导数及定积分知识点总结及练习(经典)

合集下载

第一节 导数的概念及运算 定积分

第一节 导数的概念及运算 定积分

第一节 导数的概念及运算 定积分考试要求1.了解导数概念的实际背景.2.理解导数的几何意义.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.4.能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.5.了解定积分的实际背景;了解定积分的基本思想,定积分的概念,微积分基本定理的含义.[知识排查·微点淘金]知识点1 导数的概念一般地,函数y =f (x )在x =x 0处导数的定义,称函数y =f (x )在x =x 0处的瞬时变化率lim x →0_f (x 0+Δx )-f (x 0)Δx=lim x →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim x →0Δy Δx =lim x →0_f (x 0+Δx )-f (x 0)Δx. [微思考]f ′(x )与f ′(x 0)有什么.提示:f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0. 知识点2 导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是:在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).[微思考]直线与曲线只有一个公共点,则该直线一定与曲线相切吗?为什么?提示:不一定.因为直线与曲线的公共点个数不是切线的本质特征,直线与曲线只有一个公共点,不能说明直线就是曲线的切线,反之,直线是曲线的切线,也不能说明直线与曲线有一个公共点,但切点一定是直线与曲线的公共点.[微提醒]1.“过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.知识点3 求导公式及运算法则 (1)基本初等函数的导数公式 ①c ′=0;②(x α)′=αx α-1(α∈Q 且α≠0); ③(sin x )′=cos_x ; ④(cos x )′=-sin_x ; ⑤(a x )′=a x ·ln_a ; ⑥(e x )′=e x ; ⑦(log a x )′=1x ln a; ⑧(ln x )′=1x .(2)导数的运算法则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )·g (x )-g ′(x )·f (x )g (x )(g (x )≠0). (3)复合函数的求导法则复合函数y =f (g (x ))对自变量的导数等于已知函数对中间变量的导数与中间变量对自变量的导数的乘积.设y =f (u ),u =g (x ),则y ′x =f ′(u )·g ′(x ).知识点4 定积分(1)定积分的概念、几何意义及性质 ①定积分的相关概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.②定积分的几何意义y =f (x )所围成的曲边梯形的面积f (x )<0 表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ] 上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积③定积分的三个性质a.⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);b.⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;c.⎠⎛a b f (x )d x =⎠⎛a b f (x )d x +⎠⎛ab f (x )d x (其中a <c <b ).(2)微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式 .通常记作⎠⎛ab f (x )d x =F (x )|b a =F (b )-F (a ).如果F ′(x )=f (x ),那么称F (x )是f (x )的一个原函数. 常用结论函数f (x )在闭区间[-a ,a ]上连续,则有1.若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;2.若f (x )为奇函数,则⎠⎛-aa f (x )d x =0.[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.(×) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).(×) (3)曲线的切线不一定与曲线只有一个公共点.(√) (4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.(×) (6)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .(√)2.(链接教材选修2-2 P 50A 组T 5)定积分⎠⎛-11|x |d x =( )A .1B .2C .3D .4答案:A3.(链接教材选修2-2 P 3例题)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________m/s ,加速度a =________m/s 2.答案:-9.8t +6.5 -9.84.(不会用方程法解导数求值)已知f (x )=x 2+3xf ′(2),则f (2)=________.解析:因为f ′(x )=2x +3f ′(2),令x =2,得f ′(2)=-2,所以f (x )=x 2-6x ,所以f (2)=-8.答案:-85.(混淆在点P 处的切线和过P 点的切线)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则a 的值为________;b 的值为________.解析:y ′=a e x +ln x +1 ∴⎩⎪⎨⎪⎧a e +1=2,a e =2+b ,解得⎩⎪⎨⎪⎧a =1e,b =-1. 答案:1e-1一、基础探究点——导数的运算(题组练透)1.已知f (x )=cos 2x +e 2x ,则f ′(x )=( ) A .-2sin 2x +2e 2x B .sin 2x +e 2x C .2sin 2x +2e 2x D .-sin 2x +e 2x解析:选A 由题意f ′(x )=-sin 2x ·2+e 2x ·2=-2sin 2x +2e 2x ,故选A. 2.已知f (x )=x (2021+ln x ),若f ′(x 0)=2022,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B 因为f (x )=x (2021+ln x ), 所以f ′(x )=2021+ln x +1=2022+ln x . 又f ′(x 0)=2022,所以2022+ln x 0=2022,所以x 0=1.故选B.3.(2020·全国卷Ⅲ)设函数f (x )=e x x +a,若f ′(1)=e4,则a =________.解析:由f ′(x )=e x (x +a )-e x (x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.答案:14.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.解析:由已知f (x )=x -ln x +2x -1x 2,∴f ′(x )=1-1x -2x 2+2x 3.答案:1-1x -2x 2+2x31.求函数导数的总原则:先化简解析式,再求导.2.常见形式及具体求导方法连乘形式 先展开化为多项式形式,再求导三角形式 先利用三角函数公式转化为和或差的形式,再求导 分式形式 先化为整式函数或较为简单的分式函数,再求导 根式形式 先化为分数指数幂的形式,再求导 对数形式 先化为和、差形式,再求导复合函数 先确定复合关系,由外向内逐层求导,必要时可换元二、应用探究点——导数的几何意义(多向思维)[典例剖析]思维点1 求曲线的切线方程[例1] (2021·全国甲卷)[一题多解]曲线y =2x -1x +2在点(-1,-3)处的切线方程为______.解析:解法一:y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.解法二:本题可以先将函数转化为y =2(x +2)-5x +2=2-5x +2,再求导数.答案:5x -y +2=0解决这类问题的方法都是根据曲线在点(x 0,y 0)处的切线的斜率k =f ′(x 0),直接求解或结合已知所给的平行或垂直等条件得出关于斜率的等式来求解.解决这类问题的关键是抓住切线的斜率.思维点2 求切点坐标[例2] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.解析:设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 答案:(e ,e) [拓展变式][变条件]若本例变为:曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.思维点3 由曲线的切线(斜率)求参数值(范围)[例3] (1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( ) A .2 B .-1 C .1D .-2解析:依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1.