数学建模练习题

合集下载

数学建模练习题

数学建模练习题

数学建模练习题一、基础数学知识类某企业生产两种产品,生产每吨产品A需耗用原料1吨、工时4小时,生产每吨产品B需耗用原料2吨、工时3小时。

若企业每月原料供应量为10吨,工时供应量为36小时,求该企业每月生产产品A和产品B的数量。

某湖泊污染问题,已知污染物的降解速度与污染物浓度成正比,求污染物浓度随时间的变化规律。

计算由曲线y=x^2和直线x=2、y=0所围成的图形的面积。

二、统计分析类2, 4, 6, 8, 10, 12, 14, 16, 18, 20某地区居民消费水平(y)与收入(x)之间的关系,数据如下表所示,求出线性回归方程。

| 收入(x) | 消费水平(y) || | || 1000 | 800 || 1500 | 1200 || 2000 | 1600 || 2500 | 2000 || 3000 | 2400 |三、优化方法类某企业生产三种产品,产品A、B、C的单件利润分别为5元、4元、3元。

生产每吨产品A、B、C所需的原料分别为2吨、1吨、1吨。

若企业每月原料供应量为10吨,求该企业每月生产产品A、B、C的数量,使得总利润最大。

某企业生产两种产品,产品A、B的单件利润分别为10元、8元。

生产每吨产品A、B所需的工时分别为4小时、3小时。

若企业每月工时供应量为120小时,求该企业每月生产产品A、B的数量,使得总利润最大。

四、离散数学类关系矩阵为:| 1 0 1 0 || 0 1 0 1 || 1 0 1 0 || 0 1 0 1 |A (3)>B (4)> D\ |\ (2)\ /C (1)>五、实际问题建模类某城市交通拥堵问题,分析道路宽度、车辆数量、交通信号等因素对交通拥堵的影响,建立数学模型。

某地区水资源分配问题,考虑农业、工业、生活用水等因素,建立数学模型,并提出合理的水资源分配方案。

六、运筹学方法类一位背包客有最大负重为50公斤的背包,现有五种物品,每种物品的重量和价值如下表所示。

大学生数学建模练习题

大学生数学建模练习题

大学生数学建模练习题一、线性规划问题假设你是一家制造公司的经理,公司生产两种产品A和B。

生产一个产品A需要3小时的机器时间和2小时的人工时间,产品B需要2小时的机器时间和4小时的人工时间。

公司每天有24小时的机器时间和40小时的人工时间可用。

如果产品A的销售价格是50元,产品B是80元,如何安排生产计划以最大化利润?二、排队论问题一家银行有3个服务窗口,平均每天接待200名顾客。

每名顾客的平均服务时间是5分钟。

假设顾客到达银行是随机的,服从泊松分布,服务时间服从指数分布。

请计算银行的平均排队长度和顾客的平均等待时间。

三、库存管理问题一家零售商销售一种季节性产品,该产品的需求量在一年中波动很大。

产品的成本是每个20元,存储成本是每个每年2元,缺货成本是每个10元。

如果零售商希望在一年内保持至少95%的服务水平,应该如何确定最优的订货量和订货频率?四、网络流问题在一个供水系统中,有四个水库和五个城市。

水库1和2可以向城市A 供水,水库2和3可以向城市B供水,水库3和4可以向城市C和D供水。

每个水库的供水能力不同,每个城市的需求也不同。

如果需要确保所有城市的需求都得到满足,如何确定最优的供水方案?五、预测问题给定一个公司过去5年的季度销售额数据,使用时间序列分析方法预测下个季度的销售额。

请考虑季节性因素和趋势,并给出预测的置信区间。

六、优化问题一个农场主有一块矩形土地,打算围成一个矩形的牧场。

如果围栏的总长度是固定的,比如400米,如何确定牧场的长和宽,使得牧场的面积最大?七、多目标决策问题一家公司需要在多个项目中做出选择,每个项目都有不同的预期收益、风险和实施时间。

