 ③ 瞬时几何可变系统
二、几何不变性的判断
目的:
使学习者具有对船体结构进行 强度及变形分析的能力.
§1-2 船舶结构力学的研究方法
一般船舶结构分析方法
将船体的总强度与横向强度或局部 强度问题分开考虑;
在横向强度或局部强度问题中, 将空间结构拆成平面结构;
计算中又将船体的骨架和板分开考 虑;
计算机出现后的新方法: ➢将总强度与横向强度及局部强度
问题一起考虑; ➢完全可计算空间结构; ➢可不将骨架和板分开,而共同考
虑;
§1-3 船舶结构的计算图形 及典型结构
一般分析的原则: 将板与骨架分开进行分析
又可根据骨架受力以及结构变形特点将骨架 简化为更为简单的平面结构形式
板பைடு நூலகம்构
纵骨
船体结构中三种典型杆系 连续梁、刚架、板架
横梁
肋骨
❖板 板弯曲问题
板平面问题
垂直荷重 开口应力集中问题
板面内受到载荷 作用
组合载荷问题 稳定性问题
刚架
连续梁
船底
甲板结构
板架
平板结构 连续梁 刚架结构
板架结构
结构特点 结构受力特点 结构变形特点
❖空间和复杂结构
悬臂梁 甲板纵绗
肋骨
大舱口悬臂梁计算图形
大型油轮肋骨刚架离 散化计算图形
教学中具体内容: 杆及杆系的强度 板的强度 杆系和板的稳定性问题

船舶结构力学习题集答案[1]

船舶结构力学习题集答案[1]

目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1o333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++o原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++o,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++o o图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰o o图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292 (0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EI EI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1o图、2.2o图和2.3o图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=Q 右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5o图 3000()6N x v x v x EIθ=++Q ,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6o图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5o图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-=⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7o图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8o图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭Q 而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。

