高温扩散工艺

合集下载

扩散的工艺流程

扩散的工艺流程

扩散的工艺流程扩散工艺是集成电路制造中的一项重要工艺,主要用于在半导体材料表面形成掺杂区域,以改变材料的电学性质。

下面将介绍一种典型的扩散工艺流程。

首先是准备工作,包括物料准备、设备检查和工艺参数设置。

物料准备包括半导体晶片、扩散材料和掩膜材料的选择与准备。

设备检查主要是确保扩散炉和扩散源的正常运行状态。

工艺参数设置根据掺杂要求和材料特性,确定扩散温度、时间和气氛等工艺参数。

其次是扩散源的制备,扩散源一般是通过在高温条件下将掺杂材料与半导体材料反应生成的。

按照所需的掺杂浓度和材料属性,可以选择不同的扩散源。

通常情况下,将掺杂材料和半导体材料混合,并加入任何必要的添加剂,形成均匀的混合物。

然后,将混合物放入扩散源槽或坩埚中,在高温条件下进行预热、热分解和扩散源的形成。

形成的扩散源粉末可以直接用于扩散过程,也可以制备成片状等形状。

接下来是掩模制备,掩模是指在扩散过程中所需的模板,用于限制掺杂区域的形成。

一般使用光刻技术将掩模图案转移到掩膜材料上,形成掩模。

然后,将掩模放置在待扩散的半导体晶片表面,并通过光刻和显影等步骤将掩模图案转移到晶片表面。

扩散工艺是在控制的温度条件下进行的,常用的扩散方式有氧化物扩散和固相扩散。

以氧化物扩散为例,首先将掺杂源和半导体片放置在扩散炉中,然后控制炉温使其达到扩散温度。

在扩散温度下,掺杂源释放出掺杂原子,这些原子通过热扩散作用在半导体片中形成掺杂区域。

扩散时间的长短决定了掺杂的深度和浓度。

固相扩散的工艺流程类似,只是没有氧化物参与,直接通过固态反应实现掺杂。

扩散完成后,进行清洗和后续处理。

清洗是为了去除掉表面的杂质和残留的化学物质,以及掩模材料。

清洗可以使用不同的溶液和超声波等方法。

后续处理包括表面加工、封装和测试等步骤,以完成集成电路的制造。

总的来说,扩散工艺是集成电路制造中的一项关键工艺,通过控制温度、时间和掺杂原料,将掺杂原子引入半导体材料中,实现电学性质的改变。

扩散工艺及控制要点

扩散工艺及控制要点

扩散工艺及控制要点1.由于硅太阳能电池实际生产中均采用P型硅片,因此需要形成N型层才能得到PN结,这通常是通过在高温条件下利用磷源扩散来实现的。

这种扩散工艺包括两个过程:首先是硅片表面含磷薄膜层的沉积,然后是在含磷薄膜中的磷在高温条件下往P型硅里的扩散。

2.在高温扩散炉里,汽相的POCL3(phosphorus oxychloride)或PB r3(phosphorus tribromide)首先在表面形成P2O5(phosphorus pentoxide);然后,其中的磷在高温作用下往硅片里扩散。

3.扩散过程结束后,通常利用“四探针法”对其方块电阻进行测量以确定扩散到硅片里的磷的总量,对于丝网印刷太阳电池来说,方块电阻一般控制在40-50欧姆。

4.发射结扩散通常被认为是太阳电池制作的关键的工艺步骤。

扩散太浓,会导致短路电流降低(特别是短波长光谱效应很差,当扩散过深时,该效应还会加剧);扩散不足,会导致横向传输电阻过大,同样还会引起金属化时硅材料与丝网印刷电结之间的欧姆接触效果。

