迈克尔逊干涉仪的调整

合集下载

迈克尔逊干涉仪的调整与使用概要

迈克尔逊干涉仪的调整与使用概要

实验40 迈克尔逊干涉仪的调整与使用教学目标实验内容教学方法教学过程设计 一.讨论1.何谓等倾干涉?图1是迈克尔逊干涉仪的光路原理图。

调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1和M 2′之间的空气薄膜产生的薄膜干涉。

当镜M 1⊥M 2,即M 1∥M 2′(图2)时,由扩展光源S 射出的任一束光,经薄膜上下表面反射形成的相干光束①和光束②的光程差为2cos 22cos nd r d i δ=== (空气薄膜折射率n=1)①可见,薄膜厚度d 一定时,光程差δ由入射角i 决定。

显然干涉条纹是等i (等倾角)的轨迹,即由干涉产生的条纹与一定的倾角对应,这种干涉称为等倾干涉。

图1 迈克尔逊干涉仪2′P图2 等倾干涉2、如何利用等倾干涉现象测量光波长?等倾干涉条纹的亮暗应满足下面条件:亮条纹 λ=⋅=δk i d c o s2 (k=0、1、2…) 暗条纹 2)12(c o s 2λ+=⋅=δk i d 可见,空气薄层厚度d 一定时,入射角i 越小,即越靠近中心,圆环条纹的级数k 越高(这与牛顿环正好相反),在中心处,i =0,级次最高。

若这时,中心处刚好是亮斑,则有λ==δc k d 2 由此式可得λ⋅∆=∆)()(2c k d可见,移动M1镜改变空气薄膜的厚度d ,中心亮斑的级次k c 也会改变。

而且当中心亮斑变化一个级次(Δk c =±1),即每冒出或吞没一个亮条纹,就意味着空气薄层厚度改变了(λ/2),也就是M 1镜移动了(λ/2)的距离。

显然,当中心亮斑变化了N 个级次( Δk c =±N ),即冒出或吞没了N 个亮条纹,则有2λ=∆Nd 所以,我们只要测出M 1镜移动的距离Δd (可从仪器读出),并数出冒出或吞没干涉条纹的个数N ,就可以通过上式计算出光源的波长λ。

二.预习检查提问问题1、 请问迈克尔逊光路图中,P1和P2个起什么作用?为什么光束①和②相遇时会产生干涉?2、 M1、M2镜背后的三个螺钉作用是什么?3、 实验如何测量M1镜移动的距离?该仪器能读准到几位有效数字?4、 在P.56图5-40-3中,光束①和光束②之间的光程差与什么因数有关?(5-40-1)式中的n 是什么?等于多少?5、 什么叫“等倾干涉”?干涉产生的明暗条纹应满足什么条件?6、 实验是根据什么物理现象和什么测量公式测量激光波长的?7、 你有没有分析过,等倾干涉的同心圆环条纹与牛顿环的同心圆环条纹有什么异同? 三.课后思考题1. 迈克尔逊干涉仪中的P 1和P 2各起什么作用?用钠光或激光做光源时,没有补偿板P2能否产生干涉条纹?用白光做光源呢?提示:从Na光、He—Ne激光和白光的单色性好坏来分析,当光程差较大时,它们产生的干涉条纹会不会重叠?2.在迈克尔逊干涉仪的一臂中,垂直插入折射率为1.45的透明薄膜,此时视场中观察到15个条纹移动,若所用照明光波长为500nm,求该薄膜的厚度。

实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用

实验⼀迈克尔逊⼲涉仪的调整及应⽤实验⼀迈克尔逊⼲涉仪的调整及应⽤⼀、实验⽬的1. 了解迈克尔逊⼲涉仪的原理及结构。

2. 学会迈克尔逊⼲涉仪的调整,基本掌握其使⽤⽅法。

3. 观察各种⼲涉现象,了解它们的形成条件。

⼆、实验仪器1. WSM-200型迈克尔逊⼲涉仪⼀台2. HNL-55700多束光纤激光源⼀台三、实验原理3.1 迈克⽿孙⼲涉仪的构造图1为迈克尔逊⼲涉仪的结构⽰意图。