第一章 绪论

第一章 绪论

3、结点(杆件间连接)的简化 结点(杆件间连接)
杆件结构中, 杆件结构中,两个 或两个以上的杆件共同连 接处称为结点。 接处称为结点。 (1)铰结点: (1)铰结点:连接的 铰结点 各杆在连接处不能相对移 动(传递力),可相对转动 传递力) (不传递力矩)。 不传递力矩)。
(2)刚结点: (2)刚结点:连接的各杆 刚结点 在连接处, 在连接处,不能相对移动 (传递力),不能相对转动 传递力),不能相对转动 ), (传递力矩)。 传递力矩)。 变形前后在结点处各杆 端切线夹角不变
(5)弹性支座
Fx M Fy
了解
§1-3 杆件结构分类
这里杆件结构分类指的是:结构计算简图的分类。 这里杆件结构分类指的是:结构计算简图的分类。
学习中应注意各类结构的构造特点, 学习中应注意各类结构的构造特点,以及由此而产生的 受力特点。 受力特点。
(1)梁:受弯杆,可单跨、可多跨。 受弯杆,可单跨、可多跨。
(2)拱 杆轴一般为曲线,竖向荷载作用下, (2)拱:杆轴一般为曲线,竖向荷载作用下,有水平 支座反力(推力)。 支座反力(推力)。
(3)桁架:由直杆组成,结点为铰结点。 桁架:由直杆组成,结点为铰结点。
(4)刚架:受弯构件组成,直杆、结点形式主要为刚 刚架:受弯构件组成,直杆、 结点。 结点。
• 第十一章 杆及板的稳定性
第一章
绪论
§1-1 结构力学的任务
一、结构力学的研究对象 工程结构
构筑物中承担荷载的体系(承重骨架) 构筑物中承担荷载的体系(承重骨架)
梁柱体系、板壳体系、网架体系、水塔、桥梁、水坝、 梁柱体系、板壳体系、网架体系、水塔、桥梁、水坝、挡土墙 等。
二、结构的类型 1、按几何特征分类 (1)杆件结构(杆系结构):构件长度远远大于横截面尺寸。 杆件结构(杆系结构):构件长度远远大于横截面尺寸。 ):构件长度远远大于横截面尺寸 (2)薄壁结构(板壳结构):板壳的厚度比长度和宽度小得多。 薄壁结构(板壳结构):板壳的厚度比长度和宽度小得多。 ):板壳的厚度比长度和宽度小得多 (3)实体结构:结构的长、宽、高三个尺寸等量级。 实体结构:结构的长、 高三个尺寸等量级。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8、船体扭转强度:当船舶在 斜浪上航行,整个船体将发生 扭转,船舶抵抗发生过大扭转 变形或受到破坏的能力。
9、应力集中:在船体结构不 连续的地方,发生应力汇集或 突然增大的现象,将引起构件 裂缝形成或蔓延。(参见图16及图片)
注: (1) 船舶强度(或船体强度) 是泛指研究船体结构强度的科 学,它包括外力、结构在外力 作用下的反应即内力研究和许 用应力的确定等一系列的问题。
3、工艺力学; 4、船体结构强度分析的一些特 殊力学问题。
(船舶进坞及下水强度、温度对船体结构的作 用及船舶抗冰强度)
教学目的:
1、通过本课程的学习,使学生掌 握船舶结构力学的基本理论与方 法; 2、 力求培养学生船舶结构分析 与计算等方面的能力;
3、 培养学生自学和独立思考 能力,以便在走上工作岗位后, 能通过自学不断地吸收新知识, 开拓新领域,研究新问题,探 求新的机理,充分发挥自己的 才能。
2、骨架的计算模型(连续梁、 板架、刚架)
就整个船体来说,船体的骨架 系统是一个复杂的空间杆系结构。 在实际计算时,尤其是采用经典方 法计算时,常常把杆系简化成一些 形状比较规则的简单的计算图形。
1) 杆件(杆):细长的型钢 或组合型材如横梁、肋骨、肋 板、纵骨、纵桁等船体骨架。
2) 杆件系统(杆系):相互 连接的船体骨架系统。船体的 杆系是一个复杂的空间系统。 简化后的典型杆系:连续梁; 板架;刚架。
3)连续梁(刚性支座上的连续 梁):两端以一定的形式固定, 中间具有多个刚性支座,且在 横向荷重作用下的直杆。(注: 属多次静不定结构。)
以远洋干货船船体结构甲 板部分(图1-7)为例介绍连 续梁模型的建立: (参见图1-8)
甲板纵骨
当计算甲板纵骨在垂直于甲板 的载荷作用下的弯曲应力与变形时, 可将其取为图1-6 a所示的计算图 形——两端刚性固定、中间自由支 持在刚性支座上的连续梁。
2、结构力学:描述和预测结 构体系力学性能的基础知识。
3、船舶结构力学:研究在给 定的外载荷下如何确定船体结 构中的内力与变形(包括研究 受压构件的稳定性)。 是研究船体结构静力响应的一 门课程
船舶结构力学的首要任务: 阐明结构力学的基本原理 与方法。即阐明经典的力法、 位移法及能量原理,然后应用 它们解决船舶结构力学所要研 究的问题。
船舶结构力学的其他任务: 阐明有限元法的基本原理 及其在船体结构计算中的应用, 即阐明矩阵法(杆系有限元法) 及平面应力问题的有限元法等。
4、船体梁:把船整体当作一 根梁(空心变截面梁)静置于 静水中或波浪上,以研究船体 总纵强度等。
5、船体总纵强度(总强度): 将船视为船体梁来研究船 在纵向分布的重力与浮力作用 下的弯曲变形与应力等强度问 题。
§1-3 船体结构的计算模型
船体结构是由板和骨架等构件组成的 空间复杂结构。
一、定义: 在进行船体结构计 算之前将实际结构简化所得的计 算图形。
计算模型 力学模型 计算图形 理想化图形 简化图形 简化模型
二、建立计算模型要考虑的 主要因素:
1、实际结构的受力特征; 2、构件之间的相互影响; 3、计算精度的要求; 4、所采用的计算方法。
本课程特点:
1、 本课程不但理论概念性比 较强,而且方法技巧性要求高。 理论概念需要通过练习来加深 理解,方法技巧则需要通过做 题来熟练掌握。
2、 课程前面的内容是后面内容 的基础,相互间关系密切(如单 跨梁弯曲理论是力法的基础,在 位移法中要使用力法的成果,而 位移法又是矩阵法的理论基础等 等)。必须切实掌握前面的基础 知识,才能学好后面的内容。