故选C.答案:C(2)若点P 是函数y =e x -e -x -3x ⎝⎛⎭⎫-12≤x ≤12图象上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是________.解析:由导数的几何意义,知k =y ′=e x +e -x -3≥2 e x ·e -x -3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π).又-12≤x ≤12,tan α=k <0,所以α的最小值是3π4.答案:3π4解与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数;①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.思维点4 两曲线的公切线问题[例4] 设x 1为曲线y =-1x (x <0)与y =ln x 的公切线的一个切点横坐标,且x 1<0,则满足m ≥x 1的最小整数m 的值为________.解析:y =-1x (x <0)的导数为y ′=1x 2,y =ln x 的导数为y ′=1x ,设与y =ln x 相切的切点的横坐标为n , 由切线方程y =1n x +ln n -1,以及y =x x 21-2x 1,可得1n =1x 21,ln n -1=-2x 1,消去n ,可得2-x 1=2ln(-x 1)-1,设t =-x 1(t >0),可得2t=2ln t -1,设f (t )=2ln t -1-2t ,可得f (2)=2ln 2-2<0,f (3)=2ln 3-53>0,且f (t )在(2,3)递增,可得2t =2ln t -1的根介于(2,3)之间,即有x 1∈(-3,-2),m ≥x 1恒成立,可得m ≥-2,即m 的最小值为-2. 答案:-2解决两曲线的公切线问题的两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.[学会用活]1.(2020·全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:2x -y =02.(2021·贵阳模拟)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.解析:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0, ∴切点P (x 0,f (x 0))的坐标为(0,0). 答案:(0,0)3.已知直线y =kx -2与曲线y =x ln x 在x =e 处的切线平行,则实数k 的值为________. 解析:由y =x ln x ,得y ′=ln x +1,所以当x =e 时,y ′=ln e +1=2,所以曲线y =x ln x 在x =e 处的切线的斜率为2.又该切线与直线y =kx -2平行,所以k =2.答案:24.(2021·内蒙古包头一模)若曲线f (x )=a ln x (a ∈R )与曲线g (x )=x 在公共点处有共同的切线,则实数a 的值为________.解析:函数f (x )=a ln x 的定义域为(0,+∞),f ′(x )=a x ,g ′(x )=12x ,设曲线f (x )=a ln x与曲线g (x )=x 的公共点为(x 0,y 0),由于在公共点处有共同的切线,∴a x 0=12x 0,解得x 0=4a 2,a >0. 由f (x 0)=g (x 0),可得a ln x 0=x 0.联立⎩⎪⎨⎪⎧x 0=4a 2,a ln x 0=x 0,解得a =e2.答案:e 2三、应用探究点——定积分(多向思维)[典例剖析]思维点1 定积分的计算[例5] 计算:(1)⎠⎛0π(sin x -cos x )d x =________.(2)若f (x )=3+2x -x 2,则⎠⎛13f (x )d x 为______.(3)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为________.解析:(1)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x =2.(2)由y =3+2x -x 2=4-(x -1)2,得(x -1)2+y 2=4(y ≥0),表示以(1,0)为圆心,2为半径的圆在x 轴及其上方的部分,所以⎠⎛133+2x -x 2d x 是圆面积的14.所以⎠⎛133+2x -x 2d x =14·π·22=π.(3)因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e],因为⎝⎛⎭⎫13x 3′=x 2, (ln x )′=1x ,所以⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x =13+1=43.答案:(1)2 (2)π (3)43应用微积分基本定理计算定积分的步骤1.把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. 2.把定积分用定积分性质变形为求被积函数为上述函数的定积分. 3.分别用求导公式找到一个相应的原函数. 4.利用微积分基本定理求出各个定积分的值. 5.计算原始定积分的值.思维点2 利用定积分求平面图形的面积[例6] [一题多解]由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积为________. 解析:如图所示,联立方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,解得两交点的坐标分别为(2,-2),(8,4). 解法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和,即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =23(2x )32⎪⎪⎪20+⎣⎡⎦⎤13(2x )32-12x 2+4x ⎪⎪⎪82=163+⎝⎛⎭⎫643-263=543=18. 解法二:选取纵坐标y 为积分变量,则图中阴影部分的面积为S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =⎝⎛⎭⎫12y 2+4y -16y 3⎪⎪⎪4-2=18. 答案:18 [拓展变式]1.[变条件]若本例变为:由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________.解析:由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为⎠⎛-11(2x 2+4x +2)d x =⎝⎛⎭⎫23x 3+2x 2+2x |1-1=⎝⎛⎭⎫23×13+2×12+2×1-⎣⎡⎦⎤23×(-1)3+2×(-1)2+2×(-1)=163. 答案:1632.[变条件,变结论]若本例变为:设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析:封闭图形如图所示,则⎠⎛0ax d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49. 答案:49利用定积分求平面图形面积的步骤(1)根据题意画出图形.(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限. (3)把平面图形的面积表示成若干个定积分的和或差. (4)计算定积分得出答案.[学会用活]5.⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x |e 1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π·22=2π,故答案为2π+1.答案:2π+16.(2021·江西宜春重点高中月考)函数f (x )=⎩⎪⎨⎪⎧x +4,-4≤x <0,4cos x ,0≤x ≤π2的图象与x 轴所围成的封闭图形的面积为________.解析:由题意可得围成的封闭图形的面积 S =⎠⎛-4(x +4)d x +∫π204cos x d x=⎝⎛⎭⎫12x 2+4x |0-4+4sin x |π20 =0-(8-16)+4sin π2-0=12.答案:12限时规范训练 基础夯实练1.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:选C ⎠⎛01(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,故选C.2.(2021·晋南高中联考)函数f (x )=ln 2x -1x 的图象在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线方程为( ) A .y =6x -5 B .y =8x -6 C .y =4x -4D .y =10x -7解析:选A f ⎝⎛⎭⎫12=ln 1-2=-2,因为f ′(x )=1x +1x 2,所以f ′⎝⎛⎭⎫12=6,所以切线方程为y -(-2)=6⎝⎛⎭⎫x -12,即y =6x -5,故选A. 3.已知函数f (x )=(x 2+m )e x (m ∈R )的图象在x =1处的切线的斜率等于e ,且g (x )=f (x )x,则g ′(-1)=( )A.4e B .-4eC.e 4D .-e 4解析:选A 由题意得f ′(x )=2x e x +(x 2+m )e x =(x 2+2x +m )e x ,f ′(1)=(3+m )e ,由题意得(3+m )e =e ,所以m =-2,所以f (x )=(x 2-2)e x .