塔机附着验算计算书
塔机附着验算计算书

塔机附着验算计算书塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数塔机型号QTZ40(浙江建机)塔身桁架结构类型型钢塔机计算高度H(m) 30 塔身宽度B(m) 1.6 起重臂长度l1(m) 57 平衡臂长度l2(m) 12.9 起重臂与平衡臂截面计算高度h(m) 1.06 工作状态时回转惯性力产生的扭矩标准值T k1(kN·m)60工作状态倾覆力矩标准值M k(kN·m) 60 非工作状态倾覆力矩标准值M k'(kN*m)60附着杆数四杆附着附墙杆类型Ⅰ类附墙杆截面类型格构柱塔身锚固环边长C(m) 1.8附着次数N 4附着点1到塔机的横向距离a1(m) 9.5 点1到塔机的竖向距离b1(m) 9.5 附着点2到塔机的横向距离a2(m) 5.7 点2到塔机的竖向距离b2(m) 5.7 附着点3到塔机的横向距离a3(m) 5.7 点3到塔机的竖向距离b3(m) 5.7 附着点4到塔机的横向距离a4(m) 9.5 点4到塔机的竖向距离b4(m) 9.5 工作状态基本风压ω0(kN/m2) 0.2 非工作状态基本风压ω0'(kN/m2) 1塔身前后片桁架的平均充实率α00.35第N次附着附着点高度h1(m)附着点净高h01(m)风压等效高度变化系数μz工作状态风荷载体型系数μs非工作状态风荷载体型系数μs'工作状态风振系数βz非工作状态风振系数βz'工作状态风压等效均布线荷载标准值q sk非工作状态风压等效均布线荷载标准值q sk'第1次附着9 9 0.65 1.95 1.95 1.977 1.977 0.269 1.347第2次附着15 6 0.734 1.95 1.95 1.901 1.963 0.293 1.51第3次附着20 5 0.738 1.95 1.95 1.825 1.934 0.282 1.496第4次附25 5 0.751 1.95 1.95 1.798 1.944 0.283 1.53 着悬臂端30 5 0.774 1.95 1.95 1.79 1.945 0.29 1.578 Array塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.79×0.774×1.95×0.2×0.35×1.06=0.16kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.16×572-1/2×0.16×12.92=246.607kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(60+246.607)=275.946kN·m3、附着支座反力计算计算简图塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。
塔机附着计算书实例

塔机附着计算书实例 The pony was revised in January 2021H5810塔式起重机非标附着计算书一、设计依据GB/T 13752-92《塔式起重机设计规范》二、设计说明1、本方案仅适用于我公司QTZ80(H5810)塔机在以下附着示意图方式的使用;2、任何力学或几何方式的改变均不再适用于本方案。
三、QTZ80(H5810)塔机附着平面内的最大载荷见下表:(表一)四、附着示意图各附着杆长度(表二)五、附着杆受力及附着点反力工作状态各附着杆最大受力(表三)非工作状态各附着杆最大受力(表四)通过以上分析,选取以下各附着杆的最大受力工况进行校核:工作状态各附着点最大受力(表五)非工作状态各附着点最大受力(表六)通过以上分析,附着点最大反力见下表:(表七)六、附着杆校核附着杆截面示意图以下仅对附着杆1~4进行分析计算;附着杆主肢:∠50×50×5,Q235,截面积A1=480mm2;附着杆缀条:∠30×30×3,Q235,截面积A2=175mm2;附着杆截面边长a1=(mm)附着杆截面边长a2=(mm)附着杆1重量:G1=210(kg)附着杆2重量:G2=175(kg)附着杆3重量:G2=170(kg)附着杆4重量:G2=206(kg)附着杆最大截面主肢X轴总惯性矩:Imax=(mm^4)附着杆最小截面主肢X轴总惯性矩:Imin=(mm^4)主弦单肢弱轴惯性矩:I1=46400(mm^4)缀条弱轴惯性矩:Iz=6100(mm^4)缀条跨距L1=(mm)材料安全系数:k=整体惯性半径:r=(mm)r=mm)主弦单肢惯性半径:1缀条惯性半径:r z =(mm ) r=r1=rz= 根据min maxI I 和附着杆变截面型式确定计算长度系数μ μ= ; 附着杆主肢结构长细比:rL μλ= 附着杆主弦单肢长细比:111r L λ=附着杆缀条长细比:z zλ=附着杆换算长细比:λ=换167.74λ=换;253.02λ=换; 50.31λ=换3;64.96λ=换4附着杆长细比<120,整体刚度满足要求!附着杆主弦单肢长细比≤倍整体长细比,主弦单肢刚度满足要求! 附着杆缀条长细比<120,缀条刚度满足要求!附着杆1~4整体刚度满足要求!附着杆1~4主弦单肢刚度满足要求!附着杆1~4缀条刚度满足要求!