图1 迈克尔逊⼲涉仪的结构⽰意图仪器包括两套调节机构,第⼀套调节机构是调节反光镜1的位置。

旋转⼤转轮和微调转轮经转轴控制反光镜1在导轨上平移;第⼆套调节机构是调节反光镜1和反光镜2的法线⽅向。

通过调节反光镜1、2后⾯的调节螺钉以及反光镜2的两个⽅向拉杆来控制反光镜的空间⽅位。

在仪器的中部和中部偏右处,分别固定安装着分光镜和补偿⽚,其位置对仪器的性能有重要影响,切勿变动。

在补偿⽚的右侧是反射镜2,它的位置不可前后移动,但其空间⽅位是可调的。

反射镜1和反射镜2是通过⾦属弹簧⽚以及调节螺钉与⽀架弹性连接的,调节反射镜⽀架上的三颗调节螺钉,改变弹簧⽚的压⼒,从⽽改变反射镜⾯在空间的⽅位。

显然,调节螺丝钉过紧或太松,都是不利于调节反射镜⽅位的错误操作。

反射镜1在导轨上的位置坐标值,由读数装置读出。

该装置共有三组读数机构:第⼀组位于左侧的直尺C 1,刻度线以mm 为单位,可准确读到毫⽶位;第⼆组位于正⾯上⽅的读数窗C 2,刻度线以0.01mm 为单位,可准确读出0.1和0.01毫⽶两位;第三组位于右侧的微动转轮的标尺C 3,刻度线以0.0001mm 为单位,可准确读0.001和0.0001毫⽶两位,再估读⼀位到0.00001毫⽶。

实际测量时,分别从C 1、C 2各读得2位数字、从C 3读得3位(包括1位估读)数字,组成⼀个7位的测量数据,如图2所⽰。

可见仪器对位移量的测定精度可达⼗万分之⼀毫⽶,是⼀种⾮常精密的仪器。

务必精细操作,否则很容易造成仪器的损坏!图2 关于M1位置读数值的组成⽅法3.2 迈克⽿孙⼲涉仪的原理迈克尔逊⼲涉仪是利⽤分振幅法产⽣的双光束⼲涉,其光路图如图3所⽰。

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。

正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。

本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。

1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。

它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。

2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。

检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。

(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。

具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。

调整分束镜的位置和角度,使得两束光线的光程差尽量为零。

- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。

通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。

(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。

根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。

3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。

避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。

(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。

在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。

(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。

合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。

因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。

一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。

2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。

(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。

(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。

(4)重复以上步骤,直到干涉条纹完全对称、清晰。

二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。

2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。

3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。

4、在记录实验数据时,要保证记录的准确性和完整性。

5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。

正确地调节和使用迈克尔逊干涉仪需要耐心和细心。

只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。

迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。

本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。

一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。

迈克尔逊干涉仪法利用干涉现象来测量折射率。

当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。

通过测量光程差,我们可以计算出介质的折射率。

二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。

2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。

迈克尔逊干涉仪调整和使用

迈克尔逊干涉仪调整和使用
提示:若M1和M2严格垂直,眼睛上下左右移动时,M1,和M2之间的距离d不变,即其光程差固定不变,图形稳定,不会看到“冒出”或“缩入”现象。若M1和M2没有严格垂直,则M1,和M2之间每一处的距离d是不相同的,自然眼睛移动的时候,就会因为d的相对变化引起光程差的改变,故而会看到干涉条纹“冒出”或“缩入”。
2)在迈克尔逊干涉仪的一臂中,垂直插入折射率为1.45的透明薄膜,此时视场中观察到15个条纹移动,若所用照明光波长为500nm,求该薄膜的厚度。
提示:垂直插入折射率n=1.45的透明薄膜后,光程差改变: ,这个改变与移动的条纹以及波长关系: , ,所以: 。
3)为什么M1和M2没有严格垂直时,眼睛移动干涉条纹会“冒出”或“缩入”?
(2)
即 (3)
(2) 增大时,程差 每改变一个波长 所需的 的变化值减小,即两亮环(或两暗环)之间的间隔变小。看上去条纹变细变密。反之 减小,条纹变粗变稀。
四、实验步骤:
1.仪器的调节
(1)使He-Ne激光束大致垂直于M1,即调节He-Ne激光器高低左右位置,使反射回来的光束按原路返回。
(2)装上观察屏E,可看到分别由M1和M2反射至屏的两排光点,每排四个光点,中间两个比较亮,旁边两个比较暗。调节M1和M2背面的三个螺钉,使两排光点一一重合,这时M1与M2大致互相垂直。
3.迈克耳逊干涉仪是精密的光学仪器,必须小心爱护。G1,G2,M1,M2的表面不能用手触摸,不能任意擦揩,表面不清洁时应请指导老师处理。实验操作前,对各个螺丝的作用及调节方法,一定要弄清楚,然后才能动手操作。调节时动作一定要轻缓。
4.测量调节中,有时会出现“空转”现象,即转动微调鼓轮而干涉图像不变的情况,这是由于微调鼓轮和粗调手轮没有同步,没有带动反射镜M2(动镜)移动所致。此时,将粗调手轮转动一下,再向同一方向转动微调鼓轮即可。

