流体力学课件
合集下载
流体力学PPT课件

y1, y2...yn ——气体混合物中各组分的摩尔分率。
对于理想气体,其摩尔分率y与体积分率Φ相同。
9
第1节 流体静力学
五、比容
单位质量流体具有的体积,是密度的倒数,单位为m3/kg。
vV 1
m
10
第1节 流体静力学
1.1.2 流体的静压强
一、压强的定义
流体垂直作用在单位面积上的力(压应力)
在SI制单位中压强的单位是N/m2,称为帕斯卡, 以Pa表示。
注意:用液柱高度表示压强时,必须指明流体的 种类。
标准大气压有如下换算关系: 1atm = 1.013×105Pa =760mmHg
=10.33mH2O=1.033kg/cm2=1.013bar 1at=9.807×104Pa=735.6mmHg=10mH2O
为斜管压差计, 用以放大读数,提高测量精度。
R 与 R 的关系为 R' R
sin
式中α为倾斜角,其值越小,则读数放大倍数
越大。
19
第1节 流体静力学
(4) 双液体U管压差计(微差压差计) 内装密度接近但不互溶的两种指示液
A和C( A C),扩大室内径与U管内径 之比应大于10。
p1-p2≈(pA-pB)gR
16
第1节 流体静力学
三、流体静力学基本方程的应用
1.压强及压强差的测量 (1) U管压差计
p1p2(AB)gR
A-指示液 B-被测液体
A B
17
第1节 流体静力学
(2)倒U形压差计
p 1 p 2 R (B g A ) RB g
A-指示液 B-被测液体
A B
18
第1节 流体静力学
(3)斜管压差计 当所测量的流体压强差较小时,可将压差计倾斜放置,即
流体力学课件(全)

X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
流体力学课件PPT课件

注意:恒定流中流线与迹线重合
第27页/共90页
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
第28页/共90页
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
x
y方向:
my
(uy ) dxdydz
y
z方向:
mz
(uz ) dxdydz
z
据质量守恒定律:
第39页/共90页
单位时间内流进、流出控制体的流体质量差之总和
等于控制体内流体因密度发生变化所引起的质量增
量 即
mx
my
mz
t
dxdydz
将 mx、my、mz 代入上式,化简得:
(ux ) (u y ) (uz ) 0
第54页/共90页
1.伯努利方程的物理意义
• z mgz : 单位重量流体所具有的位能。 mg
•
p
mg
p
/
mg
:
单位重量流体所具有的压能。
•z p :
单位重量流体所具有的势能。
•
u2 2g
1 2
mu
2
/
mg
:
单位重量流体所具有的动能。
第55页/共90页
• z p u2 : 单位重量流体所具有的机械能。
第8页/共90页
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。
流体力学ppt课件

6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。
流体力学基础讲解PPT课件

措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功
令
HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准
流体力学ppt课件-流体动力学

g
g
2g
水头
,
z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.
流体力学基本知识 ppt课件

〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
流体力学基本知识
6
三、流体的压缩性和热胀性
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
流体力学基本知识
14
(三)流线与迹线
1.流线:流体运动时,在流速场中画出某时 刻的这样的一条空间曲线,它上面所有流 体质点在该时刻的流速矢量都与这条曲线 相切,这条曲线就称为该时刻的一条流线。
流体力学基本知识
26
四、沿程阻力系数λ和流速系数C的确定
沿程阻力系数λ 是反映边界粗糙情况和流态 对水头损失影响的一个系数。1933年尼古 拉兹表发表了其反映圆管流运情况的实验 结果,得出了一些结论:
1.层流区 2.层流转变为紊流的过渡区 3.紊流区
流体力学基本知识
27
(一)沿程阻力系数λ的经验公式 1.水力光滑区 2.水力过渡区 3.粗糙管区
2.迹线:流体运动时,流体中某一个质点在 连续时间内的运动轨迹称为迹线。流线与 迹线是两个完全不同的概念。非恒定流时 流线与迹线不相重合,在恒定流时流线与 迹线相重合。
流体力学基本知识
15
(二)恒定流与非恒定流
1.恒定流:流体运动时,流体中任一位置的 压强,流速等运动要素不随时间变化的流 动称为恒定流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x t 1
y t 1
x y 2 ——迹线方程(直线)
(3)若恒定流:ux=x,uy=-y
流线 xy 1 迹线 xy 1
注意:恒定流中流线与迹线重合
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
2.研究对象
运动流体质点或质点系。
y
3.运动描述
z
t
(x,y,z)
t0
O M (a,b,c) x
•位置:
x x(a,b,c,t)
y
y(a, b, c, t )
z z(a,b,c,t)
•流速:
ux
x t ,u y
y t ,uz
z t
•加速度:
ax
a y
a
z
2x
t 2 2 y
t 2 2z
Q AudA
•常用单位: m3/s或L/s •换算关系: 1m3=1000L
2.断面平均流速
•过流断面上实际的点流速分布都是不均匀的
•在工程流体力学中,为简化研究,通常引入断面平 均流速概念
v Q AudA
AA
六、均匀流与非均匀流、渐变流
1.均匀流 (u )u 0
即迁移加速度等于零。各流线为彼此平行的直线。
三、流线与迹线
•迹线:同一流体质点在不同时刻的运动轨迹。
时间为变量。
•流线:流场中同一时刻与许多流体质点的流速
矢量相切的空间曲线。
•时间为参变量。
u1
u2
12 3
u6
u3
6 u5
5
u4
4
2.基本方程
•流线:
u ds 0或 dx dy dz ux uy uz
•迹线:
dx dy dz dt ux uy uz
t 2
式中:a,b,c为运动流体质点的起点坐标
a,b,c,t称为拉格朗日变量
固体运动常采用拉格朗日法研究,但流体运动一般较固体 运动复杂,通常采用欧拉法研究。
二、欧拉法
1.方法概要
着眼于流体经过流场中各空间点时的运动情况,并 通过综合流场中所有被研究空间点上流体质点的运动要 素及其变化规律,来获得整个流场的运动特性。
• (u )u :迁移加速度或位变加速度,表示
流体质点所在空间位置的变化所引起的速度变 化率。
§3-2 研究流体运动的若干基本概念
一、恒定流与非恒定流
1.定义 •恒定流:() 0 ,即运动要素不随时间变化,当
t
地加速度为零,如枯水季节的河流。
•非恒定流:() 0 ,如洪水季节的河流。 t
二、一元流、二元流和三元流
2.非均匀流 (u )u 0
3.流线的主要性质
•一般情况下,流线不能相交,且只能是一条 光滑曲线;
•流场中每一点都有流线通过,流线充满整个流场, 这些流线构成某时刻流场内的流谱;
•恒定流动时,流线的形状、位置均不随时间发生变 化,且流线与迹线重合;
•对于不可压缩流体,流线簇的疏密程度反映了该时刻 流场中各点的速度大小。
[例2]已知速度ux=x+t,uy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
多元流的有限集合体。
3.过流断面
与流束中所有流线正交的横断面。
过流断面一般为曲面,在特殊情况下才是平面。
五、流量、断面平均流速
1.流量
单位时间内通过过流断面的流体量。 元量之和,即
解:(1)流线: dx dy
xt yt
积分: ln(x t)(y t) c
t=0时,x=-1,y=-1 c=0
xy 1
——流线方程(双曲线)
(2)迹线:
dx dt
xt
dy dt
yt
dx x t dt dy y t
x c1et t 1 y c2et t 1
dt