查表得附着杆整体受压稳定系数:10.765ψ=;20.842ψ=; 30.855ψ=;20.780ψ=查表得附着杆主弦单肢受压稳定系数:ψ1=查表得附着杆缀条受压稳定系数:ψz= 附着杆自重产生的弯矩108GL M =(); M1=2083725()M2=()M3=1226975()M4=()附着杆截面远点至弱轴距离h=150(mm ) 附着杆抗弯模量h I W =(mm^3) W=(mm^3)欧拉临界载荷22E EAF πλ=换(N) 1850285.16E F N =;21387770.08E F N =; 31541425.93E F N =;4924732.91E F N =1、附着杆整体稳定性验算:188.55MPa σ=;2139.69MPa σ=; 3141.31MPa σ=;490.29MPa σ= σ<235/=175附着杆1~4整体稳定性满足要求!2、附着杆主弦单肢稳定性验算:d166.80MPa σ=;d2124.88MPa σ=; d3128.95MPa σ=;d470.28MPa σ= σd <235/=175附着杆1~4主弦单肢稳定性满足要求!3、附着杆缀条稳定性校核附着杆侧向力:c F =缀条轴力:z F =18.57Z MPa σ=;213.52Z MPa σ=; 313.68Z MPa σ=;28.74Z MPa σ=σ<235/=175z附着杆1~4缀条满足要求!综述:各附着杆经过校核均满足使用要求!。
塔吊附着计算书

塔吊附着计算书-CAL-FENGHAI.-(YICAI)-Company One1塔吊附着计算书1、附着装置布置方案根据塔机生产厂家提供的标准,附着距离一般为3~5 m,附着点跨距为7~8 m[1,2],塔机附着装置由附着框架和附着杆组成,附着框架多用钢板组焊成箱型结构,附着杆常采用角钢或无缝钢管组焊成格构式桁架结构,受力不大的附着杆也可用型钢或钢管制成。
根据施工现场提供的楼面顶板标高,按照QTZ63 系列5013 型塔式起重机的技术要求,需设4道附着装置,以满足工程建设最大高度100 m 的要求。
附着装置布置方案如图2 所示。
图1塔吊简图与计算简图塔吊基本参数附着类型类型1最大扭矩 kN·m最大倾覆力矩 kN·m附着表面特征槽钢塔吊高度110 m槽钢型号18A塔身宽度1645*1645*2800mm 风荷载设计值(福州地区)附着框宽度 m尺寸参数附着节点数 4 附着点1到塔吊的竖向距离m第I层附着附着高度附着点1到塔吊的横向距离m第8层 m附着点1到附着点2的距离m第16层 m独立起升高度40 m 第24层 m附着起升高度 m 第31层 m图2塔吊附着简图三、第一道附着计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
第一道附着的装置的负荷以第四道附着杆的负荷作为设计或校核附着杆截面计算,第一道附着高度计划在第8层楼层标高为米。
(一)、支座力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载取值:Q = ;塔吊的最大倾覆力矩:M = ;弯矩图变形图剪力图计算结果: N w = ;(二)、附着杆内力计算计算简图:计算单元的平衡方程:其中:第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩合风荷载扭矩。
将上面的方程组求解,其中θ从 0 - 360 循环, 分别取正负两种情况,求得各附着最大的。
塔吊扶墙附着计算书

塔机附着验算计算书一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.695×1.206×1.95×0.2×0.35×1.06=0.237kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.237×572-1/2×0.237×12.92=365.287kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+365.287)=571.758kN·m3、附着支座反力计算计算简图剪力图得:R E=77.975kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
4、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=110.273kN。
计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=53.241°α2=arctan(b2/a2)=46.353°α3=arctan(b3/a3)=46.353°α4=arctan(b4/a4)=53.241°β1=arctan((b1-c/2)/(a1+c/2))=46.185°β2=arctan((b2+c/2)/(a2+c/2))=46.185°β3=arctan((b3+c/2)/(a3+c/2))=46.185°β4=arctan((b4-c/2)/(a4+c/2))=46.185°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1=1。
塔吊附着方案(计算书参考版本,不同塔吊是不同的)