解法一:所以g (x )=f (x )x =⎝⎛⎭⎫x -2x e x ,g ′(x )=⎝⎛⎭⎫1+2x 2e x +⎝⎛⎭⎫x -2x e x ,所以g ′(-1)=4e . 解法二:f ′(x )=(x 2+2x -2)e x ,f (-1)=-1e ,所以f ′(-1)=-3e ,又g ′(x )=xf ′(x )-f (x )x 2,所以g ′(-1)=4e.4.(2021·贵阳市四校联考)直线l 过抛物线E :y 2=4x 的焦点且与x 轴垂直,则直线l 与E 所围成的图形的面积等于( )A .2B .43C.83D .163解析:选C 由题意,得直线l 的方程为x =1,将y 2=4x 化为y =±2x ,由定积分的几何意义,得所求图形的面积为S =2⎠⎛012x d x =4⎠⎛01x 12d x =4×⎝⎛⎭⎫23x 32|10=83×1=83,故选C. 5.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎤0,π3 B .⎣⎡⎭⎫π3,π2 C.⎝⎛⎦⎤π2,2π3D .⎣⎡⎭⎫π3,π解析:选B 根据题意,得f ′(x )≥3,则曲线y =f (x )上任一点的切线的斜率k =tan α≥ 3. 结合正切函数的图象可得α∈⎣⎡⎭⎫π3,π2.故选B.6.已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则a =________,b =________.解析:因为(x 3+ax +b )′=3x 2+a ,所以⎩⎪⎨⎪⎧3×12+a =2,13+a ·1+b =3,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:-1 37.若f (x )=13x 3-12f ′(1)·x 2+x +12,则曲线y =f (x )在点(1,f (1))处的切线方程是________.解析:因为f (x )=13x 3-12f ′(1)x 2+x +12,所以f ′(x )=x 2-f ′(1)x +1,所以f ′(1)=1-f ′(1)+1,所以f ′(1)=1,所以f (1)=13-12+1+12=43,曲线y =f (x )在点(1,f (1))处的切线方程是y -43=x-1,即3x -3y +1=0.答案:3x -3y +1=08.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解:(1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 9.(2021·淮南模拟)已知函数f (x )=x 2-ln x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎡⎦⎤12,1上?若存在,求出这两点的坐标,若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x,f ′(1)=2-1=1,则所求切线方程为y -1=1·(x -1),即y =x .(2)假设存在两点满足题意,且设切点坐标为(x 1,y 1),(x 2,y 2), 则x 1,x 2∈⎣⎡⎦⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝⎛⎭⎫2x 1-1x 1⎝⎛⎭⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎡⎦⎤12,1上单调递增,函数的值域为[-1,1], 故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎨⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝⎛⎭⎫x 1=-1,x 2=-12舍去, 故存在两点⎝⎛⎭⎫12,ln 2+14,(1,1)满足题意. 综合提升练10.已知直线y =1m 是曲线y =x e x 的一条切线,则实数m 的值为( )A .-1eB .-e C.1eD .e解析:选B 设切点坐标为⎝⎛⎭⎫n ,1m ,对y =x e x 求导,得y ′=(x e x )′=e x +x e x ,若直线y =1m 是曲线y =x e x 的一条切线,则有y ′|x =n =e n +n e n =0,解得n =-1,此时有1m =n e n =-1e ,∴m =-e.故选B.11.(2021·新高考卷Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e bD .0<b <e a解析:选D 解法一:设切点(x 0,y 0),y 0>0,则切线方程为y -b =e x 0(x -a ),由⎩⎪⎨⎪⎧y 0-b =e x 0(x 0-a )y 0=e x 0得e x 0(1-x 0+a )=b ,则由题意知关于x 0的方程e x 0(1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0, 所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,作出函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a ,故选D.解法二:过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a ,故选D.12.(2020·全国卷Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12解析:选D 易知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则|b |k 2+1=55①,设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程为y =12x +12.13.(2021·开封市模拟考试)已知函数f (x )=mx 3+6mx -2e x ,若曲线y =f (x )在点(0,f (0))处的切线与直线4x +y -2=0平行,则m =________.解析:f ′(x )=3mx 2+6m -2e x ,则f ′(0)=6m -2=-4, 解得m =-13.答案:-1314.(2021·江西五校联考)已知函数f (x )=x +a2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是________.解析:f ′(x )=1-a 2x 2,设切点坐标为⎝⎛⎭⎫x 0,x 0+a 2x 0,则切线方程为y -x 0-a 2x 0=⎝⎛⎭⎫1-a 2x 20(x -x 0),又切线过点(1,0),所以-x 0-a 2x 0=⎝⎛⎭⎫1-a 2x 20(1-x 0),整理得2x 20+2ax 0-a =0,又曲线y =f (x )存在两条过(1,0)点的切线,故方程有两个不等实根,即满足Δ=4a 2-8(-a )>0,解得a >0或a <-2.答案:(-∞,-2)∪(0,+∞)15.(2021·河北六校联考)已知函数f (x )=x ln x -12mx 2(m ∈R ),g (x )=-x +1e x -2e x +e -1e .(1)若函数f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,求m ; (2)证明:在(1)的条件下,对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2)成立. 解:(1)f (x )的定义域为(0,+∞), f ′(x )=ln x +1-mx ,f ′(1)=1-m ,因为f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,所以1-m =1,即m =0. (2)证明:在(1)的条件下,f (x )=x ln x ,f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减, 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )=x ln x 在x =1e 时取得最小值f ⎝⎛⎭⎫1e =-1e ,所以f (x 1)≥-1e . g (x )=-x +1e x -2e x +e -1e ,则g ′(x )=x e x -2e ,令h (x )=g ′(x )=x e x -2e,x >0,则h ′(x )=1-xe x ,所以当x ∈(0,1)时,h ′(x )>0,h (x )单调递增,当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减.所以当x >0时,g ′(x )≤g ′(1)=h (1)=-1e,因为g ′(x )≤-1e <0,所以g (x )在(0,+∞)上单调递减,所以g (x 2)<g (0)=-1e.所以对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2).创新应用练16.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)由已知得f′(x)=3ax2+6x-6a,因为f′(-1)=0,所以3a-6-6a=0,所以a=-2.(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).因为g′(x0)=6x0+6,所以切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

