苏科版七年级数学下《第11章一元一次不等式》单元测试题包含答案
苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x (mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m 当m=80时,w始终等于8000,取值与a无关.1、读书破万卷,下笔如有神。
七年级数学下册《一元一次不等式》练习题附答案(苏科版)

七年级数学下册《一元一次不等式》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.数学表达式:①﹣5<7;②3y ﹣6>0;③a=6;④x ﹣2x ;⑤a ≠2;⑥7y ﹣6>5y+2中,是不等式的有( )A.2个B.3个C.4个D.5个2.语句“x 的18与x 的和不超过5”可以表示为( )A.18x+x ≤5B.18x+x ≥5 C.≤5 D.18x+x=53.如果a >b ,则下列不等式中不正确的是( )A.a+2>b+2B.a ﹣2>b ﹣2C.﹣2a >﹣2bD.0.5a>0.5b4.下列各数中,不是不等式2﹣3x >5的解的是( )A.﹣2B.﹣3C.﹣1D.1.355.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A.⎩⎨⎧x -1<3x +1<3B.⎩⎨⎧x -1<3x +1>3C.⎩⎨⎧x -1>3x +1>3D.⎩⎨⎧x -1>3x +1<3 6.若不等式组无解,则m 的取值范围是( )A.m >2B.m <2C.m ≥2D.m ≤27.不等式23>7+5x 的正整数解的个数是( )A.1个B.无数个C.3个D.4个8.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h9.某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.60B.70C.80D.9010.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有( )A.2种B.3种C.4种D.5种二、填空题11.如果a >0,b >0,那么ab 0. 12.写出一个解集为x >1的一元一次不等式:_________.13.不等式3x+1>7的解集为_______.14.不等式14x+5>2-x 的负整数解是 .15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选 对 道题,其得分才能不少于80分.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共 张.三、解答题17.解不等式:2(2x -3)<5(x -1).18.解不等式:13(2x-1)-12(3x+4)≤1.19.解不等式组:20.解不等式组:.21.不等式13(x -m)>3-m 的解为x >1,求m 的值.22.定义新运算:对于任意实数a ,b ,都有a ¤b=a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2¤5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)¤3的值;(2)若3¤x 的值小于13,求x 的取值范围,并在如图所示的数轴上表示出来.23.解不等式x 3<1-x -36,并求出它的非负整数解.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知购买较为合算;(2)当x>20时①该客户按方案一购买,需付款元;(用含x的式子表示)②该客户按方案二购买,需付款元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?25.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的3 2倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?参考答案1.C2.A3.C4.C5.B6.D7.C8.B9.C10.A.11.答案为:>. 12.答案为:x ﹣1>013.答案为:x >2.14.答案为:-1,-2.15.答案为:16.16.答案为:3117.解:x >-1;18.解:x ≥﹣4.19.解:解①得x <3解②得x >﹣1所以不等式组的解集为﹣1<x <3.20.解:﹣1<x ≤2.21.解:∵13(x -m)>3-m∴x -m >9-3m解得x>9-2m.又∵不等式13(x-m)>3-m的解为x>1∴9-2m=1解得m=4.22.解:(1)11.(2)x>-1数轴表示如图所示:23.解:去分母,得2x<6-(x-3).去括号,得2x<6-x+3移项,得x+2x<6+3.合并同类项,得3x<9.两边都除以3,得x<3.∴非负整数解为0,1,2.24.解:(1)方案一;(2)(40x+3200);(36x+3600).若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.25.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(32m+5)件则240m+180(32m+5)≤21300,解得:m ≤40 经检验,不等式的解符合题意 ∴32m+5≤32×40+5=65答:最多能购进65件B 品牌运动服.。
最新版初中七年级数学题库 第11章 一元一次不等式单元测试题

第11章一元一次不等式组(满分150分 时间120分钟) 姓名一、选择题(每题3分,共36分)1、已知a >b ,c 为任意实数,则下列不等式中总是成立的是( )A . a +c <b +cB . a -c >b -cC . ac <bcD . ac >bc2、不等式组11x x ≤⎧⎨>-⎩的解集是( ) A . x >-1 B . x ≤1 C . x <-1 D . -1<x ≤13、若不等式00x b x a -<⎧⎨+>⎩的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24、下列说法中,错误..的是( ) A . 不等式2<x 的正整数解中有一个;B . 2-是不等式012<-x 的一个解C . 不等式93>-x 的解集是3->x ;D . 不等式10<x 的整数解有无数个5、在数轴上与原点的距离小于8的点对应的x 满足( )A .x <8B .x >8C .<-8或x >8D .-8<x <86、已知(x +3)2+m y x ++3=0中,y 为负数,则m 的取值范围是( )A .m >9B .m <9C .m >-9D .m <-97、已知24221x y k x y k +=⎧⎨+=+⎩,且-1<x -y <0,则k 的取值范围是 ( )A .-1<k <-12 B .0<k <12 C .0<k <1 D .12<k <1 8、若15233m m +>⎧<⎪⎨-⎪⎩,化简│m +2│-│1-m │+│m │得 ( ) A .m -3 B .m +3 C .3m +1 D .m +19、若不等式组1+240x a x >⎧⎨-⎩≤有解,则a 的取值范围是( ) A .a ≤3 B .a <3 C .a <2 D .a ≤210、某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A .5B .6C .7D .811、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( )A .29人B .30人C .31人D .32人12、某大型超市从生产基地购进一批大樱桃,运输过程中质量损失10%,假设超市不计其他费用,如果超市想要至少获得20%的利润,那么这种水果在进价的基础上至少提高 ( )A . 30% B .33.3% C . 33.4% D .40%二、填空题(每空3分,共45分)13、不等式x 41-≤-8的解集是___________ 14、当a 时,不等式(a —1)x >1的解集是x <11-a 。
初中数学 苏科版七年级下册第11章《一元一次不等式》质检试题(附答案)

