13 二极管基本应用电路及其分析方法

合集下载

二极管基本电路及其分析方法

二极管基本电路及其分析方法

e
v D /VT Q

VT ID
iD VT

Q

ID VT
则 rd
1 gd

VT ID
常温下(T=300K)
rd
26 ( mV ) I D ( mA )
2. 模型分析法应用举例
1) 整流电路 2)限幅电路 3)开关电路 4)低电压稳压电路 5)箝位电路 6)其它电路
分析方法:
1)选取参考点; 2)用理想模型、恒压降或折线模型代替二极管; 3)断开理想二极管,求N、P两端的电压。
vd
_ R
+
vO
_
7) 其它电路
+VCC +VCC


vi


-VEE
vo
-VEE
vo
防止共模输入电压过大
防止电源反接
- +
vo
防止差模输入电压过大
2.模型分析法应用举例
(6)小信号工作情况分析
直流通路、交流通路、静态、动态 等概念,在放大电路的分析中非常重要。
图示电路中,VDD = 5V,R = 5k,恒压降模型的VD=0.7V,vs = 0.1sint V。 (1)求输出电压vO的交流量和总量;(2)绘出vO的波形。
t
vo
3 0
t
2)用恒压降模型分析
+
vi – R D
0.7
+
vo –
VREF
当vi 3 0.7时,D通,vO 3.7V
当vi 3 0.7时,D止,vO vi
(3)限幅电路 电路如图,R = 1kΩ,VREF = 3V,二极管为硅二极管。分别 用理想模型和恒压降模型求解,当vI = 6sint V时,绘出相应的输 出电压vO的波形。

二极管基本电路与分析方法

二极管基本电路与分析方法

二极管基本电路与分析方法二极管是一种最简单的半导体器件,具有只能单向导电的特点。

在电子电路中,二极管通常用于整流、限流、调制和混频等功能。

本文将介绍二极管的基本电路和分析方法。

一、二极管基本电路1.正向偏置电路正向偏置电路是将二极管的P端连接到正电压,N端连接到负电压的电路。

这种电路可以使二极管处于导通状态,实现电流流动。

2.逆向偏置电路逆向偏置电路是将二极管的P端连接到负电压,N端连接到正电压的电路。

这种电路可以使二极管处于截止状态,即不导电。

二、二极管分析方法1.静态分析静态分析是指在稳态条件下分析二极管的工作状态。

在正向偏置电路中,如果二极管被接入电路且正向电压大于二极管的正向压降时,二极管处于导通状态;反之,二极管处于截止状态。

在逆向偏置电路中,无论接入电路与否,二极管都处于截止状态。

2.动态分析动态分析是指在变化条件下分析二极管的工作状态。

例如,当正向电压瞬时增加时,二极管可能处于导通状态。

此时,需要考虑二极管的导通压降和电流变化情况。

三、常见二极管电路1.整流电路整流电路是将交流信号转换为直流信号的电路。

常见的整流电路有半波整流电路和全波整流电路。

半波整流电路只利用了交流信号的一半,而全波整流电路则利用了交流信号的全部。

整流电路中的二极管起到了只允许电流在一个方向上流动的作用。

2.限流电路限流电路是通过限制电流的大小来保护其他元件不受损坏的电路。

常见的限流电路有稳压二极管电路和过载保护电路。

稳压二极管电路利用二极管的电流-电压特性,使得二极管具有稳定的电流输出能力;过载保护电路则通过限制电流大小来保护负载电路。

3.调制电路调制电路是将低频信息信号调制到高频载波信号上的电路。

常见的调制电路有调幅电路和调频电路。

在调制电路中,二极管起到了快速改变电流或电压的作用,实现信号的调制效果。

4.混频电路混频电路是将两个不同频率的信号进行混合,得到新的频率信号的电路。

在混频电路中,二极管可以起到信号选择和调谐的作用,实现频率混合。

二极管及其基本电路

二极管及其基本电路

vD
nV T
指数 关系
D
当加反向电压时: v
vD<0,当|vD|>>|V T |时 e 则 iD IS
常数
nV T
1
4、PN结的反向击穿
二极管处于反向偏置时,在一定的电压范围内,流过 PN结的电流很小,但电压超过某一数值(反向击穿电压)时, 反向电流急剧增加,这种现象就称为PN结的反向击穿。
+4 +4 +4
+4
+3
+4
+4
+4
+4
自 由 电 子 空 穴 对
P型半导体的示意方法
空穴 受 主 离 子
- - -
- - -
- - -
- -