5.导致少数载流子寿命低的原因还包括扩散源的纯度、扩散炉的清洁程度、进炉之前硅片的清洁程度甚至是在热扩散过程中硅片的应力等。

6.扩散结的质量同样依赖于扩散工艺参数,如扩散的最高温度、处于最高温度的时间、升降温的快慢(直接影响硅片上的温度梯度所导致的应力和缺陷)。

当然,大量的研究表明,对于具有600mv左右开路电压的丝网印刷太阳电池,这种应力不会造成负面影响,实际上有利于多晶情况时的吸杂过程。

7.发射结扩散的质量对太阳能电池电学性能的影响反映在串联电阻从而在填充因子上:(1)光生载流子在扩散形成的N-型发射区是多数载流子,在这些电子被金属电极收集之前需要经过横向传输,传输过程中的损失依赖于N-型发射区的横向电阻;(2)正面丝网印刷金属电极与N-型发射区的电接触,为了避免形成SCHOTTKY势垒或其它接触电阻效应而得到良好的欧姆接触,要求N-型发射区的搀杂浓度要高。

关于低品质蓝宝石高温扩散法工艺改善的相关探究

关于低品质蓝宝石高温扩散法工艺改善的相关探究

增加袁宝石的整体颜色获得了改善遥
揖参考文献铱 咱员暂张培强袁马宇.山东蓝宝石的主要致色因素[J].地质找矿论丛袁2006袁21渊06冤. 咱圆暂张蓓莉袁等.系统宝石学[M].2 版.北京院地质出版社袁2006. 咱猿暂高运明袁曾智袁潘金华.氧化铁在硼砂熔盐中溶解度研究[J].武汉科技大学学 报:自然科学版袁2006袁29渊06冤.
低品质蓝宝石原石样品表面会有大量的泥沙附着在上面袁可以采 用水洗的方法清楚遥 等到样品完全干燥之后袁将样品的信息记录下来袁 进行编号遥 圆援圆 样品酸洗
将低品质蓝宝石样品浸泡在浓度 10%的盐酸中袁 经过 48 小时的 酸洗后袁可以将样品表面以及微裂缝中所存留的杂质清除遥 经过盐酸 浸泡后的样品袁会产生一些气泡袁这就说明有金属附着在样品的表面遥 初步判断袁很有可能是铁元素遥 圆援猿 样品试剂处理
揖参考文献铱 咱员暂刘定明援影响人工林培育质量的非技术因素初步研究[J]援山地农业生物学报袁 2010渊11冤院112援 咱圆暂王树君袁王晓丹袁林继武袁等袁林业营林方法及管理措施的探讨[J]援科技创新导 刊袁2011渊34冤院216援
咱责任编辑院刘帅]
渊上接第 263 页冤处理袁随后成品遥
6 结语
综上所述袁经过高温扩散法工艺改善后的低品质蓝宝石呈现出黑 蓝色袁光泽效果良好遥 这就可以获得很大的启示袁即蓝宝石呈现黑色的 原因在于其中铁元素含量增多遥 在高温的作用下袁致色离子扩散到晶 体内部袁使蓝宝石的改变了颜色袁而颜色扩散的程度与所添加的助溶 剂液相的流动性有关遥 只有当致色离子顺着裂理侵入到蓝宝石的内部 时袁在高温的作用下才会产生内容扩散袁随着反应面积的增大袁速率的
低品质蓝宝石热处理对比试验结果如下院 样品 A-1袁 处于 1500益温度下袁 开放气氛下袁 加入 Fe2O3尧Ti02尧 AI2O3尧Na2CO3尧硼砂高温助剂袁所获得的实验结果院表面呈均匀的黑色袁 光泽透明袁切开后袁裂缝有黑色呈现袁边缘处虽然有黑色扩散层袁但是 很薄遥 样品 A-2袁处于 1500益温度下袁强氧化气氛下袁加入 Fe2O3尧Ti02尧 AI2O3尧Nn3O4 高温助剂袁所获得的实验结果院表面呈均匀的黑色袁但是 有明显的破裂遥 表面还有大量的黑色颗粒粉剂黏着袁但是没有呈现出 光泽遥 样品 B-1袁 处于 1900益温度下袁 开放气氛下袁 加入 Fe2O3尧Ti02尧 AI2O3尧Na2CO3尧硼砂高温助剂袁所获得的实验结果院表面呈均匀的黑色袁 具有较强的光泽袁切开后袁内部基本变黑袁边缘处虽然有黑色扩散层袁 但不明显袁颜色主要集中于裂缝中遥 样品 B-2袁处于 1900益温度下袁还原气氛下袁加入 Fe2O3尧Ti02尧AI2O3 高温助剂袁所获得的实验结果院表面的裂缝处呈现出黑色袁表面颜色略 微加深袁但是光泽度和透明度都没有出现明显的变化遥 样品预处理均为酸洗曰预处理时间为 24 小时遥