苏科版七年级下册第11章《一元一次不等式》质检试题满分120分,检测时间100分钟班级________姓名________成绩________一.选择题(共12小题,满分36分)1.已知x<y,则下列不等式成立的是()A.x﹣2>y﹣2B.4x>4y C.﹣x+2>﹣y+2D.﹣3x<﹣3y 2.不等式1+x≥2﹣3x的解是()A.B.C.D.3.用不等式表示:“a的与b的和为正数”,正确的是()A.a+b>0B.C.a+b≥0D.4.不等式3≥2x﹣1的解集在数轴上表示正确的为()A.B.C.D.5.解集在数轴上表示为如图所示的不等式组是()A.B.C.D.6.若不等式恰有3个整数解,那么a的取值范围是()A.a≤1B.0<a≤1C.0≤a<1D.a>07.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折8.已知不等式组的解集为{x|﹣2<x<3},则(a+b)2019的值为()A.﹣1B.2019C.1D.﹣20199.设m、n是实数,a、b是正整数,若(m+n)a≥(m+n)b,则()A.m+n+a≥m+n+b B.m+n﹣a≤m+n﹣bC.D.10.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米.已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.200x+80(10﹣x)≥1400B.80x+200(10﹣x)≤1400C.200x+80(10﹣x)≥1.4D.80x+200(10﹣x)≤1.411.已知非负数a,b,c满足条件a+b=7,c﹣a=5,设S=a+b+c的最大值为m,最小值为n,则m﹣n的值()A.5B.6C.7D.812.数学著作《算术研究》一书中,对于任意实数,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[﹣2.1]=﹣3,给出如下结论:①[﹣x]=﹣x;②若[x]=n,则x的取值范围是n≤x<n+1;③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.其中正确的结论有()A.①②B.②③C.①③D.③④二.填空题(共6小题,满分24分)13.给出下列表达式:①a(b+c)=ab+ac;②﹣2<0;③x≠5;④2a>b+1;⑤x2﹣2xy+y2;⑥2x﹣3>6,其中不等式的个数是.14.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x (mg)范围为mg.15.满足x<﹣2.1的最大整数是.16.已知x≥2的最小值是a,x≤﹣6的最大值是b,则a+b=.17.不等式3(x+1)≥5x﹣3的正整数解是.18.有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子.三.解答题(共8小题,满分60分)19.(6分)解不等式组请结合题意,完成本题解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(6分)解下列不等式(1)2(x+5)≤3(x﹣5);(2).21.(6分)解不等式组,并在数轴上表示其解集.22.(6分)在一次知识竞赛中,共25道竞赛题,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分者获奖,那么得奖至少应选对几道题.23.(7分)正数a,b,c满足不等式组,试确定a,b,c的大小关系.24.(8分)雅美服装厂有A种布料70m,B种布料52米.现计划用这两种布料生产M、N 两种型号的时装共80套,已知做一套M型号的时装共需A种布料0.6m,B种布料0.9m;做一套N型号的时装需要A种布料1.1m,B种布料0.4m.(1)设生产x套M型号的时装,写出x应满足的不等式组;(2)有哪几种符合题意的生产方案?请你帮助设计出来.25.(9分)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.26.(12分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是:N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,求a ﹣b+c﹣d的值;(4)已知不等式组M:有解,且N:1<x≤3是不等式组的“子集”,则满足条件的有序整数对(m,n)共有多少个?参考答案一.选择题(共12小题)1.C;2.B;3.A;4.B;5.D;6.C;7.B;8.A;9.D;10.A;11.C;12.B;二.填空题(共6小题)13.4;14.15mg≤x≤30;15.﹣3;16.﹣4;17.1,2,3;18.4;三.解答题(共8小题)19.解:(I)解不等式①得,x>2;(II)解不等式②得,x≤4;(III)在数轴上表示为:;(IV)故不等式组的解集为:2<x≤4.故答案为:x>2,x≤4,2<x≤4.20.解:(1)2x+10≤3x﹣15,2x﹣3x≤﹣15﹣10,﹣x≤﹣25,x≥25;(2)3(x+3)<5(2x﹣5)﹣15,3x+9<10x﹣25﹣15,3x﹣10x<﹣25﹣15﹣9,﹣7x<﹣49,x>7.21.解:解不等式①得:x<3,解不等式②得:x≥﹣1,原不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上表示如下:22.解:设应选对x道题根据题意可得:4x﹣2×(25﹣x)≥60解得:x≥18∵x为正整数∴x最小为19,答:至少应选对19道题.23.解:①+c得c<a+b+c<3c,④②+a得,⑤③+b得,⑥由④,⑤得c<a+b+c<a,∴c<,所以c<a.同理,由④,⑥得b<C.所以a,b,c的大小关系为b<c<a.24.解:(1)设生产M型号的时装为x套,y=50x+45(80﹣x)=5x+3600,由题意得;(2)由(1)得:;解得:40≤x≤44.∵x为整数,∴x取40,41,42,43,44.∴有5种方案:方案1:M型号40套,N型号40套;方案2:M型号39套,N型号41套;方案3:M型号38套,N型号42套;方案4:M型号37套,N型号43套;方案5:M型号36套,N型号44套.25.解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,﹣1<x<;(2)根据“同号两数相除,积为正”可得①,②,解①得,x≥3,解②得,x<﹣2,故不等式组的解集为:x≥3或x<﹣2.26.解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4;(4)不等式组M整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,∴满足条件的有序整数对(m,n)无数个.。
苏科版七年级下册数学第11章 一元一次不等式 含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、如果m>n,那么下列结论错误的是( )A.m+2>n+2B.m-2>n-2C.2m>2nD.-2m>-2n2、若,则下列变形正确的是()A. B. C. D.3、不等式组的解集在数轴上表示正确的是()A. B. C. D.4、若关于x的一元一次不等式组有解,则m的取值范围为()A.m>B.m≤C.m>﹣D.m≤﹣5、不等式组的解集在数轴上表示为()A. B. C.D.6、不等式x﹣5>4x﹣1的最大整数解是()A.﹣2B.﹣1C.0D.17、不等式4﹣3x≥2x﹣6的非负整数解有()A.1个B.2个C.3个D.4个8、已知关于的不等式组的解集为,则().A.-3B.3C.6D.-99、不等式在数轴上表示为( )A. B. C.D.10、不等式组的解集在数轴上表示正确的是( )A. B. C.D.11、下列各式中不是一元一次不等式组的是()A. B. C. D.12、若a>b,则下列不等式不成立的是( )A.a-2>b-2B.5-a>5-bC.7a>7bD.13、如果关于的不等式的解为,那么的取值范围是()A. B. C. D.14、不等式组的解是()A.2<x<3B.x>3或x<2C.无解D.x<215、在同一直角坐标系中,正比例函数y=2x的图象与反比例函数y= 的图象没有交点,则实数k的取值范围在数轴上表示为()A. B. C. D.二、填空题(共10题,共计30分)16、不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为________.17、若关于的不等式组只有4个正整数解,则的取值范围为________.18、不等式组的解集为________.19、已知关于x的不等式组无解,则a的取值范围是________.20、如果不等式的正整数解有三个,则m的取值范围________.21、当x________时,代数式2x+5的值不大于零.22、不等式x≥﹣1.5的最小整数解是________23、满足不等式组的整数解是________.24、不等式的最小整数解为________.25、经历了漫长艰难的体训,初三学子即将迎来中考体考,初三某班的家长为孩子们准备了脉动饮料、士力架和葡萄糖口服液.已知脉动饮料、士力架和葡萄糖口服液的单价之和为22元,计划购买脉动饮料、士力架和葡萄糖口服液的数量总共不超过200,其中葡萄糖口服液的单价为10元,计划购买50支.脉动饮料的数量不多于士力架数量的一半,但至少购买30瓶.在做预算时,将脉动饮料和士力架的单价弄反了,结果在实际购买时,总费用比预算多了160元.若脉动饮料、士力架和葡萄糖口服液的单价均为整数,则实际购买脉动饮料、士力架和葡萄糖口服液的总费用最多需要花费________元.三、解答题(共5题,共计25分)26、解不等式组:,并把解集在数轴上表示出来.27、近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A、B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元.(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?28、解不等式组,并把解集在数轴上表示出来.29、解不等式组.30、解不等式组:,并把它的解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、A5、C6、A7、C8、D9、D10、C11、C12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