导数与定积分知识汇总

导数与定积分知识汇总

导数与定积分知识汇总导数和定积分是微积分的重要概念之一、导数描述了函数在其中一点上的变化率,而定积分则计算了函数在给定区间上的累积量。

本文将对导数和定积分的基本定义、性质和应用进行详细介绍。

一、导数的定义和性质1. 导数的定义:对于函数f(x),在其中一点a处的导数定义为:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)。

导数表示了函数y=f(x)在x=a处的切线斜率。

2.导数的几何意义:导数表示了函数图像在其中一点上的切线斜率。

如果导数大于零,则函数在该点上递增;如果导数小于零,则函数在该点上递减;如果导数等于零,则函数在该点上取极值;如果导数不存在,则函数在该点上存在间断。

3.导数的计算方法:可以使用基本导数公式来计算导数,例如常数函数、幂函数、指数函数、对数函数等。

此外,还可以使用导数的四则运算法则,包括求和、差、积和商的导数。

4.高阶导数:函数的导数可以继续求导,得到高阶导数。

第n阶导数表示了函数的n次变化率,可以用f^(n)(x)表示。

例如,如果函数的二阶导数大于零,那么函数在该点上呈现凸的曲线形状。

二、定积分的定义和性质1. 定积分的定义:对于函数f(x),在区间[a,b]上的定积分定义为:∫[a,b] f(x) dx = lim(n→∞) Σ[f(x_k) Δx_k],其中Σ表示求和,Δx_k是区间[a,b]上一个子区间的长度,x_k是该子区间内任意一点。

2.定积分的几何意义:定积分表示了函数f(x)在区间[a,b]上的曲线下面积。

如果函数在该区间上为正值,则积分值为正;如果函数在该区间上为负值,则积分值为负;如果函数在该区间上变号,则通过积分可以得到曲线上和曲线下的面积差。

3.定积分的计算方法:可以使用定积分的基本公式来计算定积分,如幂函数的定积分、三角函数的定积分等。

此外,还可以利用换元积分法、分部积分法等方法来计算更复杂的定积分。

4. 积分的性质:积分具有线性性质,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx + ∫[a,b] g(x) dx;积分也具有保号性质,即如果在[a,b]上f(x) ≤ g(x),那么∫[a,b] f(x) dx ≤ ∫[a,b] g(x) dx。