一、计算书塔机附着验算(32层)计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数二、风荷载及附着参数第2次附着40 15 0.832 1.95 1.95 1.763 1.801 0.308 0.471 第3次附着55 15 0.922 1.95 1.95 1.755 1.792 0.339 0.52 第4次附着70 15 1.008 1.95 1.95 1.733 1.766 0.366 0.56 第5次附着85 15 1.087 1.95 1.95 1.708 1.746 0.389 0.597 第6次附着100 15 1.16 1.95 1.95 1.699 1.734 0.413 0.633 悬臂端121 21 1.254 1.95 1.95 1.686 1.728 0.443 0.681 附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.686×1.254×1.95×0.2×0.35×1.06=0.245kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.245×562-1/2×0.245×12.92=363.775kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(269.3+363.775)=569.768kN·m3、附着支座反力计算计算简图剪力图得:R E=146.645kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
塔吊附着计算书

塔吊附着计算书1、附着装置布置方案根据塔机生产厂家提供的标准,附着距离一般为3~5 m,附着点跨距为7~8 m[1,2],塔机附着装置由附着框架和附着杆组成,附着框架多用钢板组焊成箱型结构,附着杆常采用角钢或无缝钢管组焊成格构式桁架结构,受力不大的附着杆也可用型钢或钢管制成。
根据施工现场提供的楼面顶板标高,按照QTZ63 系列5013 型塔式起重机的技术要求,需设4道附着装置,以满足工程建设最大高度100 m 的要求。
附着装置布置方案如图2 所示。
图1塔吊简图与计算简图塔吊基本参数附着类型类型1 最大扭矩270.00 kN·m最大倾覆力矩1350。
00 kN·m 附着表面特征槽钢塔吊高度110 m 槽钢型号18A塔身宽度1645*1645*2800 mm风荷载设计值(福州地区)0。
41附着框宽度3。
00 m 尺寸参数附着节点数 4 附着点1到塔吊的竖向距离3。
00 m第I层附着附着高度附着点1到塔吊的横向距离 3.00 m第8层23。
45 m 附着点1到附着点2的距离9。
00 m第16层46.65 m 独立起升高度40 m第24层70。
85 m 附着起升高度151。
2 m第31层95。
95 m图2塔吊附着简图三、第一道附着计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据.第一道附着的装置的负荷以第四道附着杆的负荷作为设计或校核附着杆截面计算,第一道附着高度计划在第8层楼层标高为23.45米。
(一)、支座力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载取值:Q = 0。
41kN;塔吊的最大倾覆力矩:M = 1668.00kN;弯矩图变形图剪力图计算结果: N w = 105。
3733kN ;(二)、附着杆内力计算计算简图:计算单元的平衡方程:其中:2.1 第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩合风荷载扭矩。
塔吊附着计算书
风压等效高 工作状态风 非工作状态
附着点高度 附着点净高
工作状态风 非工作状态 压等效均布 风压等效均
第N次附着 h1(m)
h01(m)
度变化系数 荷载体型系 风荷载体型
μz
数μs
系数μs'
振系数βz
风振系数βz' 线荷载标准 布线荷载标
Байду номын сангаас
值qsk
准值qsk'
第1次附着 22.15
22.15
0.734
2、扭矩组合标准值Tk 由风荷载产生的扭矩标准值Tk2 Tk2=1/2qkl12-1/2qkl22=1/2×0.164×562-1/2×0.164×11.52=246.308kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9) Tk=0.9(Tk1+ Tk2)=0.9×(35+246.308)=253.177kN·m
附墙杆3长细比: λ3=L0/i=(a32+b32)0.5/i=(22052+37372)0.5/44.9=96.638≤[λ]=150,查规范表得: φ3=0.577 满足要求!
附墙杆1轴心受压稳定系数:
σ1=N1/(φ1A)=249608/(0.546×3364.25)=135.887N/mm2≤[f]=205N/mm2 满足要求! 附墙杆2轴心受压稳定系数: σ2=N2/(φ2A)=187217/(0.415×3364.25)=134.094N/mm2≤[f]=205N/mm2 满足要求! 附墙杆3轴心受压稳定系数: σ3=N3/(φ3A)=133727/(0.577×3364.25)=68.89N/mm2≤[f]=205N/mm2 满足要求!