【完整版】苏科版七年级下册数学第11章 一元一次不等式含答案

苏科版七年级下册数学第11章一元一次不等式含答案一、单选题(共15题,共计45分)1、学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了:22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分,请问小方在前5场比赛中,总分可达到的最大值以及小方在第10场比赛中,得分可达到的最小值分别是()A.85、26B.85、27C.84、29D.84、282、已知x=2是不等式的解,且x=1不是这个不等式的解,则实数a的取值范围是()A.a>1B.a≤2C.1<a≤2D.1≤a≤23、不等式的解集是那么()A. B. C. D.4、不等式组的解集是()A.x>1B.x<2C.1≤x≤2D.1<x<25、不等式2x﹣1<1的解集在数轴上表示正确是()A. B. C. D.6、不等式3(x-1)≤5-x的非负整数解有( )A.1个B.2个C.3个D.4个7、△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4B.4或5C.5或6D.68、小颖准备用21元钱买笔和笔记本。
已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔。
A.1B.2C.3D.49、不等式-2x+1<0的解集是()A.x>﹣2B.x>C.x<﹣2D.x<10、已知不等式的负整数解恰好是-3,-2,-1.那么a满足条件()A. B. C. D.11、如果不等式的解集是,则( )A. B. C. D.12、已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣313、若关于x的不等式组无解,则m的取值范围是()A. B. C. D.14、已知()A.-15B.15C.-D.15、不等式的解是A. B. C. D.二、填空题(共10题,共计30分)16、不等式组的解集是________.17、已知关于x,y的方程组的解满足不等式x+y>3,则a的取值范围是________.18、当x________时,代数式1- 的值不大于代数式的值.19、已知一种卡车每辆至多能载3吨货物,现有50吨黄豆,若要一次运完这批黄豆,至少需要这种卡车________辆20、不等式,解得________,根据不等式的性质________,不等式两边________.21、如果不等式组无解,那么m的取值范围是________.22、不等式的解集是________.23、x与3的和不小于5,用不等式表示为________.24、不等式组的解集为________25、若不等式组有解,则a的取值范围是________.三、解答题(共5题,共计25分)26、解不等式组.27、解不等式组:,并把它的解在数轴上表示出来.28、解不等式组,并将解集在数轴上表示出来,并写出最小整数解29、某钢铁企业为了适应市场竞争的需要,提高生产效率,决定将一部分钢铁生产一线员工调整去从事服务工作,该企业有钢铁生产一线员工1000人,平均每人可创造年产值30万元,根据规划,调整出去的一部分一线员工后,余下的生产一线员工平均每人全年创造年产值可增加30%,调整到服务性工作岗位人员平均每人全年可创造产值24万元,如果要保证员工岗位调整后,现在全年总产值至少增加20%,且钢铁产品的产值不能超过33150万元,怎样安排调整到服务行业的人数?30、求不等式组的解集,并写出它的整数解.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、D5、D6、C7、B8、D9、A10、D11、A12、B13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
苏教版七年级数学下册第11章《一元一次不等式》单元测试卷(含答案)
第11章《一元一次不等式》单元测试卷考试时间:100分钟;满分:100分一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•江州区期中)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣3x+6>﹣3y+6D.﹣2x<﹣2y2.(3分)(2019春•九龙坡区校级期中)下列不等式中,是一元一次不等式的是()A.4x﹣5y<1B.4y+2≤0C.﹣1<2D.x2﹣3>53.(3分)(2019秋•南关区校级期中)不等式组的解集用数轴表示为()A.B.C.D.4.(3分)(2019春•衡阳期中)不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4D.2(x﹣1)﹣x+2>45.(3分)(2019春•如皋市期中)用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.a<﹣76.(3分)(2018春•镇平县期中)不等式﹣3≥2(x﹣3)的非负整数解有()A.4个B.3个C.2个D.1个7.(3分)(2019春•博白县期中)若关于x的不等式3m﹣2x<9的解集是x>3,则实数m 的值为()A.5B.4C.3D.8.(3分)(2019春•庐阳区校级期中)某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折9.(3分)(2019春•蜀山区期中)关于x的不等式组的解集为x<2,那么a的取值范围为()A.a=2B.a>2C.a<2D.a≥210.(3分)(2019春•包河区期中)如果关于x的不等式组的整数解仅有7,8,9,设整数a与整数b的和为M,则M的值的个数为()A.3个B.9个C.7个D.5个二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019春•南关区校级期中)如图,在框中解不等式的步骤中,应用不等式基本性质的是(填序号).解:3x﹣2(4﹣x)>6(1+x)..①3x﹣8+2x>6+6x…②3x﹣2x﹣6x>6+8…③﹣x>14…④x<﹣14…⑤12.(3分)(2019秋•衢州期中)如图,数轴上所表示的x的取值范围为.13.(3分)(2019秋•温州期中)关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是.14.(3分)(2019春•皇姑区校级期中)把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有本.15.(3分)(2019春•杨浦区期中)已知关于x的不等式组无解,则m的取值范围是.16.(3分)(2018秋•雁塔区校级期中)若x为实数,则[x]表示不大于x的最大整数,例如:[1.6]=1,[π]=3,[2.8]=﹣3等[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x≤[x]+1.根据以上所述,则满足[x]=2x﹣1的所有x的和为.三.解答题(共6小题,满分52分)17.(8分)(2019秋•临安区期中)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.18.(8分)(2019春•包河区期中)(1)解不等式<1﹣;(2)解不等式组.19.(8分)(2019春•长春期中)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x﹣120.(8分)(2019春•永春县期中)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求分数形式的不等式:≥0的解集.21.(10分)(2019春•庐阳区校级期中)学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.①请问道具A最多购买多少件?②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?22.(10分)(2019春•晋安区期中)品牌甲乙进价(元/件)4580售价(元/件)75120某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如表:根据上述信息,该店决定用不少于6198元,但不超过6296元的资金购进这两种T恤共100件请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2019春•江州区期中)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣3x+6>﹣3y+6D.﹣2x<﹣2y【分析】根据不等式的性质,逐项判断即可.