绪论 单跨梁弯曲理论 力法 位移法 矩阵法(杆系有限元法) 能量法 稳定性理论 杆件的扭转理论
参考教材及参考文献:
[1]舒恒煜、谭林森.船舶结构力学.武汉:华中科 技大学出版社,1992年5月第一版 [2]陈铁云、陈伯真.船舶结构力学.上海:上海交 通大学出版社,1991年7月第一版 参考书目: [3]陈伯真、阮先政.船舶结构力学习题集.上海: 上海交通大学出版社,1994年7月第一版; [4]李人宪.有限元法基础. 北京:国防工业出版社, 2006年2月(第二版)
(图1-4 a)
若要确定甲板板在甲板载 荷作用下所产生的应力与变形, 则可把甲板板简化为四边刚性 固定的矩形板,然后计算其在 甲板载荷q作用下的弯曲应力 和变形。其计算图形如图1-4 b所示。
图1-4 b
若要研究船在中垂状态下 纵骨架式甲板板的稳定性,则 可以把甲板板简化为四边自由 支持一对边受压的矩形板来计 算(图1-4c)
7、船舶结构力学的基本原理 和方法具有一定的普遍意义。 容易过渡到一般工程结构 的计算,因为原理相同。
§1-2 船舶结构力学的 研究方法
一、传统的方法: 1、将船体的总强度问题与横 向强度或局部强度问题分开考 虑,必要时再把它们的结果叠 加起来。
2、在横向强度或局部强度问 题中,常把空间结构拆成平面 结构(板架)来考虑。
连续梁
4) 板架(交叉梁系):外载荷 垂直于杆系平面而发生弯曲的 平面杆系。 以远洋干货船船体结构甲 板舱口部分(图1-7)为例介 绍板架模型的建立: (参见图1-9)
(图1-4 a)
在计算舱口纵桁和舱口端横梁 在垂直于甲板载荷作用下的弯曲应 力和变形时,可将其取为图1-7a所 示的井字型平面杆系计算图形,即 板架。
1、空间结构计算模型举例:图19 大舱口货船悬臂梁结构的计算 模型。
该空间杆系计算模型放弃了以 往模型中舱口纵桁刚性支撑悬臂梁 的假定,更切合实际。可同时算出 甲板纵桁、舱口纵桁、舱口端横梁、 悬臂梁及肋骨的应力与变形。
1、“电算”并不排斥结构力学 的基本理论,而是需要更加重 视基本概念、基本理论和基本 方法的学习; 2、能量法、矩阵法和有限元法 是“电算”的基础。
教学重点:单跨梁的弯曲理论、
力法、位移法、能量法、矩阵 法。
教学难点:能量法、矩阵法
(杆系有限元法)。
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
三、船体结构计算中的常见、 典型的计算模型 1、板的计算模型(矩形板)
1)板:是与船体的纵、横骨架 相连接的且通常被纵、横骨架划分 成许多矩形的板格。
2)板的计算模型 矩形板:四周有纵横骨架支持 的具有矩形周界的板格。
例如:对于纵骨架式船体,其 甲板板就被甲板纵桁、纵骨和 横梁划分成许多矩形的板格 (图1-4 a)。
2、目前“规范”越来越多地 有用结构力学理论来表达的趋 势。掌握船舶结构力学会对规 范有更深的理解。
3、设计建造无规范可依据 的船舶,在结构设计时需用 船舶结构力学的知识。
4、本科后续课程《船体强度和 结构设计》、《船体振动学》 的基础。