1.76
塔式起重机附着计算书
世纪星城12#楼塔式起重机附着计算书建设单位:陕西三雄房地产开发有限公司施工单位:陕西晟泰建筑机械有限公司使用单位:陕西晟方建设工程有限公司设备型号:QTZ80塔式起重机生产厂家:浙江德清华杨科技有限公司设备代码:4310 10B98 2011 0215出厂日期:2011年9月检验日期:3013年8月30日验算人:工程概况世纪星城12#楼位于小区中央,建筑面积14385.79㎡,地下2层,地上18层,剪力墙结构,建筑高度54.45m。
本工程安装一台浙江德清华杨科技有限公司生产的,附着式QTZ80塔式起重机(安装位置—图1)。
附着计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
一、主要参数塔吊型号: QTZ80 塔吊最大起重力矩:M =800kN.m非工作状态下塔身弯矩:M =-200kN.m 塔吊高度:H =70m塔身宽度:B =2.2m 附着框宽度:3m最大扭矩:0kN.m 风荷载设计值:0.84kN/m2附着节点数:3 各层附着高度分别(m):25.2;39.2;53.2 附着杆选用:Φ100,壁厚15钢管附着点1到塔吊的竖向距离:b1=9m附着点1到塔吊的横向距离:a1=2.5m 附着点1到附着点2的距离:a2=3.5m附着点1到附着点3的距离:a3=7.0m 附着点3到塔基的高度:h1=53.2m附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:1、风荷载计算风荷载标准值应按照以下公式计算W k=W O×U Z×U S×βZ其中W0——风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:W0=0.45kN/m2Uz——风荷载高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:Uz=2.380U S——风荷载体型系数:U S=2.400βZ——风振系数,依据《建筑结构荷载规范》结构在Z高度处的风振系数按公式7.4.2条规定计算得βz=0.70风荷载标准值验算:W k=W O×U Z×U S×βZ=0.45×2.38×2.4×0.7=1.799 kN/m2风荷载的水平作用力计算:Nw=Wk×B×Ks其中Wk——风荷载水平压力,Wk=1.799kN/m2B——塔吊作用宽度,B=2.0mKs——迎风面积折减系数,Ks=0.20Nw=Wk×B×Ks=1.799×2×0.2=0.72 kN/m2结论:世纪星城12#楼塔吊风水平荷载符合《建筑结构荷载规范》(GBJ9)的规定。
TC5013B-6塔机附着架设计计算书
QTZ63塔机附着计算书一、塔机附着架受力情况(按三弯矩方程计算结果):工作工况 :水平力 F h =28.5KN扭矩 Mz=412kN. m非工作工况水平力 F h =107KN扭矩 Mz=0二附着撑杆设计计算整体稳定性校核(计算最长的L撑杆 L2)L1=14130mm、L2=14520mm 、L3=14760mm计算条件:撑杆力: Fmax=189KN撑杆材料:角钢∠ 70×5/Q235B [ λ]=138撑杆力学模型如图1.刚度验算:初选角钢∠ 70× 5/Q235B,四肢构成的截面为 L× L=300mm×300mm 撑杆截面惯性矩I=1.31 × 10 mm84截面回转半径: i= (I/A )1/2 =150.8mm则长细比为:λ =Lo/i=89.5缀条采用∠ 50× 5/Q235B则折算长细比为:λ0=(λ2+40A/A’)1/2 =100.1 < [ λ ]2. 截面验算:四角钢格构式柱属 b 类截面,差表得稳定系数φ=0.555由撑杆重量引起的最大弯矩为:2Mmax=qIo/8=20010538 N.mσ=Fmax/Aφ +k Mmax/W=128.24MPa[ σ]=175.37 MPaσ<[ σ] 整体强度稳定满足。
用同样的方法计算受力最大撑杆 Bσ= Fmax/Aφ+k Mmax/W=103.39MPaσ<[ σ]整体强度稳定满足。
3.单肢稳定性校核:计算长度: I =700mm1回转半径: i 1=14.9mm单肢许用长细比 [ λ1]=120单肢计算长细比:λ1=I o1/i1=47<[λ1]按 b 类截面差表得稳定系数为:φ1=0.87撑杆 B 单肢所受的折算力为: N=Fmax/4+Mmax/(2d)=72394N撑杆 D 单肢所受的折算力为:N=Fmax/4+Mmax/(2d)=75151N应力:σ =N/φ1 A1 =98.19MPa[ σ]=235/1.34=175.37MPaσ<[ σ] 单肢稳定满足。
附着计算书
塔吊附着计算塔机安装位置至建筑物距离超过使用说明规定,需要增长附着杆或附着杆与建筑物连接的两支座间距改变时,需要进行附着的计算。
主要包括附着杆计算、附着支座计算和锚固环计算。