【答案】解:∵x>y,∴x﹣6>y﹣6,∴选项A不符合题意;∵x>y,∴3x>3y,∴选项B不符合题意;∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,∴选项C符合题意;∵x>y,∴﹣2x<﹣2y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2.(3分)(2019春•九龙坡区校级期中)下列不等式中,是一元一次不等式的是()A.4x﹣5y<1B.4y+2≤0C.﹣1<2D.x2﹣3>5【分析】根据一元一次不等式的定义逐个判断即可.【答案】解:A、不是一元一次不等式,故本选项不符合题意;B、是一元一次不等式,故本选项符合题意;C、不是一元一次不等式,故本选项不符合题意;D、不是一元一次不等式,故本选项不符合题意;故选:B.【点睛】本题考查了一元一次不等式的定义,能熟记一元一次不等式的定义的内容是解此题的关键.3.(3分)(2019秋•南关区校级期中)不等式组的解集用数轴表示为()A.B.C.D.【分析】先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【答案】解:不等式组可化为:,在数轴上可表示为:故选:A.【点睛】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)(2019春•衡阳期中)不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4D.2(x﹣1)﹣x+2>4【分析】根据不等式性质2,两边都乘以分母最小公倍数4可得.【答案】解:不等式两边都乘以分母的最小公倍数4,得:2(x﹣1)﹣(x﹣2)>4,即:2(x﹣1)﹣x+2>4,故选:D.【点睛】本题主要考查不等式的基本性质2,去分母时要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.(3分)(2019春•如皋市期中)用不等式表示“a的一半不小于﹣7”,正确的是()A.a≥﹣7B.a≤﹣7C.a>﹣7D.a<﹣7【分析】抓住题干中的“不小于﹣7”,是指“大于”或“等于﹣7”,由此即可解决问题.【答案】解:根据题干“a的一半”可以列式为:a;“不小于﹣7”是指“大于等于﹣7”;那么用不等号连接起来是:a≥﹣7.故选:A.【点睛】此题考查了由实际问题抽象一元一次不等式的知识,属于基础题,理解“不小于”的含义是解答本题的关键.6.(3分)(2018春•镇平县期中)不等式﹣3≥2(x﹣3)的非负整数解有()A.4个B.3个C.2个D.1个【分析】先求出不等式的解集,在取值范围内可以找到非负整数解.【答案】解:x+3﹣6≥4(x﹣3),x+3﹣6≥4x﹣12,x﹣4x≥﹣12﹣3+6,﹣3x≥﹣9,x≤3,则不等式的非负整数解有0、1、2、3这4个数,故选:A.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.7.(3分)(2019春•博白县期中)若关于x的不等式3m﹣2x<9的解集是x>3,则实数m 的值为()A.5B.4C.3D.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【答案】解:解3m﹣2x<9,得x>.由不等式的解集,得=3.解得m=5.故选:A.【点睛】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.8.(3分)(2019春•庐阳区校级期中)某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于10%,列不等式求解.【答案】解:设打了x折,由题意得,1100×0.1x﹣700≥700×10%,解得:x≥7.即至多打7折.故选:B.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于10%,列不等式求解.9.(3分)(2019春•蜀山区期中)关于x的不等式组的解集为x<2,那么a的取值范围为()A.a=2B.a>2C.a<2D.a≥2【分析】先解不等式3x﹣2>4(x﹣1)得到x<2,再根据x<2,由不等式组解集的规律即可得解.【答案】解:解不等式3x﹣2>4(x﹣1)得到x<2,∵关于x的不等式组的解集为x<2,∴a≥2.故选:D.【点睛】考查了解一元一次不等式组,关键是熟悉不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.10.(3分)(2019春•包河区期中)如果关于x的不等式组的整数解仅有7,8,9,设整数a与整数b的和为M,则M的值的个数为()A.3个B.9个C.7个D.5个【分析】先求出不等式组的解集,再得出关于a、b的不等式组,求出a、b的值,即可得出选项.【答案】解:解不等式①得:x>,解不等式②得:x≤,∴不等式组的解集为<x≤,∵关于x的不等式组的整数解仅有7,8,9,∴6≤<7,9≤<10,解得:15≤a<17.5,21≤b<23,∴a=15或16或17,b=21或22或23,设整数a与整数b的和为M,则M的值有15+21=36,15+22=37,15+23=38,16+21=37,16+22=38,16+23=39,17+21=38,17+22=39,17+23=40共5个,故选:D.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能求出a、b的值,难度适中.二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2019春•南关区校级期中)如图,在框中解不等式的步骤中,应用不等式基本性质的是①③⑤(填序号).解:3x﹣2(4﹣x)>6(1+x)..①3x﹣8+2x>6+6x…②3x﹣2x﹣6x>6+8…③﹣x>14…④x<﹣14…⑤【分析】根据不等式的基本性质逐一判断即可得.【答案】解:在框中解不等式的步骤中,应用不等式基本性质的是①、③、⑤,故答案为:①③⑤.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.(3分)(2019秋•衢州期中)如图,数轴上所表示的x的取值范围为﹣1<x≤3.【分析】根据数轴上表示的不等式的解集即可得结论.【答案】解:观察数轴可知:x>﹣1,且x≤3,所以x的取值范围为﹣1<x≤3.故答案为﹣1<x≤3.【点睛】本题考查了在数轴上表示不等式的解集,解决本题的关键是大于小的小于大的中间找.13.(3分)(2019秋•温州期中)关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是m>﹣2.【分析】求出方程的解,根据方程的解是正数得出4+2m>0,求出即可.【答案】解:2x﹣2m=x+4,∴x=4+2m,∵方程的解是正数,∴4+2m>0,∴m>﹣2.即m的取值范围是m>﹣2.【点睛】本题考查了解一元一次不等式和一元一次方程的应用,关键是求出方程的解进而得出不等式.14.(3分)(2019春•皇姑区校级期中)把一批书分给小朋友,每人5本,则余9本;每人7本,则最后一个小朋友得到书且不足4本,这批书有44本.【分析】设共有x个小朋友,则共有(5x+9)本书,根据最后一个小朋友得到书且不足4本,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出结论.【答案】解:设共有x个小朋友,则共有(5x+9)本书,依题意,得:,解得:6<x<8.∵x为正整数,∴x=7,∴5x+9=44.故答案为:44.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.15.(3分)(2019春•杨浦区期中)已知关于x的不等式组无解,则m的取值范围是m≤3.【分析】先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x的解集,将得到一个新的关于m不等式,解答即可.【答案】解:由不等式组可得,因为不等式组无解,根据大大小小找不到的原则可知m≤3.故答案为m≤3.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.(3分)(2018秋•雁塔区校级期中)若x为实数,则[x]表示不大于x的最大整数,例如:[1.6]=1,[π]=3,[2.8]=﹣3等[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x≤[x]+1.根据以上所述,则满足[x]=2x﹣1的所有x的和为 1.5.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【答案】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,∴0.5+1=1.5故答案为:1.5.【点睛】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三.解答题(共6小题,满分52分)17.(8分)(2019秋•临安区期中)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x<y,且(a﹣3)x>(a﹣3)y,求a的取值范围.