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。

2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。

3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。

4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。

二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。

2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。

然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。

3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。

根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。

5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。

如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。

总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。

在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节和使用一.实验原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如右图所示,它由反光镜M1,M2、分束镜P1和补偿板P2组成。

其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,他们分别放置在两个相互垂直臂中,分束镜和补偿板与两个反射镜均成45°且相互平行,分束镜P1的一个面镀有半透半反膜,它能将入射光等强度的分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。

迈克尔逊干涉仪结构如下图所示,镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M1的下端还附有两个互相垂直的微动拉簧螺丝,用以精确的调整M1的倾斜度。

M2镜所在的导轨拖板由精密丝杠带动,可沿着导轨前后移动。

M2镜的位置由三个读数尺所读出的数值的和来确定,主尺、粗调手轮和微调手轮。

如图所示,躲光束激光器提供的每条光纤的输出端是一个短焦距凸透镜,经其汇聚后的激光束,可以认为是一个很好的点光源S发出的球面光波。

S1’为S经M1以及G1反射后所成的像,S2’为S经G1以及M2反射后所成的像。

S2’和S1’为两相干光源。

发出的球面波在其相遇的空间处处相干。

为非定域干涉,在相遇处都能产生干涉条纹。

空间任一点P的干涉明暗由S2’和S1’到该点的光程差Δ=r2-r1决定,其中r2和r1分别为S2’和S1’到P点的光程。

P点的光强分布的极大和极小的条件是:Δ=kλ(k=0,1,2…)为亮条纹Δ=(2k+1)λ(k=0,1,2…)为暗条纹2.He-Ne激光波长的测定当M1’与M2平行时,将观察屏放在与S2’,S1’连线相垂直的位置上,可看到一组同心干涉圆条纹,如图所示。

设M1’与M2之间的距离为d,S2‘和S1‘之间的距离为2d,S2’和S1‘在屏上任一点P的光程差为Δ=2dcosφφ为S2’到P点的光线与M2法线的夹角。

当改变d,光程差也相应发生改变,这时在干涉条纹中心会出现“冒进”和“缩进”的现象,当d增加λ/2,相应的光程差增加λ,这样就会“冒出”一个条纹;当d减少λ/2,相应的光程差减少λ,这样就会“缩进”一个条纹;因此,根据“冒出”和“缩进”条纹的个数可以确定d的该变量,它可以用来进行长度测量,其精度是波长量级,当“冒出”或“缩进”了N个条纹,d的改变两δd为:Δd=Nλ/2二.实验内容1.调节干涉仪,观察非定域干涉(1)水平调节,调节干涉仪底角螺丝,使仪器导轨水平,然后用锁圈锁住。

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用

实验三十四 迈克尔逊干涉仪的调节与使用迈克尔孙干涉仪是1880年美国物理学家迈克尔孙设计、制作的精密光学仪器,是许多近代干涉仪的原型。

它利用分振幅法产生双光束以实现光的干涉,可以用它来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。

在近代物理和计量技术中有广泛的应用。

一 实 验 目 的(1)了解迈克尔孙干涉仪的结构、原理。

(2)利用迈克尔孙干涉仪观察干涉现象。

(3)利用迈克尔孙干涉仪测He-Ne 激光的波长。

二 实 验 原 理迈克尔孙干涉仪原理图如图35-1所示,在图中:S 为光源,G 1为半镀银板(使照在上面的光线既能反射又能透射,而这两部分光的强度又大致相等),G 2为补偿板,材料与厚度均与G 1板相同,且与G 1板平行。