导数知识点总结及例题

导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。

这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。

对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。

利用导数的定义,我们可以计算得到函数在某一点处的变化率。

1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。

例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。

这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。

1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。

也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。

二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。

例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。

2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。

我们把这个过程称为求导,求出的导数称为导函数。

导函数的值就是原函数在对应点处的导数值。

2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。

这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。

三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。

第一节-导数的概念及运算定积分ppt课件

第一节-导数的概念及运算定积分ppt课件
谨记结论·谨防易错 (1)f′(x0)代表函数 f(x)在 x=x0 处的导数值;(f(x0))′是函数值 f(x0)的导 数,且(f(x0))′=0. (2)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是 周期函数. (3)f1x′=-f[′fxx]2. (4)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线 相切只有一个公共点.
3.在桥梁设计中,桥墩一般设计成圆柱形,因为其各向受力均衡,而且在相
同截面下,浇筑用模最省.假设一桥梁施工队在浇筑桥墩时,采用由内向
外扩张式浇筑,即保持圆柱高度不变,截面半径逐渐增大,设圆柱半径关
于时间变化的函数为 R(t).若圆柱的体积以均匀速度 c 增长,则圆柱的侧面
积的增长速度与圆柱半径
()
A.成正比,比例系数为 c
四、“基本活动经验”不可少 为了响应国家节能减排的号召,甲、乙两个工厂进行了污 水排放治理,已知某月内两厂污水的排放量 W 与时间 t 的关系如图所示. (1)该月内哪个厂的污水排放量减少得更多? (2)在接近 t0 时,哪个厂的污水排放量减少得更快? 答案:(1)乙 (2)甲
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
为函数y=f(x)在x=x0处的导数
记法
记作f′(x0)或y′|x=x0,即f′(x0)=li m Δx→0
ΔΔxy=
li m fx0+Δx-fx0
Δx→0
Δx
几何 是曲线y=f(x)在点 (x0,f(x0)) 处的 切线的斜率 ,相应的切线方程为 意义 y-f(x0)=f′(x0)(x-x0)
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

导数与定积分分类练习(无答案)

导数与定积分分类练习(无答案)

导数与微积分综合题【基本公式】1、平均变化率:2、瞬时变化率:3、导数的定义导数的几何意义: 导数的物理意义: 4.常用的导数公式:(1)若f (x )=c , 则f ′(x )= ;(2)若*)()(Q x x f ∈=αα,则f ′(x )= ; (3)若f (x )=sin x ,则f ′(x )= ;(4)若f (x )=cos x,则f ′(x )= ;(5)若x a x f =)(,则f ′(x )= (a >0);(6)若x e x f =)(,则f ′(x )= ;(7)若x x f a log )(=,则f ′(x )= (a >0,a ≠1);(8)若x x f ln )(=,则f ′(x )= 5.导数运算的法则:(1))]()([x g x f ±′= (2))]()([x g x f ′= (3)⎥⎦⎤⎢⎣⎡)()(x g x f ′= (g(x)≠0)(4))]([x cf ′=6.定积分的定义: 定积分的性质:(1)⎰⎰=babadxx f cdx x cf )()((c 为常数)(2))(),(x g x f 可积,则[]⎰⎰⎰+=+bababadxx g dx x f dxx g x f )()()()( (3)⎰⎰⎰+=bacabcdx x f dx x f dx x f )()()(7.常见函数的原函数:⎰=dx ___________⎰=cdx ___________⎰=dx x n_____________⎰=xdx sin ________⎰=xdx cos _________⎰=dx x1________⎰=xdx ln ___________⎰=dx a x___________8、微积分基本定理:牛顿一莱布尼茨公式:若函数f 在[]b a ,上连续,存在原函数F ,即()()[]b a x x f x F ,,∈=',则f 在[]b a ,上可积,则_____________________9、连续曲线()x f y =在[]b a ,上形成的曲边梯形面积为_____________________10、连续曲线()x f y =与()x g y =在[]b a ,上围成图形面积为___________(a ,b 为交点的横坐标)【练习】一、恒成立问题 1. 已知函数321()23f x x bx x a=-++,2x =是)(x f 的一个极值点.(Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3f x a ->恒成立,求a 的取值范围.2. 已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.3.(重庆理 20)已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值–3–c ,其中a,b,c 为常数。

定积分知识点和例题

定积分知识点和例题

定积分知识点和例题
定积分是积分的一种,是函数在某个区间上的积分和的极限。

定积分的概念起源于求图形面积和其他实际应用的问题。

下面我将列举一些定积分的知识点和例题:
知识点:
1. 定积分的定义:定积分是积分和的极限,即对一个给定区间[a,b]上的函数f(x)和任意分割法,求各小区间上函数值的点乘积和的极限。

如果存在一个常数I,对于任意给定的正数ε,总存在一个δ>0,使得当|ΔSi|<δ时,对区间[a,b]的任意分割法,和Si与I的差的绝对值都小于ε,则称I为f(x)在区间[a,b]上的定积分,记作∫abf(x)dx,其中a、b和I分别为定积分的下限、上限和值。

2. 定积分的几何意义:定积分的值等于由曲线y=f(x)与直线x=a、x=b 以及x轴所围成的曲边梯形的面积。

3. 定积分的性质:定积分的性质包括线性性质、积分中值定理、积分上限函数与被积函数的联系等。

4. 定积分的计算方法:主要包括基本初等函数的积分公式和不定积分的性质及计算方法,如换元法、分部积分法等。

例题:
1. 计算定积分∫10(x^2+1)dx的值。

2. 计算定积分∫π20(sinx+cosx)dx的值。

3. 计算定积分∫10|x-1|dx的值。

4. 计算定积分∫10x^2dx的值。

5. 计算定积分∫21(1/x)dx的值。

导数与定积分总结

导数与定积分总结

x 例3 求函数 y 2 的单调区间. x 9
解:
x ( x 9) x( x 9) x 9 y 2 0 2 2 2 ( x 9) ( x 9)
' 2 2 ' 2 '
f ( x)的定义域为x 3,
当x (, 3), x (3,3), x (3, )
导数与定积分总结
知识点总结:
(一)对导数定义的理解;
f '( x0 ) lim
x 0
f ( x0 x) f ( x0 ) x
f ( x0 x) f ( x0 ) A:平均变化率 x f ( x0 x) f ( x0 ) B:割线斜率 x
f ( x0 x) f ( x0 ) lim 瞬时变化率 x 0 x f ( x0 x) f ( x0 ) lim 切线斜率 x 0 x
本节内容是本章最根本,最重要,最基本的内容
y f x x f x 1. f x lim lim x 0 x x 0 x
2. C 0C为常数 m x mx m -1 m Q sinx cosx cosx sinx x e ex
3
2 3 .
1 6.
条.
(四)怎样理解极点,极值;还有最值点,最值 (应该学会结合原函数与其导函数图形理解)
y=f(x) D E 0 G A C B F K x H D
y f '( x) H
E 0 G A C B F
K
x
y f ( x)
y f '( x)
请你根据上面图象指出哪些是极点,极值;最值点,最值
(2)设f(x)在x=x0处可导,且