【分析】(1)先在x>y的两边同乘以﹣3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)根据题意,在不等式x<y的两边同时乘以(a﹣3)后不等号改变方向,根据不等式的性质3,得出a﹣3<0,解此不等式即可求解.【答案】解:(1)∵x>y,∴不等式两边同时乘以﹣3得:(不等式的基本性质3)﹣3x<﹣3y,∴不等式两边同时加上5得:5﹣3x<5﹣3y;(2)∵x<y,且(a﹣3)x>(a﹣3)y,∴a﹣3<0,解得a<3.即a的取值范围是a<3.【点睛】主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.(8分)(2019春•包河区期中)(1)解不等式<1﹣;(2)解不等式组.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【答案】解:(1)去分母,得:2(2x﹣1)<6﹣3(2x+1),去括号,得:4x﹣2<6﹣6x﹣3,移项,得:4x+6x<6﹣3+2,合并同类项,得:10x<5,系数化为1,得:x<0.5;(2)解不等式6x+15>8x+6,得:x<4.5,解不等式≥x,得:x≥﹣2,所以原不等式组的解集为﹣2≤x<.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)(2019春•长春期中)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x﹣1【分析】(1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m 的不等式,最后求出m的范围.(2)根据题意得出m=3,代入后解不等式即可求得x的解集.【答案】解:(1)4y+2m+1=2y+5解得y=2﹣m,根据题意得,2﹣m<0,∴m>2,(2)∵m是最小整数∴m=3,当m=3时,则x﹣1解得:x<﹣3.【点睛】本题主要考查解一元一次不等式和一元一次方程的能力,(1)是一个方程与不等式的综合题目.解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.20.(8分)(2019春•永春县期中)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求分数形式的不等式:≥0的解集.【分析】(1)化为两个一元一次不等式组求解即可;(2)根据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可【答案】解:(1)根据“异号两数相乘,积为负”可得:①或②,解不等式组①得无解,解不等式组②得,故原不等式的解集为:.(2)由有理数的除法法则“两数相除,同号得正”且“分母不能为0”,可知①,②,解不等式组①得:x>2;解不等式组②得:,故不等式的解集为x>2或.【点睛】本题考查了一元一次不等式组的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.21.(10分)(2019春•庐阳区校级期中)学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.①请问道具A最多购买多少件?②若其中A道具购买的件数不少于B道具购买件数,该班级共有几种方案?试写出所有方案,并求出最少费用为多少元?【分析】(1)设购买一件A道具需要x元,购买一件B道具需要y元,根据“购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买A道具m件,则购买B道具(60﹣m)件.①根据总价=单价×数量结合购买两种道具的总费用不超过620元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论;②由A道具购买的件数不少于B道具购买件数,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合①的结论及m为整数值即可得出各购买方案,再求出各购买方案所需费用,比较后即可得出最少费用.【答案】解:(1)设购买一件A道具需要x元,购买一件B道具需要y元,依题意,得:,解得:.答:购买一件A道具需要15元,购买一件B道具需要5元.(2)设购买A道具m件,则购买B道具(60﹣m)件.①依题意,得:15m+5(60﹣m)≤620,解得:m≤32.答:A道具最多购买32件.②依题意,得:m≥60﹣m,解得:m≥30,又∵m≤32,且m为整数,∴m=30,31,32.∴该班级共有3种购买方案,方案1:A道具购买30件,B道具购买30件;方案2:A 道具购买31件,B道具购买29件;方案3:A道具购买32件,B道具购买28件.方案1所需费用15×30+5×30=600(元),方案2所需费用15×31+5×29=610(元),方案3所需费用15×32=5×28=620(元).∵600<610<620,∴最少购买费用为600元.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(10分)(2019春•晋安区期中)品牌甲乙进价(元/件)4580售价(元/件)75120某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如表:根据上述信息,该店决定用不少于6198元,但不超过6296元的资金购进这两种T恤共100件请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?【分析】(1)设购进甲种T恤x件,则购进乙种T恤(100﹣x)件,根据总价=单价×数量结合总价不少于6198元且不超过6296元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出各进货方案;(2)设所获得利润为W元,根据总利润=每件的利润×销售数量(购进数量),即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【答案】解:(1)设购进甲种T恤x件,则购进乙种T恤(100﹣x)件.依题意,得:,解得:48≤x≤51.∵x为正整数,∴x=49,50,51.∴有三种进货方案,方案一:购进甲种T恤49件,乙种T恤51件;方案二:购进甲种T恤50件,乙种T恤50件;方案三:购进甲种T恤51件,乙种T恤49件.(2)设所获得利润为W元.依题意,得:W=(75﹣45)x+(120﹣80)(100﹣x)=﹣10x+4000.∵k=﹣10<0,∴W值随x值的增大而减小,∴当x=49时,W取得最大值,最大值=﹣10×49+4000=3510.答:方案一该店购进甲种T恤49件,乙种T恤51件时获利最大,最大利润为3510元.【点睛】本题考查了一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式组;(2)根据各数量之间的关系,找出W 关于x的函数关系式.。
苏科版数学七年级下册第11章一元一次不等式11-4节解一元一次不等式同步练习【含答案】
苏科版数学七年级下册第11章一元一次不等式11-4节解一元一次不等式同步练习一、单选题1.不等式 的解集是( )2x ≤6A. B. C. D. x ≤3x ≥3x <3x >32.若 ,则关于x 的不等式 的解集a <0ax +b <0( )A. B. C. D. x >b a x <b a x >−b a x <−b a 3.如果关于x 的不等式 (a +1) x>a +1的解集为x<1,那么a 的取值范围是( ) A. a>0 B. a<0 C. a>-1 D. a<-14.如图表示的是关于 的不等式 的解集,则 的取值是( ).x 2x −a <−1aA. B. C. D. a ≤−1a ≤−2a =−1a =−25.不等式﹣x+3≥0的正整数解有( )A. 1个B. 2个C. 3个D. 4个6.不等式 的非负整数解有( )4−3x ≥2x −6A. 1个 B. 2个 C. 3个 D. 4个7.解不等式 时,去分母步骤正确的是( )1+x 2≤1+2x 3+1A. B. 1+x ≤1+2x +11+x ≤1+2x +6C. D. 3(1+x)≤2(1+2x)+13(1+x)≤2(1+2x)+68.若关于x ,y 的方程组 的解满足 ,则m 的最小整数解为( ){2x +y =4x +2y =−3m +2x −y >−32A. ﹣3 B. ﹣2 C. ﹣1 D. 09.已知 是关于x 的方程 的解,则关于x 的不等式 x =4kx +b =0(k ≠0,b >0)k(x −3)+2b >0的解集是( )A. B. C. D. x >11x <11x >7x <710.下面解不等式 的过程中,有错误的一步是( )−x +23<2x −15①去分母得: ;②去括号得: ;③移项得:−5(x +2)<3(2x −1)−5x −10<6x −3 ,合并同类项得: ;④未知数的系数化为 得: .−5x −6x <−3+10−11x <71x <−711A. ① B. ② C. ③ D. ④11.关于x 的一元一次不等式+2≤ 的解为( ) 1−x 3x +12A. x≤ B. x≥C. x≤D. x≥ 151511511512.关于 的不等式 ,下列说法正确的是( )x (m +1)x ≥m +1A. 解集为 B. 解集为 C. 解集为 取任何实数 D. 无论 取何值,不等式肯定有解x ≥1x ≤1x m 二、填空题13.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结果是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________°.14.关于 的方程组 的解 与 满足条件 ,则 的最大值x,y {x −y =1+3mx +3y =1+m x y x +y ≤24m +3是________.15.已知:不等式2x-m≤0只有三个正整数解,则化简 +|m-9|=________.(4−m )216.定义新运算:对于任意实数a ,b 都有:a ⊕b=a(a﹣b)+1。