如果公司需要在风险和收益之间做出权衡,并且希望项目尽快完成,如何使用多目标决策方法来选择最合适的项目组合?通过解决这些练习题,大学生可以加深对数学建模的理解,提高分析和解决实际问题的能力。

希望这些练习题能够帮助学生在数学建模的道路上更进一步。

数学建模练习试题

数学建模练习试题

1、放射性废料的处理问题美国原子能委员会以往处理浓缩的放射性废料的方法,一直是把它们装入密封的圆桶里,然后扔到水深为90多米的海底。

生态学家和科学家们表示担心,怕圆桶下沉到海底时与海底碰撞而发生破裂,从而造成核污染。

原子能委员会分辨说这是不可能的。

为此工程师们进行了碰撞实验。

发现当圆桶下沉速度超过12.2 m/s 与海底相撞时,圆桶就可能发生碰裂。

这样为避免圆桶碰裂,需要计算一下圆桶沉到海底时速度是多少? 这时已知圆桶重量为239.46 kg,体积为0.2058m3,海水密度为1035.71kg/m3,如果圆桶速度小于12.2m/s就说明这种方法是安全可靠的,否则就要禁止使用这种方法来处理放射性废料。

假设水的阻力与速度大小成正比例,其正比例常数k=0.6。

现要求建立合理的数学模型,解决如下实际问题:1.判断这种处理废料的方法是否合理?2.一般情况下,v大,k也大;v小,k也小。

当v很大时,常用kv来代替k,那么这时速度与时间关系如何? 并求出当速度不超过12.2 m/s,圆桶的运动时间和位移应不超过多少? (的值仍设为0.6)鱼雷攻击问题在一场战争中,甲方一潜艇在乙方领海进行秘密侦察活动。

当甲方潜艇位于乙方一潜艇的正西100千米处,两方潜艇士兵同时发现对方。

甲方潜艇开始向正北60千米处的营地逃跑,在甲方潜艇开始逃跑的同时,乙方潜艇发射了鱼雷进行追踪攻击。

假设甲方潜艇与乙方鱼雷是在同一平面上进行运动。

已知甲方潜艇和乙方鱼雷的速度均匀且鱼雷的速度是甲方潜艇速度的两倍。

试建立合理的数学模型解决以下问题:1) 求鱼雷在追踪攻击过程中的运动轨迹;2) 确定甲方潜艇能否安全的回到营地而不会被乙方鱼雷击中3、贷款买房问题某居民买房向银行贷款6万元,利息为月利率1%,贷款期为25年,要求建立数学模型解决如下问题:1)问该居民每月应定额偿还多少钱?2)假设此居民每月可节余700元,是否可以去买房?4、养老保险问题养老保险是保险中的一种重要险种,保险公司将提供不同的保险方案以供选择,分析保险品种的实际投资价值。

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。

二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。

6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。

三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。

10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。

11.试找出100以内的所有素数。

12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。

14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。

15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。

数学建模与应用案例练习题

数学建模与应用案例练习题

数学建模与应用案例练习题数学建模是将实际问题转化为数学问题,并通过数学方法和计算机技术求解的过程。

它在各个领域都有着广泛的应用,能够帮助我们更好地理解和解决现实中的复杂问题。

下面我们将通过一些具体的案例练习题来深入了解数学建模的方法和应用。

案例一:生产计划优化问题某工厂生产 A、B 两种产品,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个单位的工时。

工厂现有 100 个单位的原材料和 80 个单位的工时,A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。