2.N型半导体
在硅(或锗)的晶体中掺入少量的五价元素杂质。(磷、锑)
硅原子
多余电子
+4
+4
+4
磷原子多余的电子易受 热激发而成为自由电子, 使磷原子成为不能移动的 正离子。 磷→施主杂质、N型杂质
正偏时,结电容较大,CJ≈CD 反偏时,结电容较小,CJ≈CB
§1.2 二极管
1.2.1 二极管的结构
PN 结加上管壳和引线,就成为半导体二极管。
(Anode)
1、二极管的电路符号:
2、分类
(Kathode)
按结构分:点接触型,面接触型,平面型。
按用途分:整流二极管,检波二极管,稳压二极管,„„。 按材料分:硅二极管,锗二极管。
(3)PN结的V--I 特性及表达式
i D I S (e
vD
nV T
1)
vD :PN结两端的外加电压

二极管7种应用电路详解

二极管7种应用电路详解

二极管7种应用电路详解
许多初学者对二极管很熟悉,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。

 二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。

 二极管简易直流稳压电路及故障处理
 二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。

 二极管简易稳压电路中主要利用二极管的管压降基本不变特性。

 二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V左右,对锗二极管而言是0.2V左右。

二极管基本电路及其分析方法

二极管基本电路及其分析方法

解:①、假定D1、D2管断开
B1
V A1B V A V B 1 1 5 0 1V 5
V A 2B V A V B 2 1 ( 5 1) 0 2V 5
②、由 VAB2 VAB1 VD
得, D2管优先导通
V A10V D9.3V
D1
B2
D2
-
10V +
A
+
R
+ VO
15V
--
③、重复步骤① V A B 1 V A V B 1 9 .3 0 9 .3 V V D
二极管应用电路--限幅电路
vO vOmax
VIL
VIH
vI
O
vOmin
O
vI
t
限幅电路又称消波电路,是用来 限制输出信号电压范围的电路 。
VIH:上门限电压 VIL:下门限电压
二极管构成的限幅电路—例3
R
+
D1
vI
+
V1
-
-
D2 +
-
V2
vO
+-
当vI>V1+VD, D1导通,D2截止,vo=V1+VD
2、 若 V VD ,则二极管导通,其两端的电压为 V D 若 V VD ,二极管截止,其所在支路开路。
3、当电路中有多个的二极管,则 V 较大者优先导通, 其两端的电压为 V D ,然后再用上述方法判断其余二 极管。
二极管电路分析方法—例1
例1:判断D1、D2的状态,并求VO。已知 VD 0.7V
200k
+ VO
VDD2
25V
-
-
二极管电路分析方法—例2

(完整版)二极管7种应用电路详解

(完整版)二极管7种应用电路详解

二极管7种应用电路详解之一许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。

二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。

9.4.1 二极管简易直流稳压电路及故障处理二极管简易稳压电路主要用于一些局部的直流电压供给电路中,由于电路简单,成本低,所以应用比较广泛。

二极管简易稳压电路中主要利用二极管的管压降基本不变特性。

二极管的管压降特性:二极管导通后其管压降基本不变,对硅二极管而言这一管压降是0.6V 左右,对锗二极管而言是0.2V左右。

如图9-40所示是由普通3只二极管构成的简易直流稳压电路。

电路中的VD1、VD2和VD3是普通二极管,它们串联起来后构成一个简易直流电压稳压电路。

图9-40 3只普通二极管构成的简易直流稳压电路1.电路分析思路说明分析一个从没有见过的电路工作原理是困难的,对基础知识不全面的初学者而言就更加困难了。

关于这一电路的分析思路主要说明如下。

(1)从电路中可以看出3只二极管串联,根据串联电路特性可知,这3只二极管如果导通会同时导通,如果截止会同时截止。

(2)根据二极管是否导通的判断原则分析,在二极管的正极接有比负极高得多的电压,无论是直流还是交流的电压,此时二极管均处于导通状态。

从电路中可以看出,在VD1正极通过电阻R1接电路中的直流工作电压+V,VD3的负极接地,这样在3只串联二极管上加有足够大的正向直流电压。

第一章二极管及其基本电路


PN结方程
iD I S ( e
v D / nVT
1)
PN结的伏安特性 非线性
其中: IS ——反向饱和电流
VT ——温度的电压当量 常温下(T=300K) kT VT 0.026V 26 mV q n —发射系数 vD —PN结两端的外加电压
v D / nVT i I e 近似 正向: D S 估算 反向: i I D S
1 掺杂性:在纯净的半导体中掺入某些杂质,导电能力明显改变。
§1.1 半导体的基本知识
电子器件中,用的最多的半导体材料是硅和锗。
Ge
Si
+4
通过一定的工艺过程,可以将半导体制成晶体。
2
二、本征半导体 本征半导体 — 完全纯净、结构完整的半导体晶体。
半导体的共价键结构
§1.1 半导体的基本知识
+4
⑴PN结加正向电压:P区接正,N区接负
变薄
- - - - - + + + + +