积分导数知识点总结

积分导数知识点总结

积分导数知识点总结一、导数的定义1.导数的定义:函数f在点x处的导数为该点处的极限,即f'(x) = lim(h→0) (f(x+h) - f(x))/h2.导数的几何意义:导数表示函数在某一点处的斜率,即切线的斜率。

3.导数的物理意义:导数表示物理学中的速度、加速度等变化率。

4.导数存在的条件:函数在某一点处存在导数的条件是该点的邻域内函数有定义且函数在该点处有有限的斜率。

5.导数存在的判定:若函数在某一点处存在导数,则函数在该点处一定连续二、导数的计算方法1.利用导数的定义计算导数2.利用导数的基本公式计算导数3.利用导数运算法则计算导数4. 利用导数的性质计算导数三、导数的应用1. 导数与函数的图像(1)导数与函数的单调性:函数在某一区间内单调增加(减少)的充分必要条件是函数在该区间内导数恒大于(小于)零。

(2)导数与函数的极值:函数在某一点处取得极大值、极小值的充分必要条件是函数在该点处的导数为零或不存在。

(3)导数与函数的凹凸性:若函数在某一区间内的导数恒大于零(小于零),则该函数在该区间内为凹函数(凸函数)。

2. 导数与曲线问题(1)切线方程:函数在某一点处的切线方程为y=f'(x0)(x− x0)+f(x0)(2)法线方程:函数在某一点处的法线方程为y=(−1/f'(x0))(x− x0)+f(x0)(3)切线与曲线的问题:切线与曲线的交点、长度、曲率等问题。

3. 导数在科学工程中的应用(1)速度、加速度:物体运动的速度、加速度等问题。

(2)最优化问题:求函数取得最大值、最小值时的条件。

(3)微分方程:描述自然现象的微分方程。

四、积分的定义1. 积分的定义:积分是导数的逆运算。

2. 定积分的定义:定积分是函数在区间[a, b]上的积分,表示曲线以下的面积。

3. 不定积分的定义:不定积分是函数的不定积分,表示函数的原函数。

5. 积分存在的条件:函数在某一区间内存在积分的条件是该函数在该区间内有界、可积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用及定积分(一)导数及其应用1.函数y = f(x)在X =X O 处的瞬时变化率是Iim £X = Iim f x0十 ;_凶•我们称它为函数 y Δx →0 Δx → 0=f(x)在 X = X o 处的导数,记作 f ' (X o )或 y ' IX = X O ,即 f ' (x o ) = Iim £y = Iim_L X ^。

Δx → 0Δx →02•导数的几何意义函数y = f(x)在X = x 0处的导数,就是曲线y = f(x)在X = x 0处的切线的斜率,即k = f ' (x 0)3•函数的导数对于函数y = f(x),当X = X o 时,f ' (X o )是一个确定的数.当 X 变化时,f ' (x)便是一个关于X 的函数,我们称它为函数y = f(x)的导函数(简称为导数),即f '(X )= y ' = IimΔx → 0f χo + Δx — f X oΔ4. 函数y = f(x)在点x o 处的导数f ' (x o )就是导函数f '(X )在点X = x o 处的函数值, 即 f ' (x o ) = f ' (x)|x = x o 。