5、船舶与海洋工程专业研究 生入学考试需要。 6、硕研课程《船舶结构动力 学》、《船舶结构有限元》的 基础。
做题(主要是计算题)的重 要性:
做题是对原理和方法的 应用,通过解题可以加深对原 理和方法的理解。解题的过程 对学生的分析能力、表达能力、 运算能力和校核能力都可以得 到训练和提高。
本课程与“电算” (用 计算机进行结构分析计算 ) 的关系:
科学技术的飞速发展,特 别是电子计算技术的迅猛发展 及其在船舶科技领域的广泛应 用,极大地改观了传统的船舶 结构设计分析理念,涌现出许 多新的船舶设计方法。
(2) 船舶结构力学则专指研究 船体结构的内力的问题,不研 究外力及许用应力等方面的问 题。船体强度计算则涉及外力 (外载荷)及许用应力等方面 的问题。
二、学习“船舶结构力学” 的意义:
1、虽然当前船舶结构设计大 都依照“船舶建造规范”来进 行,但船舶结构力学仍是结构 设计的基础。“规范”中不少 规定仍来源于结构力学的基本 理论。
3、在计算中把组成船体结构 的骨架和板分开考虑,将船体 板认为是支持在骨架上的板, 计算骨架时,骨架应带有“附 连翼板”或称带板。
船体中的骨架受力变形时,和 骨架相连的那一部分板始终会与骨 架一起变形,不可分割。 在研究骨架时应把与骨架相连 的一部分板连同骨架一起考虑。
带板:与骨架相连的那一部分 板。
教学要求:
1、掌握单跨梁的弯曲理论(初参数 法、单跨梁力法等); 2、掌握结构力学的经典方法—力法、 位移法、能量法及矩阵法(杆系有 限元法); 3、了解杆件的扭转理论; 4、了解稳定性理论。
学习方法:
1、认真做好课堂笔记; 2、要熟记解题要点和步骤; 3、多做计算题; 4、重视基本概念的理解与掌握;
带板宽度:骨架间距与骨架跨 度的1/5中小者。 (参见图1-5)
二、当前方法: 1、可以将总强度问题与横向 强度及局部强度问题一起考虑, 即在确定了船体整个受力情况 的前提下,可将船体各组成结 构中的应力与变形一起计算出 来。
2、完全可以计算空间结构, 无须一定要将空间结构化为平 面结构。 3、可以不将骨架和板分开, 而将骨架和板一起考虑。
图1-4 c
为了使甲板板的受压稳定 性计算偏于安全,这里的简化 采用了比较弱的边界条件,即 忽略了纵、横骨架的抗扭刚度 对板稳定性的有利影响。
板上荷重分为两类: (参见下图)
横荷重:垂直于板平面的荷重, 如作用于板上的水压力;
图1-4 c
中面荷重:位于板平面内的荷 重,如在船体总弯曲时作用于 船体甲板平面的应力。(参见 图1-5)
处于船体横剖面内的横梁、肋骨及肋板。 它们共同组成一个平面杆系,是保证船体横 向强度的主要构件。
图1-8a所示的为双甲板船在舱口处横剖面的肋 骨框架计算图形:
刚架的进一步简化:仅由横梁与肋骨 组成的刚架(图1-8b) 考虑到实际船体结构中肋板的 尺寸远较肋骨的大,所以计算时可 将肋骨下端作为刚性固定端。把肋 板放到船底板架中去研究,而得。
思考:静水、波浪、中拱、中 垂。(参考图1-1、图片等)
相关文档
最新文档