扩散工艺知识

扩散工艺知识

第三章 扩散工艺在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那 是对衬底而言相同导电类型杂质扩散。

这样的同质高浓度扩散,在晶体管制造中 还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。

除了改变杂质浓 度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,扩散是一种普通的自然现象,有浓度梯度就有扩散。

扩散运动是微观粒子原 子或分子热运动的统计结果。

在一定温度下杂质原子具有一定的能量,能够克服 某种阻力进入半导体,并在其中作缓慢的迁移运动。

一.扩散定义在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定 的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面 杂质浓度的半导体制造技术,称为扩散工艺。

二.扩散机构杂质向半导体扩散主要以两种形式进行:1.替位式扩散一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。

其中总有一 些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方, 而在原处留下一个“空位”。

这时如有杂质原子进来,就会沿着这些空位进行扩 散,这叫替位式扩散。

硼(B )、磷(P )、砷(As )等属此种扩散。

2.间隙式扩散构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这 个原子间隙进入到另一个原子间隙,逐次跳跃前进。

这种扩散称间隙式扩散。

金、 铜、银等属此种扩散。

三.扩散方程扩散运动总是从浓度高处向浓度低处移动。

运动的快慢与温度、浓度梯度等 有关。

其运动规律可用扩散方程表示,具体数学表达式为:a N、 ——=D V 2N(3-1)a t在一维情况下,即为:a N a 2N ---- =D------- a t a x 2 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量;N 为杂质浓度;t 为扩散时间;x 为扩散到硅中的距离。