5. 常见函数的导数(X n )' = .(1)'= = .(sinx)' = .(cosx)' =(a x )'= _____________ .(e x)'= _____________ .(IOg a X)' = ___________ .(Inx)'= ______________(1) 设函数f(x)、g(x)是可导函数,则:(f(x) ±(x))'= ____________________ ; (f(x) g(x))' = _____________________ (3)复合函数 y = f(g(x))的导数和函数y = f(u) , U = g(x)的导数间的关系为U χ'.即y 对X 的导数等于y 对U 的导数与U 对X 的导数的乘积. 6. 函数的单调性设函数y = f(x)在区间(a , b)内可导,(1) 如果在区间(a , b)内,f ' (x)>(则f(x)在此区间单调 ______________ ; ⑵如果在区间(a , b)内,f ' (x)<(则f(x)在此区间内单调 ________________ .(2) 如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________ ,其图象比较 _____________ .7. 函数的极值一般地,已知函数 y = f(x)及其定义域内一点X o ,对于包含X o 在内的开区间内的所有点X ,如果都有 _________ ,则称函数f(x)在点X 0处取得 ____________ ,并把X o 称为函数f(x)的一个IimΔx → of X o + Δx — f X o Δx • (2)设函数f(x)、g(x)是可导函数,且 yx '=y u;如果都有,则称函数f(x)在点X o处取得,并把X o称为函数f(x) 的一个.极大值与极小值统称为,极大值点与极小值点统称为.&函数的最值假设函数y= f(x)在闭区间[a, b]上的图象是一条连续不断的曲线,该函数在[a, b]上一定能够取得____________ 与_____________ ,若该函数在(a, b)内是_____________ ,该函数的最值必在极值点或区间端点取得.9•生活中的实际优化问题(1)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中____________ 的取值范围.(2) ________________________________________________________ 实际优化问题中,若只有一个极值点,则极值点就是_________________________________________点.(二)定积分1•曲边梯形的面积(1) 曲边梯形:由直线X = a、X = b(a ≠ b)y = 0和曲线________ 所围成的图形称为曲边梯形.(2) 求曲边梯形面积的方法与步骤:①分割:把区间[a, b]分成许多小区间,进而把曲边梯形拆分为一些 ________________ ;②近似代替:对每个小曲边梯形“___________ ”即用 _________ 的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的 ___________ ;③求和:把以近似代替得到的每个小曲边梯形面积的近似值 _____________;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个________ ,即为曲边梯形的面积.2. 求变速直线运动的路程如果物体做变速直线运动,速度函数为V= v(t),那么也可以采用______________ 、________ 、________ 、_________ 的方法,求出它在a≤t ≤内所作的位移s.3. 定积分的概念如果函数f(x)在区间[a, b]上连续,用分点 a = x0<x1<…<x「ι<χi<∙∙∙ <χn= b将区间[a, b]n等分成n个小区间,在每个小区间[X i-1, X i]上任取一点ξ(i = 1,2,…,n),作和式S n八f( ξ) Δ= ______________ (其中Δx为小区间长度),当n→∞时,上述和式无限接近某个常数,这个b b常数叫做函数f(x)在区间[a, b]上的__________ ,记作.f(χ)dx,即.fXX = _____________________ .a a这里,a与b分别叫做___________ 与________ ,区间[a, b]叫做________,函数f(x)叫做_______ , X 叫做 __________ , f(x)dx 叫做 _________4 •定积分的几何意义b如果在区间[a , b]上函数f(x)连续且恒有 ________________ ,那么定积分 & f (x)dx 表示由 _______________________ ,y = 0和 ______________ 所围成的曲边梯形的面积.5. 定积分的性质b① akf(x)dx = _____________________ (k 为常数);b②a[f 1(x) ±f 2(x)]dx = ------------------- ;6. 微积分(1)微积分基本定理b如果F(X)是区间[a , b]上的 ___________ 函数,并且F '(x) = ___________ ,那么 f(χ)dx =L a(2) 用微积分基本定理求定积分,关键是找到满足F ' (X) = f(x)的函数F(x),即找被积函数的 ________ ,利用求导运算与求原函数运算互为逆运算的关系,运用基本初等函数求导公式和导数的四则运算法则从反方向上求出 F(X).(3) 被积函数的原函数有很多,即若 _____ F(X)是被积函数f(x)的一个,那么F(X)+ C(C 为常数)也是被积函数f(x)的 ____________ .但是在实际运算时,不论如何选择常数C(或b者是忽略C)都没有关系,事实上,以F(X) + C 代替式中的F(X)有 f(χ)dx = [F(b) + C] - [F(a) L a + C] = F(b) — F (a).(4) ___________________________________________ 求定积分的方法主要有:①利用定积分的 ___________________________________________________ :②利用定积分的 ____________ ③利用 ________________ 。