苏科新版 七年级下册数学 第11章 一元一次不等式 单元测试卷(解析版)
2021-2022学年苏科新版七年级下册数学《第11章一元一次不等式》单元测试卷一.选择题(共10小题,满分30分)1.用不等式表示“x的5倍大于﹣7”的数量关系是()A.5x<﹣7B.5x>﹣7C.x>7D.7x<52.下列实数中,不是2x+1≥x的解的是()A.﹣3B.﹣1C.0D.3.53.下列说法不正确的是()A.若a>b,则﹣4a<﹣4b B.若a<b,则ax2<bx2C.若a>b,则1﹣a<1﹣b D.若a>b,则a+x>b+x4.满足x>2021的最小整数是()A.2020B.2021C.2022D.20235.数x不大于3是指()A.x≤3B.x≥3C.x>3D.x<36.下列式子中,一元一次不等式组有()①;②;③;④;⑤.A.1个B.2个C.3个D.4个7.下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0C.>1D.<0 8.要使4x﹣不大于3x+5,则x的最大值是()A.4B.6.5C.7D.不存在9.随着科技的进步,在很多城市都可以通过手机APP实时查看公交车到站情况.小聪同学想乘公交车,他走到A、B两站之间的C处,拿出手机查看了公交车到站情况,发现他与公交车的距离为700m(如图),此时他有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设公交车的速度是小聪速度的6倍,小聪无论选择哪站乘坐都不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.260m C.280m D.300m10.若不等式组恰有3个整数解,则m的取值范围是()A.﹣2≤m<﹣1B.﹣2<m≤﹣1C.﹣2≤m≤﹣1D.﹣2<m<﹣1二.填空题(共10小题,满分30分)11.鱼缸里饲养A、B两种鱼,A种鱼的生长温度x℃的范围是20≤x≤28,B种鱼的生长温度x℃的范围是19≤x≤25,那么鱼缸里的温度x℃应该控制在范围内.12.如果a>b,则﹣ac2﹣bc2(c≠0).13.如图,这是李强同学设计的一个计算机程序,规定从“输入一个x值“到判断“结果是否≥15为一次运行过程,如果程序运行两次就停止,那么x的取值范是.14.某校计划组织师生乘坐如图的大小两种客车去参加一次大型公益活动,每辆大客车的乘客座位数是35个,每辆小客车的乘客座位数是18个,这样租用6辆大客车和5辆小客车恰好全部坐满.由于最后参加活动的人数增加了30人,在保持租用车辆总数不变的情况下,学校决定调整租车方案,以确保乘载全部参加活动的师生,则该校最后参加活动的总人数为人,所租用小客车数量的最大值为辆.15.若关于x的不等式3x+a≤2只有2个正整数解,则a的取值范围为.16.若﹣3x2m+7+2020>2021是一元一次不等式,则m=.17.现规定一种新运算,a※b=2a﹣b,其中a、b为常数.已知关于x的不等式k※x≤3的解集在数轴上表示如图,则k的值为.18.如图,用关于x的不等式表示公共部分是.19.不等式组的解集是.20.编出解集为x≥2的一元一次不等式和一元一次不等式组各一个:一元一次不等式为;一元一次不等式组为.三.解答题(共6小题,满分90分)21.要比较两个数a、b的大小,有时可以通过比较a﹣b与0的大小来解决:如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b.(1)若x=2a2+3b,y=a2+3b﹣1,试比较x、y的大小.(2)若A=2m2+m+4,B=m2﹣3m﹣2,试比较A与B的大小关系.22.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和﹣5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=2,那么x=.(3)若数轴上表示点x的数满足﹣4<x<3,求|x﹣3|+|x+4|的值.23.(1)解不等式:1;(2)解方程组:.24.某商店购进甲、乙两种商品,若购进甲种商品3件和乙种商品4件需270元;若购进甲种商品6件和乙种商品5件需450元.(1)求甲、乙两种商品每件的进价分别为多少元?(2)该商店购进甲、乙两种商品共80件,其中甲种商品以每件70元出售,乙种商品以每件40元出售,甲、乙两种商品全部销售完,该商店所获利润不少于1300元,求至少购进甲种商品多少件?25.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?26.在数轴上有A,B两点,其中点A所对应的数是a,点B所对应的数是1.已知A,B 两点的距离小于3,请你利用数轴.(1)写出a所满足的不等式;(2)数﹣3,0,4所对应的点到点B的距离小于3吗?参考答案与试题解析一.选择题(共10小题,满分30分)1.解:根据题意可得,5x>﹣7.故选:B.2.解:2x+1≥x,解得x≥﹣1,∵﹣3<﹣1,∴﹣3不是2x+1≥x的解,故选:A.3.解:A.若a>b,则﹣4a<﹣4b,此选项不合题意;B.当x=0时,ax2=bx2,此选项符合题意;C.若a>b,则1﹣a<1﹣b,此选项不合题意;D.若a>b,则a+x>b+x,此选项不合题意.故选:B.4.解:∵x>2021,∴最小整数解是2022,故选:C.5.解:数x不大于3是指x≤3;故选:A.6.解:一元一次不等式组有:①;②;共2个;故选:B.7.解:A、是二元一次不等式,不是一元一次不等式,故本选项不符合题意;B、是二元二次不等式,不是一元一次不等式,故本选项不符合题意;C、不等式的左边不是整式,不是一元一次不等式,故本选项不符合题意;D、是一元一次不等式,故本选项符合题意;故选:D.8.解:根据题意得:4x﹣≤3x+5,去分母得:8x﹣3≤6x+10,解得:x≤,则x的最大值为6.5,故选B.9.解:设看手机时小聪到A站的距离为xm,到B站的距离为ym.到A公交站:x≤,解得:x≤100;到B公交站:y≤,解得:y≤140.∴x+y≤100+140=240,即A,B两公交站之间的距离最大为240m.故选:A.10.解:不等式组恰有3个整数解,则整数解是0,﹣1,﹣2.根据题意得:﹣3≤m﹣1<﹣2,解得:﹣2≤m<﹣1.故选A.二.填空题(共10小题,满分30分)11.解:由题意得:,解得:20≤x≤25,故答案为:20≤x≤25.12.解:∵c≠0,∴c2>0.∵a>b,∴﹣a<﹣b.∴﹣ac2<﹣bc2.故答案是:<.13.解:由题意可得,,解得3≤x<7,故答案为:3≤x<7.14.解:该校最后参加活动的总人数为35×6+18×5+30=330(人).设租用小客车x辆,则租用大客车(6+5﹣x)辆,依题意得:18x+35(6+5﹣x)≥330,解得:x≤,又∵x为整数,∴x的最大值为3.故答案为:330;3.15.解:由3x+a≤2可得x≤,∵关于x的不等式3x+a≤2只有2个正整数解,∴2≤<3,解得﹣7<a≤﹣4,故答案为:﹣7<a≤﹣4.16.解:∵﹣3x2m+7+2020>2021是一元一次不等式,∴2m+7=1,∴m=﹣3;故答案为:﹣3.17.解:∵k※x≤3,∴2k﹣x≤3,∴﹣x≤3﹣2k,∴x≥﹣3+2k,从数轴可知:﹣3+2k=﹣1,解得:k=1,故答案为:1.18.解:如上图,用关于x的不等式表示公共部分是:﹣1≤x≤1,故答案为:﹣1≤x≤1.19.解:解不等式2x+5>3,得:x>﹣1,解不等式x﹣2<4x,得:x>﹣,则不等式组的解集为x>﹣,故答案为:x>﹣.20.解:x﹣2≥0;.答案不唯一三.解答题(共6小题,满分90分)21.解:(1)解:由于x﹣y=2a2+3b﹣(a2+3b﹣1)=a2+1>0,即x﹣y>0.所以x>y;(2)∵A=2m2+m+4,B=m2﹣3m﹣2,∴A﹣B=2m2+m+4﹣(m2﹣3m﹣2)=2m2+m+4﹣m2+3m+2=m2+4m+2=m2+4m+4﹣2=(m+2)2﹣2>0,∴A>B.22.解:(1)根据题意知数轴上表示﹣2和﹣5两点之间的距离为﹣2﹣(﹣5)=3,故答案为:3;(2)∵|x﹣1|=2,即在数轴上到表示1和x的点的距离为2,∴x=3或x=﹣1,故答案为:﹣1或3;(3)∵|x﹣3|+|x+4|表示在数轴上表示x的点到﹣4和3的点的距离之和,且x位于﹣4到3之间,∴||x﹣3|+|x+4|=3﹣x+x+4=7.23.