四.扩散系数杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。

不锈钢扩散焊接工艺

不锈钢扩散焊接工艺

不锈钢扩散焊接工艺不锈钢扩散焊接工艺是一种高效的不锈钢连接方法,其利用高温条件下不锈钢表面的氧化反应进行焊接。

该工艺具有低成本、高接头质量、环保等优点,被广泛应用于不锈钢制造行业。

下面将详细介绍不锈钢扩散焊接工艺的原理、工艺流程和实施要点。

1. 原理不锈钢扩散焊接是一种利用高温条件下对不锈钢表面进行反应的焊接方法。

不锈钢扩散焊接的原理是利用氮、氧、碳等元素在高温条件下与不锈钢表面反应,形成一种含氮、含氧、含碳等元素的薄层,使不锈钢材料表面具有良好的焊接性能。

在扩散焊接工艺过程中,可使用特殊的焊接设备,将工件加热到适当的温度,使其表面氧化,然后进行压合,使氧化物被压实形成焊缝。

2. 工艺流程不锈钢扩散焊接的工艺流程主要包括选择材料、准备工件、预热、焊接、热处理、修磨等环节。

具体的工艺流程如下:(1)选择材料:要选择与所要焊接材料相似的、高品质的、具有良好机械性能的初始材料。

初始材料的质量直接关系到焊接后的接头质量和使用寿命。

(2)准备工件:将工件表面清洗干净,排除杂质和粉尘,以免影响焊接效果。

然后将工件按要求放在热交换板上。

(3)预热:将工件放在预热炉里,热处理时间根据不同的材料和焊接要求而定,一般在800-1000℃左右预热。

预热使得工件表面的氧化层软化,并加速氧化反应。

(4)焊接:将加热后的工件取出,然后将待焊接部位压紧,形成合适的接触面积。

然后再找到合适的热交换板,用力按压,使工件表面形成一层薄质的氮氧化物层。

接下来,进行焊接,并在符合要求的时间范围内完成。

(5)热处理:在完成焊接后,需要进行一定时间的热处理,以降低内部应力,并使接头连结更加牢固。

(6)修磨:在热处理结束后,删除焊接部位的氧化层、镀层、氧化产物等,并对接头进行磨削、抛光,使接头表面达到平整、光滑的要求。

3. 实施要点(1)选择合适的材料是扩散焊接的前提,必须对所采用的材料有深入的理解与熟悉。

(2)预热温度要根据材料和复杂工件结构来调整,热处理时间及温度应符合材料的要求,以保证焊接质量。

扩散工艺的化学原理教学文案

扩散工艺的化学原理教学文案
正是这个原因,扩砷的发射区无陷落效应,有 利于薄基区的形成。浅结、薄基区可提高器件的 频率特性,所以砷扩散工艺普遍用于微波器件。
因三氧化二砷有剧毒,砷扩散不象磷扩散那样 广泛地用于一般器件。
1、氧化物源扩散 氧化物源扩散又称固一固扩散,基本原则是在硅片表
面先低温淀积一层掺杂的二氧化硅作为扩散源,然后在高 温下使杂质原子向硅内扩散。
间隙式杂质容易利用间隙运动在间隙中移动,这种杂质是需要避免的。 替位式杂质:扩散速率低的杂质,如砷(As)、磷(P)等。通常利用替代
运动填充晶格中的空位。
杂质原子
替位式杂质

间隙式杂质
×
整个扩散工艺过程 开启扩散炉 清洗硅片 预淀积 推进、激活 测试
上表中所列举的杂质源在不同程度上都有毒性。其中 以砷源和磷源毒性最大,尤其是砷和磷的气态源有剧毒又 易爆炸,在使用时应采取相应的安全措施。
§6-4 锑扩散的化学原理
为了减少集电极串联电阻,改善饱和压降,在集成电路 生产时,都在N-P-N 晶体管的集电区下面扩散一层N+层, 通常称为隐埋层。
隐埋层通常采用锑扩散,因为锑的扩散系数较磷、硼 小,故外延生长时的自掺杂效应也就低,同时又经得起以 后工艺过程中的高温处理。 埋层锑扩散大都使用三氧化二锑(Sb2O3)为杂质源:
扩散工艺的化学原理
扩散工艺: 高温下,将杂质原子向硅、锗晶体内部扩 散。
目的:制造P-N 结,制造集成电路的扩散电阻、埋层 和隔离。
III A族元素杂质:硼 (B)
扩散到硅晶体内部
V A 族元素杂质:磷(P)、锑(Sb)
§6-1 半导体的杂质类型
半导体硅、锗等都是第 IV 族元素。 掺入第 V 族元素(如磷,五个价电子)。杂质电离

扩散工艺的化学原理

扩散工艺的化学原理

.
24
.
25
§6-4 锑扩散的化学原理
为了减少集电极串联电阻,改善饱和压降,在集成电路 生产时,都在N-P-N 晶体管的集电区下面扩散一层N+层, 通常称为隐埋层。
隐埋层通常采用锑扩散,因为锑的扩散系数较磷、硼 小,故外延生长时的自掺杂效应也就低,同时又经得起以 后工艺过程中的高温处理。 埋层锑扩散大都使用三氧化二锑(Sb2O3)为杂质源:
预淀积 推进 激活
.
8
第一步、预淀积
热扩散开始,炉内温度通常设为800到1000 ℃ ,持续 10到30分钟。杂质仅进入硅片表面形成很薄的杂质层, 此称为预淀积。
预淀积的杂质层
.
9
第二步、推进
在不向硅片中增加杂质的基础上,升高温度(1000 到1250 ℃ ),使淀积的杂质层进一步向硅片内部扩 散,并达到规定的结深。
首先淀积掺砷氧化层。然后将淀积好的硅片放入980 ℃左右的高温炉内,在氮气或氮氧混合气体保护下扩散, 15~20 分钟。
在扩散温度下,三氧化二砷被硅还原为砷:
砷杂质原子进而向硅中扩散。
.
28
2、二氧化硅乳胶源扩散
掺杂二氧化硅乳胶源是一种比较新的扩散源,它具有氧 化物源的优点,工艺又简单,且重复性和均匀性较好,可 掺杂的杂质种类多。
间隙式杂质容易利用间隙运动在间隙中移动,这种杂质是需要避免的。 替位式杂质:扩散速率低的杂质,如砷(As)、磷(P)等。通常利用替代
运动填充晶格中的空位。
杂质原子
替位式杂质
间隙式杂质