(5) 常用公式b b①.CdX = CXI a (C 为常数);aCOSXdX = Sin x|a ;a b X I- XJ _a_ bFaa dX = l na ∣a (a>0 且 a ≠ 1).练习题:b C③ f (x)dx = f (x)dx +aL a______________ (其中 a<c<b).-P n I1 n +1 b② a x dx = X ∣a (n ≠1);IdX=Inx ∣b (b>a>O); Xbb④ a si nxdx =- COSX|a ; b .⑥ exdx = e x ∣b ;1.若直线y =-x + b 为函数y = X 的图象的切线,求 b 及切点坐标.X22 •曲线y = 3x 2在点(3,6)处的切线与 X 轴、直线 X = 2所围成的三角形的面积为3. 设 y =澀X ,- π<<π 当 y =2时,X = -------------------------------------------------4. 求下列函数的导数. 1 2②y = X(X - I)③y = ^+ 2 +X X5. 已知曲线f(x) = X 3+ ax + b 在点P(2, - 6)处的切线方程是 13x - y - 32= 0. (1)求a , b 的值;一 1 一 ⑵如果曲线y = f(x)的某一切线与直线I : y =- 4X + 3垂直,求切点坐标与切线的方程.① y = X 2si nx④y = X tanx ⑤y = InSin X X⑥y =詰—⑦y = Sin 次1-玄畸]a6. 设函数f(x) = ax ——2ln x. X(1) f ,(2) = 0,求函数f(x)的单调区间;(2) 若f( x)在定义域上是增函数,求实数a的取值范围.3 2 27. 已知f(x) = X + 3ax + bx+ a在X =—1时有极值0,求常数a、b的值._ 3 2 2& 设函数 f(x) = X + ax — a x + m(a>O). (1)求函数f(x)的单调区间;⑵ 若函数f(x)在X ∈ [ —1,1]内没有极值点,求 a 的取值范围;⑶若对任意的a ∈ [3,6],不等式f(x) ≤ 1在X ∈ [ — 2,2]上恒成立,求m 的取值范围.(1)若f(x)在£, +∞ )上存在单调递增区间,求a 的取值范围;⑵当0<a<2时,f(x)在[1,4]上的最小值为一 晋,求f(x)在该区间上的最大值.9 .设 f(x)= — 1 3 3x1 2+ 2x + 2ax.10.某工厂生产某种产品,已知该产品的月产量x(吨)与每吨产品的价格P(元/吨)之间1的关系为P= 24200 —-X2,且生产X吨的成本为R= 50000+ 200x元.问该产品每月生产多5少吨产品才能使利润达到最大?最大利润是多少?(利润=收入一成本).11•计算(9 —X2—x3)dx 的值;πI x(1 + x)dx(3) 2. cos 1 2χdx (4)^613.求直线y = 4x 与曲线y = X 3在第一象限内围成的封闭图形的面积.6题:(1)由已知得x>0 ,故函数f(x)的定义域为(0,+∞ ). ∙.∙ F (X)= a + ^a >— 2 ,.•• f ' (2) = a + a — 1 = 0, — a = 4 X X 4 ' 5'44 2 22Λ f (X)=4+ 542-X =5?4- 5x + 2),1 1令 f ' (x)>0 ,得 0<x<2或 x>2 ,令 f ' (x)<0,得 2<χ<2,1 1•••函数f(x)的单调递增区间为(0, 2), (2, +∞ ),单调递减区间为2).12.求下列定积分:2x — X dx(2) 42 IX —X |dx.a 2⑵若f(x)在定义域上是增函数,则f ' (X) ≥0对x>0恒成立,因为f ' (X)= a + X 2-X2ax — 2x + a 2X 2 ,所以需x>0时ax 3- 2x + a ≥ 0恒成立, X2x即a ≥严对x >0恒成立.因为=Z ≤ 1 ,当且仅当X = 1时取等号,所以a ≥ 1.X + 1 1x + X._27题:因为f (X )在X =- 1时有极值0,且f '(X ) = 3x + 6ax + b .a = 2,或*b = 9当 a = 1, b = 3 时,f ‘ (=3x 2+ 6x + 3= 3(x + 1)2 ≥0 所以f(X)在R 上为增函数,无极值,故舍去; 当 a = 2, b = 9 时,f ' (=)3X 2+ 12X+ 9 = 3(X+ 1)(X+ 3).当X ∈ [ — 3, - 1]时,f(x)为减函数; 当X ∈ [ - 1,+∞时,f(x)为增函数, 所以f(x)在X =- 1时取得极小值.因此a = 2,b = 9.22a8题:(1) V f ' (x ) = 3x + 2ax - a = 3(x --)( x + a ),3又 a >0,.∙∙当 x <-a 或 x >a 时,f ' (x )>0 ;当一a <x <3时,f ' (x )<0.3 3a a•••函数f (x )的单调递增区间为(一∞,- a ) , (-,+∞ ),单调递减区间为(一a , 3). (2) 由题设可知,方程 f ' (X ) = 3x 2+ 2ax - a 2= 0在[—1, 1]上没有实根,If ' ( - 1)<0 ,3 - 2a - a 2<0,• C l. V• • 1,• •2f (1)<0 , 3 + 2a - a <0,V a>0,∙∙∙ a>3.a(3) V a ∈ [3,6] ,∙ 3∈ [1,2] , - a ≤- 3,a a又 X ∈ [ - 2,2] ,•当 x ∈ [ - 2, 3 时,f ' (x )<0 , f (x )单调递减,当 x ∈ (3, 2]时,f (X )单调递增,故f (x )的最大值为f (2)或f ( - 2).2 23即m ≤9— 4a — 2a ,在a ∈ [3,6]上恒成立,所以 f' (- I) = 0 ,即 f ( - 1) = 03-6a + b = 02-1 + 3a - b + a = 0解得a = 1b = 3而f(2) -f( -2) = 16-4a<0, f(x)max = f( - 2) =- 8 + 4a+ 2a + m又V f(x) ≤1在[—2,2]上恒成立,2∙—8+ 4a + 2a + IT≤1,∙∙∙ 9 —4a —2a2的最小值为一87,∙°∙ πr≤ — 87.1 19题:⑴由f ' (X) = —X2+ x+ 2a=—(X —㊁)2+ 4+ 2a,2 2 2 2 1当X ∈[3, +∞)时,f '(x)的最大值为f '(劲=©+ 2a;令9 + 2a>0,得a>—©,所以, 当a> —*时,f(X)在(∣,+∞ )上存在单调递增区间.(2)令f '(X)= 0,得两根1 - J^J I + 8a 1 + 寸1 + 8aX1= 2 , X2=所以f(X)在( 一∞, X1), (X2, + ∞)上单调递减,在(X1, X2)上单调递增.因为0<a<2,所以X1<1<X2<4,所以f(x)在[1,4]上的最大值为f(X2).27又f ⑷—f (1) =—2 + 6a<0 ,所以f(4)< f(1),所以f (X)在[1,4]上的最小值为f(4) = 8a—40=—罟,得a= 1 , X2= 2 ,从而f (x)在[1,4]上的最大值为f(2)=詈10题:每月生产X吨时的利润为f(X) = (24200 —5X2) X —(50000 + 200X) = —15X3+ 24000X —50000 ( X≥0).5 53 2由f ' (X) =—5x2+ 24000= 0,解得X1= 200, X2=—200(舍去).因f (X)在[O ,+∞ )内只有一个点X= 200使f '(X)= 0,故它就是最大值点,且最大1 3值为:f (200) =— 5 × 200 + 24000 × 200 —50000 = 3150000(元)答:每月生产200吨产品时利润达到最大,最大利润为315万元.2∏× 3 9 π2 = 2 ,11题由定积分的几何意义得3A x3d x= 0 ,由定积分性质得:(,9—x2—X I)dx = : . 9—x2d x—:x3d x=乎.13题:(1)如图所示由y=4x,y = X . 解得I X=2,Iy= 8,X =—2, 或IX =—8.1112•••第一象限的交点坐标为(2,8) 由定积分的几何意义得,4X 2)∣ O = 8— 4 = 4. 42 3 2S =Q (4x — x )d x = (2 X。

相关文档
最新文档