问如何安排生产计划,才能使工厂获得最大利润?首先,我们设生产 A 产品 x 件,生产 B 产品 y 件。

那么,目标函数就是利润最大化,即 Z = 5x + 4y。

然后,我们需要考虑约束条件。

原材料的限制为 2x +3y ≤ 100,工时的限制为 3x +2y ≤ 80,同时 x、y 都应该是非负整数。

接下来,我们可以使用线性规划的方法来求解这个问题。

通过绘制可行域,找到目标函数在可行域上的最大值点。

经过计算,我们可以得出当 x = 20,y = 20 时,工厂能够获得最大利润 180 元。

这个案例展示了数学建模在生产决策中的应用,通过合理地安排生产计划,能够有效地提高企业的经济效益。

案例二:交通流量预测问题在一个城市的某个十字路口,每天不同时间段的车流量不同。

我们收集了过去一段时间内每天各个时间段的车流量数据,希望建立一个数学模型来预测未来某一天的车流量。

首先,我们对收集到的数据进行分析,发现车流量具有一定的周期性和季节性变化。

然后,我们可以选择使用时间序列分析的方法来建立模型。

比如,可以使用 ARIMA 模型(自回归移动平均模型)。

在建立模型之前,需要对数据进行预处理,包括平稳性检验、差分处理等。

通过建立合适的 ARIMA 模型,并进行参数估计和检验,我们就可以利用这个模型对未来的车流量进行预测。

数学建模习题

数学建模习题

数学建模练习题1.1.线性规划题目问题1:毛坯切割问题用长度为500厘米的材料,分别截成长度为98厘米和78厘米的两种毛坯,要求截出长度98厘米的毛坯1000根,78厘米的毛坯2000根,问怎样去截,才能是所用的原材料最少,试建立数学模型。

问题2:进货收获问题某商店你制定某种商品7-12月的进货、售货计划,已知商品仓库最大容量为1500件,6月底已经库存300件,年底不少于300件为宜,以后每月初进货一次,假设各月份该商品买进和售出的价格如下表所示,若每件每月库存费为0.5元,问各月进货,售货多少件,才能是净收益最多。

试建立数学模型。

问题3:货船装货问题某货船的载重量为12000吨,总容积为45000立方米,冷藏容积为3000立方米,可燃性指数的总和不得超过7500,准备装6中货物,每种货物的单价、重量、体积和可燃性指数如下表:1.2.微分方程题目问题1. 什么时候开始下雪?早晨开始下雪,整天稳降不停。

正午一辆扫雪车开始扫雪,每小时扫雪量按体积计为一常数。

到下午2时它清扫了两公里,到下午4时又清扫了1公里,问雪是什么时候开始下的?问题2. 谁喝的咖啡热一些?总统与首相面前同时送上同温度的热咖啡。

总统在送到咖啡后立即加上一点冷奶油,等了10分钟才喝;首相则等了10分钟后添加等量的冷奶油开始喝,问谁喝的咖啡热一些?问题3. 需冷却多久?一位稀里糊涂的咖啡泡煮师,想让水达到185o F,可他几乎总是忘记这一点而把水煮开。

温度计又坏了,他要你计算一下,从212o F冷却到185o F要等多少时间,你能解决他的问题吗?问题4. 纽约的人口如果不考虑移民与高杀人率,纽约城的人口将满足方程,其中t 以年度量。

(1)事实上,每年有6000人从该城迁出,又有4000人被杀,试修正上面方程。

(2)已知1970年纽约城人口为800万,求未来任何时刻的人口,且求时的极限。

问题5.开火的最优距离A 方反坦克导弹与B 方坦克之间进行战斗。

2023全国数学建模题目

2023全国数学建模题目

2023全国数学建模题目一、选择题(每题3分,共15分)下列哪个数不是质数?A. 2B. 3C. 9D. 13若一个圆的半径是5cm,则它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π下列哪个方程表示的是一条直线?A. y = x²B. y = 2x + 1C. y = 1/xD. xy = 1下列哪个数最接近√10?A. 2B. 3C. 4D. 5一个三角形的两边长分别为3和4,第三边的取值范围是多少?A. 1 < x < 7B. 2 < x < 8C. 3 < x < 9D. 4 < x < 10二、填空题(每题4分,共20分)绝对值等于5的数是_______。