I : 扩散电流 + + + + + - - - - - P区 N区
- - - - - + + + + +

IF
外电场 小 内电场被削弱,多子的扩散加 结 强,形成较大的扩散电流I。 VF
16
内电场
3.PN结的单向导电性
b.恒压降模型
当二极管导通后,认 为其管压降vD=VON。 常取vD硅=VON=0.7V vD锗=VON=0.2V
适用
只有当二极管的电流iD近似 等于或大于1mA时才正确。
恒压降模型
应用较广泛。

二极管的参数与基本应用电路仿真实验总结

二极管的参数与基本应用电路仿真实验总结一、二极管参数介绍二极管是一种电子元件,其特性可以通过一些关键参数来描述。

主要的二极管参数包括:1. 伏安特性:描述二极管在正向和反向偏置下的电流与电压之间的关系。

2. 正向电压:二极管正向导通时的电压降。

3. 反向电流:二极管在反向偏置下的漏电流。

4. 反向击穿电压:二极管在反向偏置下开始发生击穿的电压。

5. 结电容:二极管内部两个半导体结之间的电容。

二、二极管基本电路二极管在电路中的应用非常广泛,主要包括以下几种基本电路:1. 整流电路:利用二极管的单向导电性将交流电转换为直流电。

2. 限幅电路:利用二极管的反向击穿特性限制电路中的电压或电流。

3. 开关电路:利用二极管的开关特性实现电路的通断控制。

4. 稳压电路:利用二极管和电容等元件构成稳压电路,为负载提供稳定的电压。

三、仿真实验设计与操作为了更好地理解和应用二极管,我们进行了仿真实验的设计和操作。

实验中,我们使用了Multisim等仿真软件,搭建了各种二极管应用电路,并观察了在不同参数和条件下的电路性能。

四、实验结果分析与讨论通过仿真实验,我们得到了以下结果:1. 在整流电路中,二极管的伏安特性决定了整流效果,正向电压和反向电流对整流效率有重要影响。

2. 在限幅电路中,二极管的反向击穿电压决定了限幅效果,结电容对限幅性能也有一定影响。

3. 在开关电路中,二极管的开关特性决定了电路的通断时间,正向电压和反向电流对开关速度有影响。

4. 在稳压电路中,二极管和其他元件的配合决定了稳压效果,正向电压、反向电流和结电容都对稳压性能有影响。

讨论:通过仿真实验结果,我们可以更深入地理解二极管的特性和其在各种电路中的应用。

同时,这些结果也为我们提供了改进电路设计和优化的方向。

五、结论与展望结论:通过本次仿真实验,我们深入了解了二极管的参数和基本应用电路的工作原理。

实验结果表明,二极管的参数对电路性能有重要影响,我们需要根据具体应用需求选择合适的二极管并优化电路设计。

二极管的七种应用电路及详解及开关电源详解

二极管是用半导体材料 (硅、硒、锗等)制成的一种电子器件。

它具有单向导电性能,即给二极管阳极和阴极加上正向电压时,二极管导通。

当给阳极和阴极加上反向电压时,二极管截止。

因此,二极管的导通和截止,则相当于开关的接通与断开。

二极管是最早诞生的半导体器件之一,其应用非常广泛。

特别是在各种电子电路中,利用二极管和电阻、电感、电容等元器件进行合理的连接,构成不同功能的电路,可以实现对交流电整流、对调制信号检波、限幅和嵌位以及对电源电压的稳压等多种功能。