一. 参数信息二. 支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:1. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×1.59×1.95×1.39×0.2=0.69kN/m2q sk=1.2×0.69×0.35×1.8=0.52kN/m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)W k=0.8×1.62×1.95×1.39×0.30=1.05kN/m2q sk=1.2×1.05×0.35×1.80=0.80kN/m2. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-356.86+843.7=486.84kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-356.86kN.m3. 力 Nw 计算工作状态下: N w=148.039kN非工作状态下: N w=97.012kN三. 附着杆内力计算计算简图:计算单元的平衡方程为:其中:四. 第一种工况的计算塔机工作状态下,Nw=148.04kN, 风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中θ从0-360循环,分别取正负两种情况,分别求得各附着最大的轴压力和轴拉力:杆1的最大轴向压力为:329.45 kN杆2的最大轴向压力为:242.26 kN杆3的最大轴向压力为:218.93 kN杆1的最大轴向拉力为:329.45 kN杆2的最大轴向拉力为:242.26 kN杆3的最大轴向拉力为:218.93 kN五. 第二种工况的计算塔机非工作状态,Nw=97.01kN, 风向顺着起重臂,不考虑扭矩的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔机附着验算计算书计算依据:
1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009
2、《钢结构设计规范》GB50017-2003
一、塔机附着杆参数
塔机附着立面图
三、工作状态下附墙杆内力计算
1、在平衡臂、起重臂高度处的风荷载标准值q k
q k=0.8βzμzμsω0α0h=0.8×1.68×1.291×1.95×0.2×0.35×1.06=0.251kN/m 2、扭矩组合标准值T k
由风荷载产生的扭矩标准值T k2
T k2=1/2q k l12-1/2q k l22=1/2×0.251×562-1/2×0.251×12.92=372.684kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)
T k=0.9(T k1+ T k2)=0.9×(276.9+372.684)=584.626kN·m
3、附着支座反力计算
计算简图
塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。
剪力图
得:R E=120.106kN
在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
4、附墙杆内力计算
支座7处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座7处的附墙杆承担),水平内力N w=20.5R E=169.856kN。
计算简图:
塔机附着示意图
塔机附着平面图
α1=arctan(b1/a1)=79.765°
α2=arctan(b2/a2)=75.12°
α3=arctan(b3/a3)=69.753°
β1=arctan((b1+c/2)/(a1+c/2))=74.805°
β2=arctan((b2+c/2)/(a2-c/2))=87.728°
β3=arctan((b3+c/2)/(a3+c/2))=65.772°
各杆件轴力计算:
ΣM O=0
T1×sin(α1-β1)×(b1+c/2)/sinβ1+T2×sin(α2-β2)×(b2+c/2)/sinβ2-T3×sin(α3-β3)×(b3+c/2)/sinβ3-T k=0
ΣM h=0
-T2×sinα2×c-T3×sinα3×c+N w×cosθ×c/2-N w×sinθ×c/2-T k=0
ΣM g=0
T1×sinα1×c+N w×sinθ×c/2+N w×cosθ×c/2-T k=0
(1)θ由0~360°循环,当T k按图上方向设置时求解各杆最大轴拉力和轴压力:最大轴压力T1=452.184kN,T2=0kN,T3=260.043kN
最大轴拉力T1=0kN,T2=495.56kN,T3=347.043kN
(2)θ由0~360°循环,当T k按图上反方向设置时求解各杆最大轴拉力和轴压力:最大轴压力T1=0kN,T2=495.561kN,T3=347.042kN
最大轴拉力T1=452.184kN,T2=0kN,T3=260.044kN
四、非工作状态下附墙杆内力计算
此工况下塔机回转机构的制动器完全松开,起重臂能随风转动,故不计风荷载产生的扭转力矩。
1、附着支座反力计算
计算简图
剪力图
得:R E=149.647kN
2、附墙杆内力计算
支座7处锚固环的水平内力N w=R E=149.647kN。
根据工作状态方程组Tk=0,θ由0~360°循环,求解各杆最大轴拉力和轴压力:最大轴压力T1=107.549kN,T2=177.785kN,T3=267.429kN
最大轴拉力T1=107.549kN,T2=177.784kN,T3=267.429kN
五、附墙杆强度验算
σ=N/A=495561/7803.716=63.503N/mm2≤[f]=205N/mm2
满足要求!