已知|a - 3| + (b + 2)² = 0,则 a + b = _______。

已知一个正方体的棱长是6cm,则它的体积是_______ cm³。

方程2x - 3 = 5 的解是x = _______。

已知扇形的圆心角为120°,半径为3cm,则扇形的面积是_______ cm²。

三、计算题(每题10分,共30分)计算:√27 - | - 2| + (1/2)^(-1) - (π - 3)^0。

解方程组:{x + 2y = 5,3x - y = 8.}已知一个矩形的面积是48cm²,一边长为6cm,求另一边长。

四、应用题(每题15分,共30分)某商店购进一批苹果,进价为每千克5元,售价为每千克8元。

若商店想要获得至少300元的利润,则至少需要售出多少千克的苹果?一辆汽车从A地开往B地,前两小时行驶了120km,后三小时行驶了180km。

求这辆汽车的平均速度。

数学建模竞赛(大专组)参考答案及评分标准

数学建模竞赛(大专组)参考答案及评分标准

建模练习题第一套参考答案一.水厂设立 如图,设(公里)2.312540,22≈-==AD x AC ,则AC 的费用为400x ,BC 的费用为()222.3125600x -+,此问题的数学模型为 min S = 400x + ()222.3125600x -+ 2.310≤≤x模型的求解: ()()222.31252.31600400x x dx ds -+--= , 令dxds = 0 ,得到驻点 x 0≈8.8 由实际意义或求二阶导数可说明驻点x 0是最小值点,最小费用为(元)0.23676≈S ( 答略).二.截割方案设1米长的钢材截27厘米的x 根,15厘米的y 根.则此问题的数学模型为:⎪⎪⎩⎪⎪⎨⎧∈≥≤++=Zy x y x yx t s y x ,,0,1001527..1001527max λ模型的求解: 方法1: 在区域115.027.0,0,0≤+≥≥y x y x 内确定出与直线115.027.0:=+y x l 最近的格点;方法2: 由1527100x y -=穷举. 方法3: 用Lindo 数学软件.求解结果: 3,2==y x .最高利用率: %99100315227max =⨯+⨯=λ. 三.投资决策投资生产A 、B 两产品的利润分别为4200100010)4.02006.01000(=-⨯⨯-⨯=A R (万元)132040010)4.0206.0300(=-⨯⨯-⨯=B R (万元)投资回报率分别为 3.34001320,2.410004200====B A λλ. 故应对A 产品进行投资, 投资回报率将最大.四.生产安排设安排生产甲产品x 件,乙产品y 件,相应的利润为S.则此问题的数学模型为Zy x y x y x y x y x t s yx S ∈≥≥≤+≤+≤++=,,0,020002424006140032..65max模型的求解:方法一:图解法.可行域为:由直线,0200024:24006:140032:3:21===+=+=+y x y x l y x l y x l 及 组成的凸五边形区域.直线C y x l =+65:在此凸五边形区域内平行移动. 易知:当l 过31l l 与的交点时,S 取最大值. 由⎩⎨⎧=+=+200024140032y x y x 解得:200,400==y x320020064005max =⨯+⨯=S (千元)(答略)方法二:用Lindo 软件或Maple 软件求解.五.最优联网以村(包括乡政府)为顶点,可直接联网的两村则连边,联网费用作为边上的权,得到一个赋权连通图G 如下:由破圈法或避圈法求得G 的最优树T (上图波浪线),最优联网方案为SD 、DC 、DE 、DB 、BA 、AF 或SD 、BC 、DE 、DB 、BA 、AF最小联网费用为千元)(6.1856.33322min =+++++=s六、最佳存款设存款分n 次进行,每次的存期分别为1x ,.,,2n x x 这里1≤n ≤6,∑==ni i x 16,存期集合为S ={1,2,3,5}.存期为i x 时,对应度年利率为i r当i x =1时,i r =0.0225;当i x =2时,i r =0.0243;当i x =3时,i r =0.0270;当i x =5时,i r =0.0288;设将一万元分n 次进行,每次存期分别为1x ,.,,2n x x 所得的收益为()n x x x f ,,,21 .则此问题当数学模型为()()∏=+=n i i i n r x x x x f 1421110,,,max s.t. ∑==n i i x 16. 1≤n ≤6 ,S x i ∈易知函数()n x x x f ,,,21 的值与1x ,.,,2n x x 的顺序无关.不妨设n x x x ≤≤≤ 21.则(1x ,.,,2n x x )的所有取值为(1,1,1,1,1,1),(1,1,1,1,2),(1,1,2,2),(1,1,1,3), (1,2,3),(1,5),(2,2,2),(3,3)现计算()n x x x f ,,,21 的值如下:()()25.114280225.01101,1,1,1,1,164≈+=f ()()()07.114620243.0210225.01102,1,1,1,144≈⨯++=f ()()()99.114950243.0210225.01102,2,1,1224≈⨯++=f ()()()22.115560270.0310225.01103,1,1,134≈⨯++=f ()()()()41.115900270.0310243.0210225.01103,2,14≈⨯+⨯++=f()()()4.116970288.0510225.01105,14≈⨯++=f()()01.115300243.021102,2,234≈⨯+=f ()()61.116850270.031103,324≈⨯+=f 故最佳存款方案为:先存一年期再存一个五年期,所得的最大收益为11697.4元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011—2012学期数学建模问题
1食品加工
一项食品加工业,为将几种粗油精炼,然后加以混合成为成品油。