无论是在常见的收音机电路还是在其他的家用电器产品或工业控制电路中,都可以找到二极管的踪迹。

结构组成二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。

采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。

由P区引出的电极称为阳极,N区引出的电极称为阴极。

因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。

二极管的电路符号如图所示。

二极管有两个电极,由P区引出的电极是正极,又叫阳极;由N区引出的电极是负极,又叫阴极。

三角箭头方向表示正向电流的方向,二极管的文字符号用VD表示。

许多初学者对二极管很“熟悉”,提起二极管的特性可以脱口而出它的单向导电特性,说到它在电路中的应用第一反应是整流,对二极管的其他特性和应用了解不多,认识上也认为掌握了二极管的单向导电特性,就能分析二极管参与的各种电路,实际上这样的想法是错误的,而且在某种程度上是害了自己,因为这种定向思维影响了对各种二极管电路工作原理的分析,许多二极管电路无法用单向导电特性来解释其工作原理。

二极管除单向导电特性外,还有许多特性,很多的电路中并不是利用单向导电特性就能分析二极管所构成电路的工作原理,而需要掌握二极管更多的特性才能正确分析这些电路,例如二极管构成的简易直流稳压电路,二极管构成的温度补偿电路等。

【高中物理】优质课件:二极管基本电路及其分析方法


rd
VT ID
26(mV ) ID (mA)

rd
1 gd
VT ID
二极管电路的简化模型分析方法
1.二极管V-I 特性的建模
(4)小信号模型
(a)V-I特性 (b)电路模型
特别注意: ▪ 小信号模型中的微变电阻rd与静态工作点Q有关。 ▪ 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
(a)V-I特性 (b)电路模型
(a)V-I特性 (b)电路模型
二极管电路的简化模型分析方法
1.二极管V-I 特性的建模
(4)小信号模型
iD
1 R
vD
1 R
(VDD
vs
)
vs =0 时, Q点称为静态工作点 ,反映直流时的工作状态。 vs =Vmsint 时(Vm<<VDD), 将Q点附近小范围内的V-I 特性线性化,得到 小信号模型,即以Q点为切点的一条直线。
例 电路如图所示,已知二极管的V-I特性曲线、电源VDD和电 阻R,求二极管两端电压vD和流过二极管的电流iD 。
解即:由iD电 路 R的1 vKDVL方R1 V程DD,是可一得条i斜D 率V为DD-R1/vRD的直线,称为负载线 Q的坐标值(VD,ID)即为所求。Q点称为电路的工作点
二极管电路的简化模型分析方法
1.二极管V-I 特性的建模 将指数模型 iD IS(e分vD段VT线性1) 化,得到二极管特性的
等效模型。 (1)理想模型
(a)V-I特性 (b)代表符号 (c)正向偏置时的电路模型 (析方法
1.二极管V-I 特性的建模
(2)恒压降模型
(3)折线模型
高中物理
二极管基本电路及其分析方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

符号:
2. 恒压降模型
iD
O
uD UD(on)
等效电路
正偏电压 UD(on) 时导通,二极管等效为恒压源 UD(on) 否则截止,二极管等效为开路。
二、模型的选用
例1.3.1 硅二极管电路如图所示,R = 2 k,试用二极管理想模
型和恒压降模型求出 VDD = 2 V 和 VDD = 10 V 时 IO 和 UO 值。
三、理想模型和恒压降模型应用举例
例1.3.2 试求图示硅二极管电路中电流 I1、I2、IO 和输出电压 UO 值
I1
IO
解:假设二极管断开
15 V VDD1
PN I2
VDD2
R RL 1 k
3 k 12V
UO
UP = 15 V
UN