2、杆件轴心受压强度验算
附墙杆1长细比:
λ1=L0/i=(a12+b12)0.5/i=(13002+72002)0.5/73.308=99.804≤[λ]=100,查规范表得:φ1=0.55 6
满足要求!
附墙杆2长细比:
λ2=L0/i=(a22+b22)0.5/i=(11002+41402)0.5/73.308=58.434≤[λ]=100,查规范表得:φ2=0.81 5
满足要求!
附墙杆3长细比:
λ3=L0/i=(a32+b32)0.5/i=(22502+61002)0.5/73.308=88.691≤[λ]=100,查规范表得:φ3=0.63 满足要求!
附墙杆1轴心受压稳定系数:
σ1=N1/(φ1A)=452184/(0.556×7803.716)=104.217N/mm2≤[f]=205N/mm2
满足要求!
附墙杆2轴心受压稳定系数:
σ2=N2/(φ2A)=495560/(0.815×7803.716)=77.918N/mm2≤[f]=205N/mm2
满足要求!
附墙杆3轴心受压稳定系数:
σ3=N3/(φ3A)=347043/(0.63×7803.716)=70.59N/mm2≤[f]=205N/mm2
满足要求!
六、附着杆与结构连接节点验算
假设每个螺栓承受附着杆传来的拉力和剪力均相等,各附着点所受荷载如下:
F1=N1sinα1=452.184×sin79.765°=444.989kN,V1=N1cosα1=452.184×cos79.765°=80.345 kN;
F2=N2sinα2=495.56×sin75.12°=478.942kN,V2=N2cosα2=495.56×cos75.12°=127.255kN;
F3=N3sinα3=347.043×sin69.753°=325.6kN,V3=N3cosα3=347.043×cos69.753°=120.098k N;
单个高强螺栓抗剪承载力设计值N v b=n vπd2e f v b/4=1×3.142×19.652×250/(4×1000)=75.8 15kN
每个高强螺栓受拉承载力设计值N t b=πd2e f t b/4=3.142×19.652×400/(4×1000)=121.304k N
附着杆1:
N V= V1/n=80.345/6=13.391kN
N t= F1/n=444.989/6=74.165kN
承压承载力设计值N c b=d×d t×f c b/1000=22×10×590/1000=129.8kN
[(N V/N v b)2+(N t/N t b)2]0.5=[(13.391/75.815)2+(74.165/121.304)2]0.5=0.636≤1
N V=13.391kN≤N c b/1.2=129.8/1.2=108.167kN
承压承载力满足要求。
附着杆2:
N V= V2/n=127.255/6=21.209kN
N t= F2/n=478.942/6=79.824kN
承压承载力设计值N c b=d×d t×f c b/1000=22×10×590/1000=129.8kN
[(N V/N v b)2+(N t/N t b)2]0.5=[(21.209/75.815)2+(79.824/121.304)2]0.5=0.715≤1
N V=21.209kN≤N c b/1.2=129.8/1.2=108.167kN
承压承载力满足要求。
附着杆3:
N V= V3/n=120.098/6=20.016kN
N t= F3/n=325.6/6=54.267kN
承压承载力设计值N c b=d×d t×f c b/1000=22×10×590/1000=129.8kN
[(N V/N v b)2+(N t/N t b)2]0.5=[(20.016/75.815)2+(54.267/121.304)2]0.5=0.519≤1
N V=20.016kN≤N c b/1.2=129.8/1.2=108.167kN
承压承载力满足要求。
2、吊耳板计算
N S=max{N1,N2,N3}/2=247.78kN
吊耳板吊索方向的最大拉应力:
σL= N S/(S(2R-D))= 247.78×103/(20×(2×100-50))=82.593N/mm2≤[σ]=205N/mm2 符合要求!
吊耳板吊索方向的最大剪应力:
τL= N S/(S(2R-D))= 247.78×103/(20×(2×100-50))=82.593N/mm2≤[τ]=125N/mm2 符合要求!
附图如下:
塔机附着节点详图
结论和建议:
1.塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。