解:(1)1,去分母,得2(2x﹣1)﹣3(5x+1)>6,去括号,得4x﹣2﹣15x﹣3>6,移项,得4x﹣15x>6+2+3,合并,得﹣11x>11,系数化为1,得x<﹣1.(2)方程组整理得,①+②得:7x﹣7y=0,解得:x=y③,把③代入①得:x=2,把x=2代入③得,y=2,所以方程组的解是:.24.解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:.答:甲种商品每件的进价为50元,乙种商品每件的进价为30元.(2)设购进甲种商品m件,则购进乙种商品(80﹣m)件,依题意得:(70﹣50)m+(40﹣30)(80﹣m)≥1300,解得:m≥50.答:至少购进甲种商品50件.25.解:(1)设一辆A型运输车一次运土a吨,一辆B型运输车一次运土b吨,由题意可得:,解得,答:一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨;(2)设派出A型号的新型运输车x辆,则B型号的新型运输车(18﹣x)辆,由题意可得:10x+8(18﹣x),解得12.5≤x≤14,∵x为整数,∴x=13或14,∴有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.26.解:(1)根据题意得:|a﹣1|<3,得出﹣2<a<4,(2)由(1)得:到点B的距离小于3的数在﹣2和4之间,∴在﹣3,0,4三个数中,只有0所对应的点到B点的距离小于3.。
2021学年苏科版七年级数学下册《第11章一元一次不等式》经典好题培优训练(附答案)
2021学年苏科版七年级数学下册《第11章一元一次不等式》经典好题培优训练(附答案)1.已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y2.某单位为某中学捐赠了一批新桌椅.学校组织七年级300名学生搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.80B.120C.160D.2003.下列用数轴表示不等式组的解集正确的是()A.B.C.D.4.若不等式x≤m的解都是不等式x≤2的解,则m的取值范围是()A.m≤2B.m≥2C.m<2D.m>25.如果关于x的不等式ax<﹣a的解集为x>﹣1,那么a的取值范围是()A.a<0B.a>0C.a<1D.a>16.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=27.已知关于x的不等式2x﹣m<1﹣x的正整数解是1,2,3,则m的取值范围是()A.3<m≤4B.3≤m<4C.8<m≤11D.8≤m<118.若整数a使关于x的不等式组至少有4个整数解,且使关于x,y的方程组的解为正整数,那么所有满足条件的整数a的值的和是()A.﹣3B.﹣4C.﹣10D.﹣149.若关于x,y的方程组的解满足x>y,则m的取值范围是()A.m<1B.m<2C.m<3D.m<410.已知x<y,则﹣2x﹣3﹣2y﹣3.(填“>”、“<”或“=”)11.甲种蔬菜保鲜的适宜温度(单位:℃)是1≤t≤5,乙种蔬菜保鲜的适宜温度是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t(单位:℃)的范围是.12.若关于x的不等式组有解,则m的取值范围是.13.不等式组的解集为.14.若关于x的不等式组的整数解只有2个,则m的取值范围为.15.关于x的不等式组的解集为﹣1≤x<4,则(a+1)(b﹣1)的值为.16.已知a+b=4,若﹣2≤b≤﹣1,则a的取值范围是.17.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为.18.不等式组的整数解的和是.19.一个多于200人且少于300人的旅行团队准备外出旅游,旅行团队向某汽车运输公司租用可以乘坐30人、乘坐45人的两种客车若干辆,其中大型客车辆数要多于中型客车辆数.按照预定的租车方案,如果大型客车都坐满,中型客车有一辆就会空出少于一半的座位,但是汽车运输公司发过来的车辆,车型与对应的辆数刚好搞反了,这样就有5个人没有座位可坐.这个旅游团一共有个人.20.如果关于x的不等式2x+3m>0恰有3个非正整数解,求m的取值范围.21.一瓶饮料净重360g,瓶上标有“蛋白质含量≥0.5%”,设该瓶饮料中蛋白质的含量为xg,则x g.22.解下列不等式(组)并在数轴上表示:(1)﹣4>﹣;(2).23.解不等式组,并求出它的整数解的和.24.已知关于x,y的二元一次方程组的解是一对正数.(1)求a的取值范围;(2)化简:|a+4|﹣|a|+|2a+3|.25.某超市销售甲、乙两种商品,9月份该超市同时一次购进甲、乙两种商品共100件,购进甲种商品用去300元,购进乙种商品用去1200元.(1)若购进甲、乙两种商品的进价相同,求两种商品的数量分别是多少;(2)由于商品受到市民欢迎,超市10月份决定再次购进甲、乙两种商品共100件,但甲、乙两种商品进价在原基础上分别降20%,涨20%,甲种商品售价20元,乙种商品售价36元,若这次全部售出甲、乙两种商品后获得的总利润不少于1200元,该超市最少购进甲种商品多少件?26.某学校组织175人参加社会实践活动.已知35座的客车租金为每辆320元,55座的客车租金为每辆400元.(1)若学校单独租用这两种车辆,则各需多少元钱?(2)若学校同时和用这两种客车共4辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.27.为实现区域教育均衡发展,某市计划对A、B两类薄弱学校全部进行改造.根据预算,共需资金2000万元.改造一所A类学校和两所B类学校共需资金210万元;改造两所A 类学校和一所B类学校共需资金180万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该市的A类学校不超过8所,则B类学校至少有多少所?(3)市教育局计划今年对该市A、B两类学校共10所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过490万元;地方财政投入的改造资金不少于200万元,其中地方财政投入到A、B两类学校的改造资金分别为每所15万元和25万元.请你通过计算求出有几种改造方案?参考答案1.解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.2.解:设可搬桌椅x套,即桌子x把,椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得2x+≤300,解得x≤120.答:最多可搬桌椅120套.故选:B.3.解:A、不等式组的解集为x≥2,故本选项不合题意;B、不等式组的解集为x<1,故本选项不合题意;C、不等式组的解集为1<x≤2,故本选项符合题意;D、不等式组的解集为1≤x<2,故本选项不合题意;故选:C.4.解:∵不等式x≤m的解都是不等式x≤2的解,∴m≤2.故选:A.5.解:∵不等式ax<﹣a的解集为x>﹣1,∴a<0,故选:A.6.解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.7.解:2x﹣m<1﹣x,移项得2x+x<m+1,系数化为1,得:x<,∵不等式的正整数解为1,2,3,∴3<≤4,解得:8<m≤11.故选:C.8.解:,不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,解方程组,得,∵关于x,y的方程组的解为正整数,∴a﹣2=﹣6或﹣12,解得a=﹣4或a=﹣10,∴所有满足条件的整数a的值的和是﹣14.故选:D.9.解:方程组的解为:,∵关于x,y的方程组的解满足x>y,∴>,解得:m<4.故选:D.10.解:∵x<y,∴﹣2x>﹣2y,∴﹣2x﹣3>﹣2y﹣3.故答案为:>.11.解:根据题意可知解得3≤t≤5.故答案为:3≤t≤5.12.解:不等式组有解,则4<x<m,解得m>4.故答案为:m>4.13.解:,由①得:x>﹣3,由②得:x≤2.故不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤2.14.解:不等式组解得:m<x≤﹣0.5,由不等式组的整数解只有2个,得到整数解为﹣2,﹣1,则m的范围为﹣3≤m<﹣2.故答案为:﹣3≤m<﹣2.15.解:,解①得x≥a,解②得x<3﹣b,因为不等式组的解集为﹣1≤x<4,所以a=﹣1,3﹣b=4,解得a=﹣1,b=﹣1,所以(a+1)(b﹣1)=(﹣1+1)(﹣1﹣1)=0.故答案为:0.16.解:由a+b=4得b=4﹣a,∵﹣2≤b≤﹣1,∴﹣2≤4﹣a≤﹣1,∴5≤a≤6.故答案为:5≤a≤6.17.解:∵不等式ax﹣b>0的解集为x<,∴=,即a=3b且a<0,则b<0∴不等式(a+b)x>a﹣b整理为4bx>2b,∴x<.故答案为:x<.18.解:,解2﹣x≥x﹣2得x≤2,解3x﹣1>﹣4得x>﹣1,故不等式组的解集为﹣1<x≤2,则不等式组的整数解为0,1,2,和为0+1+2=3.故答案为:3.19.