RL RL
R
VDD2
3 12V 9V 31
例1.3.4 下图所示的二极管电路中,设 VDA、VDB 均为理想二极 管,当输入电压 UA、UB 为低电压 0 V 和高电压 5 V 的不同组 合时,求输出电压 UO 的值。
解:
输入电压 理想二极管 输出
UA UB
0V 0V
VDA 正偏 导通
VDB 正偏
导通
电压
0V
0V
0V 5V
正偏 导通
反偏 截止
1.3 二极管基本应用电路 及其分析方法
1.3.1 二极管的理想模型和恒压降模型 1.3.2 图解分析法和小信号模型分析法
1.3.1 二极管的理想模型和恒压降模型
一、理想模型和恒压降模型的建立 1. 理想模型
iD
理想二极管特性:
正偏时导通,uD = 0
O
uD 反偏时截止, iD = 0
U(BR)=
0V
5V
三、理想模型和恒压降模型应用举例
例1.3.4 下图所示的二极管电路中,设 VDA、VDB 均为理想二极 管,当输入电压 UA、UB 为低电压 0 V 和高电压 5 V 的不同组 合时,求输出电压 UO 的值。
解:
输入电压 理想二极管 输出
UA UB
0V 0V
VDA 正偏 导通
VDB 正偏
导通
例1.3.4 下图所示的二极管电路中,设 VDA、VDB 均为理想二极 管,当输入电压 UA、UB 为低电压 0 V 和高电压 5 V 的不同组 合时,求输出电压 UO 的值。
解:
输入电压 理想二极管 输出
UA UB
0V 0V
VDA 正偏 导通
VDB 正偏
导通
电压
0V
0V
0V
三、理想模型和恒压降模型应用举例
当VDD =10 V 时, 采用理想模型分析法得 UO = 10V, IO =5 mA 采用恒压降模型分析法得UO = 9.3V, IO =4.65 mA
二、模型的选用 续
由该例可见: VDD 大时可采用理想模型 VDD 小时应采用恒压降模型
欲得更高计算精度,可采用二极管的折线模型
*自学
rD 称为二极管 的导通电阻
(2)已知u i=10sin t (V),画出u i 和u O的波形。
555...111kkkΩΩΩ
解: (1)分析电路工作情况
+++ uuuiiii
+ +-++VVV0DDDD.17111V
222VVV
_
-+--
VVV0.DD7DD22V22 444VVV
+++ uuuOOOO
当 u i > 2.7V 时,VD1管导通, VD2管截止,u O = 2.7V ;当 4.7V < u i < 2.7V 时, VD1管和
UP N >0.7V,二极管导通, 等效为 0.7 V 的恒压源
三、理想模型和恒压降模型应用举例
例1.3.2 试求图示硅二极管电路中电流 I1、I2、IO 和输出电压 UO 值
I1 0.7V
IO
15 V VDD1
PN
I2Hale Waihona Puke VDD2R 1 k
RL
3 k
UO
12V
解:假设二极管断开
UP = 15 V
---
---
+++ ---
VD2管均截止,u O = u i ;
当 u i < 4.7V 时,VD1管截止,
断 VD开1只二能极在管u,i >分V2析.D71V各时二导极V通管D2;导通条件V:D2管导通,u O = 4.7V。 VD2只能在u i < 4.7V时导通; 当 4.7V < u +i <62V.7-V 时, 两管均截止
I1= IO + I2 = (4.8 + 2.3) mA = 7.1 mA
三、理想模型和恒压降模型应用举例
例1.3.4 下图所示的二极管电路中,设 VDA、VDB 均为理想二极 管,当输入电压 UA、UB 为低电压 0 V 和高电压 5 V 的不同组 合时,求输出电压 UO 的值。
习惯画法
电路
三、理想模型和恒压降模型应用举例
例1.3.5 解续
UN

RL RL
R
VDD2
3 12V 9V 31
UP N >0.7V,二极管导通, 等效为 0.7 V 的恒压源
UO= VDD1 UD(on)= (15 0.7)V = 14.3 V
IO= UO / RL= 14.3 V/ 3 kΩ = 4.8mA
I2 = (UO VDD2) / R = (14.3 12) V/ 1 kΩ = 2.3 mA
5V 5V
实现了与功能
输入电压 UA UB
0V 0V 0V 5V
5V 0V 5V 5V
理想二极管
VDA 正偏 导通 正偏 导通 反偏 截止 正偏 导通
VDB 正偏 导通
反偏 截止 正偏 导通 正偏 导通
输出 电压
0V
0V
0V 5V
例1.3.5 试分析下图所示的硅二极管电路: (1)画出电压传输特性曲线;
电压
0V
5V
0V 5V
正偏 导通
反偏 截止
0V
0V
5V 0V
反偏 正偏
截止 导通 0 V
三、理想模型和恒压降模型应用举例
例1.3.4 下图所示的二极管电路中,设 VDA、VDB 均为理想二极 管,当输入电压 UA、UB 为低电压 0 V 和高电压 5 V 的不同组 合时,求输出电压 UO 的值。
解:
解:
UD(on)
VDD IO R UO
VDD
IO R UO VDD IO R UO
当VDD = 2 V 时 ,采用理想模型分析法得 UO = VDD = 2 V
IO = VDD / R = 2 V/ 2 kΩ = 1 mA 采用恒压U降UO模O 型09分..73VV析法 7得.5%UIOO==UVOD/DR–UU=UOOD1(.o3n)V10=../(372VVk2Ω54=0%.07.6)5Vm=A1.3 V
相关文档
最新文档