原料油有两大类,共5种:植物油2种,分别记作V1和V2;非植物油3种,记为O1、O2和O3。

各种原料油从市场采购。

现在(一月份)和未来半
成品油售价1500元/吨。

植物油和非植物油要在不同的生产线精炼。

每个月最多可精炼植物油200吨。

非植物油250吨。

精炼过程中没有重量损失。

精炼费用可以忽略。

每种原料油最多可存贮1000吨备用。

存贮费为每吨每月50元。

成品油和经过精炼的原料油不能存贮。

对成品油限定其硬度在3到6单位之间。

各种原料油的硬度如下表所示:
假设硬度是线性地混合的。

现存有5种原料油每种500吨。

要求在6月底仍然有这样多存货。

(1)为使公司获得最大利润,应取什么样的采购和加工,请写出相关的数学模型并求解。

(2)研究总利润和采购与加工方案适应不同的未来市场价格应如何变化。

考虑如下的价格变化方式:2月份植物油价上升x%,非植物油价上升2 x%;3月份植物油价升2 x%,非植物油升4 x%;其余
月份保持这种线性的上升势头。

对不同的正整数x值(直到20),就方案的必要的变化及对总利
润的影响,作出全面计划。

(3)对原问题中附加3个条件:㈠每个月中最多使用3种原料油;㈡在一个月中,一种原料油如被使用,则至少要用20吨;㈢如果某月使用了原料油V1和V2,则必须使用O3。

重新对问题(1)
求解。

运输问题
某地区有50个乡镇(见附件1),设该地区的每个乡镇需要铺设通信网络(在沿铁路线上的乡镇已有通信网络,不需要再重复建设)。

设铺设的费用与每个乡镇之间的距离成正比(各乡镇之间的距离见附件2)。

(1)请建立安排费用最小的铺设方案的数学模型,并给出最佳的方案。

(2)如果铺设的材料需要从外地从铁路运输到该地区的两个火车站,再通过汽车将材料运往各乡镇。

每辆汽车一次可装载2公里的材料,运费为每公里C元(在沿铁路线上的乡镇也有平行的公路相
联)。

假设每个乡镇所存放的材料约为两乡镇之间公里数量的一半,请分别安排两个火车站各需要
多少公里的材料,才能使汽车运费最少。

相关文档
最新文档