解:设原来准备中型客车x辆,大型客车y辆,依题意有30x+45y﹣(45x+30y+5)<30÷2,解得y﹣x<,∵车辆数为整数,并且y>x,∴y﹣x=1,又由题意得200<45x+30y+5<300,∴200<45x+30(x+1)+5<300,解得<x<,∵车辆数为整数,∴x=3,∴y=4,所以一共有45×3+30×4+5=260(人).故这个旅游团一共有260个人.故答案为:260.20.解:2x+3m>0,2x>﹣3m,x>﹣,∵关于x的不等式2x+3m>0恰有3个非正整数解,∴﹣3≤﹣<﹣2,∴<m≤2.故答案为:<m≤2.21.解:由题意可得,x≥360×0.5%=1.8,故答案为:≥1.8.22.解:(1)不等式两边同乘以6得:2(2x﹣1)﹣24>﹣3(x+4),解得:x>2,在数轴上表示为:(2),解不等式①得:x<﹣1,解不等式②得:x>﹣11,∴解集为:﹣11<x<﹣1,在数轴上表示为:23.解:解不等式组得:﹣<x<,则不等式组的整数解为﹣2、﹣1、0、1、2、3,∴整数解的和为﹣2﹣1+0+1+2+3=3.24.解:(1),①+②得2x=2a+8,解得x=a+4,代入①得y=﹣2a﹣3.故方程组的解为:,∵x>0,y>0,∴,解得:﹣4<a<﹣1.5;(2)由(1)得:a+4>0,a<0,2a+3<0,∴原式=a+4﹣(﹣a)+(﹣2a﹣3)=a+4+a﹣2a﹣3=1.25.解:(1)设购进甲种商品x件,由题意得,=,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,则100﹣x=80.答:购进甲种商品20件,乙种商品80件;(2)设超市购进甲种商品y件,由(1)可得:甲、乙商品的进价为300÷20=15(元),由题意得,[20﹣15(1﹣20%)]y+[36﹣15(1+20%)](100﹣y)≥1200,解得y≤60,∵y为整数,∴y的最大整数值为60.答:该超市最多购进甲种商品60件.26.解:(1)∵175÷35=5(辆),∴单独租用35座客车需5辆,租金为320×5=1600(元),∵175÷55=3辆,∴单独租55座客车需4辆,租金为400×4=1600(元).答:学校单独租用这两种车辆,则各需1600元,1600元钱;(2)设租用35座客车x辆,则55座客车(4﹣x)辆,由题意得,35x+55(4﹣x)≥175,解得:x≤2,因为35座客车租金便宜,所以当x取最大整数2时租车最合适,答:租用35座客车2辆,租用55座客车2辆最节省.27.解:(1)设改造一所A类学校所需的资金是a万元,改造一所B类学校所需的资金是b 万元,由题意得:,解得:.答:改造一所A类学校所需的资金是50万元,改造一所B类学校所需的资金是80万元;(2)设该市A类学校有m所,B类学校有n所,由题意得:50m+80n=2000,m=﹣n+40,∵A类学校不超过8所,∴﹣n+40≤8,∴n≥20.答:B类学校至少有20所;(3)设今年改造A类学校x所,则改造B类学校为(10﹣x)所,依题意得:,解得:3≤x≤5,∵x取整数,∴x=3,4,5.答:共有3种方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版七年级数学下《第11章一元一次不等式》单元测试题包含
答案
work Information Technology Company.2020YEAR
第十一章一元一次不等式
一、选择题
1、在数轴上表示不等式≥-2的解集,正确的是()
A B C D
2、下列叙述不正确的是( )
A、若x<0,则x2>x
B、如果a<-1,则a>-a
C、若,则a>0
D、如果b>a>0,则
3、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
4、不等式的正整数解为( )
A.1个
B.3个
C.4个
D.5个
5、不等式组的整数解的和是()
A.1B.2C.0D.-2
6、若为非负数,则x的取值范围是()
A.x≥1 B.x≥-1/2 C.x>1 D.x>-1/2
7、下列各式中是一元一次不等式的是()
A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x≥0
8、若│a│>-a,则a的取值范围是( )
A. a>0
B.a≥0
C.a<0
D.自然数
9、不等式组的解集是( )
10、如果关于x 、y 的方程组
的解是负数,则a 的取值范围是( )
A.-4<a<5
B.a>5
C.a<-4
D.无解 11、若关于x 的不等式组的解集是x>2a,则a 的取值范围是( )
A. a>4
B. a>2
C. a=2
D.a ≥2 12、若方程组中,若未知数x 、y 满足x+y>0,则m 的取值范围是( )
二、填空题
13、不等式21
x >-3的解集是 。
14、用代数式表示,比x 的5倍大1的数不小于x 的与4的差 。
15、若(m-3)x<3-m 解集为x>-1,则m .
16、三角形三边长分别为4,a ,7,则a 的取值范围是 17、若不等式组
的解集为-1<x<1,则a=_______,b=_______.
18、某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局得反扣1分。
在12局比赛中,积分超过15分就可以晋升下一轮比赛,小王进入了下一轮比赛,而且在全部12轮比赛中,没有出现平局,问小王最多输 局比赛
三、计算题
19、解下列不等式(组)
(1)5(x+2)≥1-2(x-1) (2)
(3) ,. (4)
20、关于x的不等式a-2x<-1的解集如图所示.求a.
四、解答题
21、某城市一种出租汽车起步价是10元行驶路程在5km以内都需10元车费),达到或超过5km 后,每增加1km,1.2元(不足1km,加价1.2元;不足1km部分按1km计)。
现在某人乘这种出租车从甲地到乙地,支付17.2元,则从甲地到乙地路程大约是多少?
22、若不等式组的解集为-1<x<1,求(a+1)(b-1)的值。
23、已知多项式a2-5a-7减去多项式a2-11a+9的差等于不等式5-4x<0的最小正整数解,求a的值。
24、一件由黄金与白银制成的首饰重a克,商家称其中黄金含量不低于90%,黄金和白银的密度分别
是19.3和10.5,列出不等式表示这件首饰的体积应满足什么条件.(提示:质量=密度×体积.)
25、某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆0.5元,一般车的保管费是每辆0.3元.
(1)一般车停次的辆次数为x,总的保管费为y元,试写出y与x的关系式;
(2)若估计前来停放的3500辆自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.(8分)
26、某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费(10分)
27、为了保护环境,某企业决定购买10台污水处理设备。
现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
经预算,该企业购买设备的资金不高于105万元.
(1)请你设计该企业有几种购买方案;
(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元(注:企业处理污水的费用包括购买设备的资金和消耗费)
【参考答案】
一、选择题
1.A
2. B
3. C
4. B
5. C
6. B
7. C 8. A 9. D 10. C 11. D 12 A
二、填空题
13、x>-6
14、5x+1≥
15、m<3
16、3<a<11
17. 1;-2
18、2
三、计算题
19. (1)x≥-1 (2)2≤y<8 (3)x>-2
(4).解不等式①得:x>2.5
解不等式②得:x≤4, 所以不等式组的解集2.5<x≤4。
20.
四、解答题
21、解:设从甲地到乙地路程大约是x km,依题意可列:
10+1.2(x-5)≤17.2 解得x≤11
答:从甲地到乙地路程大约是11公里。
22、解:由原不等式组得∵该不等式组的解集为-1<x<1。
23、
24、解:如果其中黄金的含量为90%,则首饰的体积V()为.
如果其中黄金的含量为100%(注意仅仅是如果!),则首饰的体积V()为.
∴<V<.
25、①y=1750-0.2x ②1125元至1330元
26、设走xm需付车费y元,n为增加455m的次数.
∴y=2.8+0.5n,可得n==14
∴2000+455×13<x≤2000+455×14
即7915<x≤8370,又7915<x-300≤8370
∴8215<x≤8670,
故8215<x≤8370,
CB为,且4107.5<≤4185,
=4.63<5,=4.8<5,
∴n=5代入y=2.8+0.5×5=5.3(元)
∴从C到B需支付车费5.3元.
27、解:(1)设购买污水处理设备A型x台,则B型(10-x)台.
由题意知,
∵x取非负整数,∴x可取0、1、2
∴有三种购买方案:购A型0台,B型10台;购A型1台,B型9台;购A型2台,B型8台.
(2)由题意得
当
∴为了节约资金应购A型1台,B型9台。
(3)10年企业自己处理污水的总资金为:
若将污水排到污水厂处理,10年所需费用为:。