×.
12
整个扩散工艺过程 开启扩散炉 清洗硅片 预淀积 推进、激活 测试
.
13
.
14
.

扩散的工艺流程

扩散的工艺流程

扩散的工艺流程
《扩散的工艺流程》
扩散是一种重要的化工工艺,用于在固体材料之间或在固体和液体之间进行物质交换。

扩散工艺在许多领域都有广泛的应用,包括制造半导体、热处理金属、药物传递等。

扩散的工艺流程通常包括以下几个步骤:
1. 初步准备:在进行扩散之前,首先需要准备好需要进行扩散的材料和介质。

这包括清洗和处理表面,以确保材料表面的纯净度和平整度。

2. 热处理:扩散通常需要高温条件下进行,因此热处理是一个关键的步骤。

材料被置于高温炉中进行加热,以促进扩散的进行。

3. 扩散介质选择:选择合适的介质对于扩散的进行是非常重要的。

一般来说,气体、液体和固体都可以作为扩散介质。

4. 扩散过程:一旦准备好材料和介质,扩散过程就可以进行了。

材料置于介质中,并在一定的时间和温度条件下进行扩散操作。

5. 控制扩散速率:在扩散过程中,需要对扩散速率进行控制。

这可以通过调节温度、压力和介质浓度来实现。

6. 结果分析:一旦扩散完成,需要对扩散结果进行分析。

这包
括检测扩散的深度和速率,以及材料的性能变化情况。

扩散工艺流程需要严格控制各个环节,以确保最终的扩散效果符合预期。

同时,还需要对扩散过程中的安全性进行充分考虑,以确保操作过程稳定可靠。

通过严谨的工艺流程,扩散工艺可以为各种领域提供高质量的材料和产品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高温扩散工艺
高温扩散工艺是一种常用的半导体制造工艺,它主要用于制造各种电子元器件,如晶体管、集成电路等。

该工艺的主要原理是在高温下将掺杂物扩散到半导体材料中,从而改变其电学性质,使其具有特定的电子性能。

高温扩散工艺的过程主要包括掺杂、扩散和退火三个步骤。

首先,在半导体材料表面涂上一层掺杂物,如硼、磷等,然后将其置于高温炉中进行扩散。

在高温下,掺杂物会逐渐扩散到半导体材料中,形成掺杂区域。

最后,将样品进行退火处理,使其结构更加稳定,从而提高电子元器件的性能。

高温扩散工艺具有许多优点。

首先,该工艺可以制造出高质量的电子元器件,具有良好的电学性能和稳定性。

其次,该工艺可以制造出各种不同类型的电子元器件,如PN结、MOSFET等。

此外,高温扩散工艺还可以实现微米级别的制造精度,从而满足现代电子工业对高性能、高精度电子元器件的需求。

然而,高温扩散工艺也存在一些缺点。

首先,该工艺需要高温环境,因此需要消耗大量的能源。

其次,高温扩散工艺的制造成本较高,需要大量的设备和人力投入。

此外,高温扩散工艺还存在一定的制造难度,需要高水平的技术人员进行操作。

高温扩散工艺是一种重要的半导体制造工艺,具有广泛的应用前景。

随着电子工业的不断发展,高温扩散工艺将继续发挥其重要作用,为电子元器件的制造提供更加高效、高质量的解决方案。

相关文档
最新文档