M 1、M 2为平面反射镜。

光源S 发出的He-Ne 激光经会聚透镜L 扩束后,射向G 1板。

在半镀银面上分成两束光:光束(1)受半镀银面反射折向M 1镜,光束(2)透过半镀银面射向M 2镜。

二束光仍按原路反回射向观察者E (或接收屏)相遇发生干涉。

G 2板的作用是使(1)、(2)两光束都经过玻璃三次,其光程差就纯粹是因为M 1、M 2镜与G 1板的距离不同而引起。

由此可见,这种装置使相干的光束在相干之前分别走了很长的路程,为清楚起见,光路可简化为如图 2 所示,观察者自E 处向G 1板看去,直接看到M 2镜在G 1板的反射像,此虚像以M 2'表示。

对于观察者来说,M 1、M 2镜所引起的干涉,显然与M 1、M 2'之间的空气层所引起的干涉等效。

因此在考虑干涉时,M 1、M 2'镜之间的空气层就成为仪器的主要部分。

本仪器设计的优点也就在于M 2'不是实物,因而可以任意改变M 1、M 2'之间的距离——可以使M 2'在M 1镜的前面或后面,也可以使它们完全重叠或相交。

1. 等倾干涉 当M 1、M 2'完全平行时,将获得等倾干涉,其干涉条纹的形状决定于来自光源平面上的入射角i (如图35-3所示),在垂直于观察方向的光源平面S 上,自以O 点为中心的圆周上各点发出的光以相同的倾角k i ,入射到M 1、M 2'之间的空气层,所以它的干涉图样是同心圆环,其位置取决于光程差∆L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d N

2
如果数出“缩入”或“冒出”的条纹数,由已知 波长λ就可计算出Δd,这就是测量微小距离的原理; 反之,由读出的Δd也可测定入射光的波长,这也 是测定单色光波长的一种方法。
迈克耳逊干涉仪的调节(技能训练的重点)
1、让光源与干涉仪位置对齐,调节粗调 手轮,使得分光板到M1和M2的距离大致 相等(用尺子测量)。即两者之间的距 离在钠光相干长度范围之内。
迈克尔逊干涉仪的 调节与使用
ห้องสมุดไป่ตู้克尔逊干涉仪的结构
读数
主尺
粗动手轮读数窗口 微动手轮
最后读数为:33.52246mm
迈克耳孙干涉仪光路图
M1 M 2′ p S p
b1 L1 a b
G1
a1 a2 G2 b2 M2
F
A
L2 F
当条纹为等倾条纹时,移动M2 ,相当于改变M2 和M1′之间空气薄膜的厚度,此时干涉条纹会出 现条纹“缩入”或“冒出”的现象。 “缩入”或“冒出”的条纹数与移动距离的关系:
钠光等倾干涉条纹(左上) 钠光等厚干涉条纹(右上) 白光等厚干涉条纹(左下)
等 倾 干 涉 条 纹 等 厚 干 涉 条 纹
【实验中需注意的问题】
迈克耳逊干涉仪是精密光学仪器,光学表 面不能用手触摸。调节时动作要轻缓。
为了消除螺距差(空程差),调节及测量 读数时,粗调手轮和微调鼓轮要向同一方 向转动,中途不得倒退。 区分镜面间距(d)、光程差(2d)和光程差的变 化(2△d)三个概念。
2、取下望远镜,轻微调节粗调手轮和轻 微调节倾斜调节螺旋,让经分光片反射 回来的两黑“十”字像重合。这时用肉 眼应该能看见干涉条纹。
3、轻微调节粗调手轮和轻微调节倾斜调 节螺旋,观察等倾干涉条纹(眼睛上下 左右移动时条纹不发生冒出或缩入现 象)。调节细调手轮,观察条纹是如何 随距离变化的。
4、在观察到清晰的等倾干涉条纹后,调 节细调手轮,让条纹移动50级,测量改 变的距离,通过移动的距离来计算波长。
相关文档
最新文档