由t=0时,x=-1,y=-1 得 c1=c2=0
工程流体力学
第三章 流体动力学理论基础
第三章 流体动力学理论基础
§3-1 描述流体运动的方法 §3-2 研究流体运动的若干基本概念 §3-3 流体运动的连续性方程
第三章 流体动力学理论基础
§3-4 理想流体的运动微分方程及其积分 §3-5 伯努利方程 §3-6 动量方程
第三章 流体动力学理论基础 (6学时)
•流场:充满运动流体的空间(流体运动所有物理量场的总体)。
•运动要素:表征流体运动状态的物理量,如流速、加速度、
压强等。
2.研究对象
流场
z
t时刻
M (x,y,z) O
x
y
3.运动描述 ux ux (x, y, z,t)
•流速场: uy uy (x, y, z,t) uz uz (x, y, z,t)
若x,y,z为常数,t为变数 若t 为常数, x,y,z为变数
•压强场: p p(x, y, z,t)
•加速度场:
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
即 a du u (u )u dt t
一、本章学习要点:
•研究流体运动的若干基本概念
•流体的连续性方程 •流体运动微分方程 •伯努利方程及其应用 •动量方程及其应用
二、本章研究思路
理想流体( 0 )
三、基本理论
质量守恒定律 牛顿第二定律 动量定理
实际流体( 0)
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。
式中: x,y,z为流场中空间点的坐标 x,y,z,t称为欧拉变量
u uxi uy j uzk i j k 为哈密顿算子符
x y z
说明:
用欧拉法描述流体运动时,流体质点的 加速度由两部分组成:
• u :当地加速度或时变加速度,表示通过固 t
定空间点的流体质点速度随时间的变化率;
1.定义
运动要素是几个坐标的函数,就称为几元流动。
如: u f (x)或u f (s) 为一元流动
u f (x, y) 为二元流动 u f (x, y, z) 为三元流动
2.实际流体力学问题均为三元流动.但三元 流动问题研究较为困难,工程中一般根据具 体情况加以简化
3.工程流体力学主要研究一元流动
y t 1
x y 2 ——迹线方程(直线)
(3)若恒定流:ux=x,uy=-y
流线 xy 1 迹线 xy 1
注意:恒定流中流线与迹线重合
四、流管、流束、元流、总流、过流断面
1.流管
在流场中通过任意不与流线重合的封闭曲线上各 点作流线而构成的管状面。
2.流束
流管内所有流线的总和。流束可大可小,视流管 封闭曲线而定。
2.研究对象
运动流体质点或质点系。
y
3.运动描述
z
t
(x,y,z)
t0
O M (a,b,c) x
•位置:
x x(a,b,c,t)
y
y(a, b, c, t )
z z(a,b,c,t)
•流速:
ux
x t ,u y
y t ,uz
z t
•加速度:
ax
a y
a
z
2x
t 2 2 y
t 2 2z
Q AudA
•常用单位: m3/s或L/s •换算关系: 1m3=1000L
2.断面平均流速
•过流断面上实际的点流速分布都是不均匀的
•在工程流体力学中,为简化研究,通常引入断面平 均流速概念
v Q AudA
AA
六、均匀流与非均匀流、渐变流
1.均匀流 (u )u 0
即迁移加速度等于零。各流线为彼此平行的直线。
三、流线与迹线
•迹线:同一流体质点在不同时刻的运动轨迹。
时间为变量。
•流线:流场中同一时刻与许多流体质点的流速
矢量相切的空间曲线。
•时间为参变量。
u1
u2
12 3
u6
u3
6 u5
5
u4
4
2.基本方程
•流线:
u ds 0或 dx dy dz ux uy uz
•迹线:
dx dy dz dt ux uy uz
t 2
式中:a,b,c为运动流体质点的起点坐标
a,b,c,t称为拉格朗日变量
固体运动常采用拉格朗日法研究,但流体运动一般较固体 运动复杂,通常采用欧拉法研究。
二、欧拉法
1.方法概要
着眼于流体经过流场中各空间点时的运动情况,并 通过综合流场中所有被研究空间点上流体质点的运动要 素及其变化规律,来获得整个流场的运动特性。
• (u )u :迁移加速度或位变加速度,表示
流体质点所在空间位置的变化所引起的速度变 化率。
§3-2 研究流体运动的若干基本概念
一、恒定流与非恒定流
1.定义 •恒定流:() 0 ,即运动要素不随时间变化,当
t
地加速度为零,如枯水季节的河流。
•非恒定流:() 0 ,如洪水季节的河流。 t
二、一元流、二元流和三元流
2.非均匀流 (u )u 0
3.流线的主要性质
•一般情况下,流线不能相交,且只能是一条 光滑曲线;
•流场中每一点都有流线通过,流线充满整个流场, 这些流线构成某时刻流场内的流谱;
•恒定流动时,流线的形状、位置均不随时间发生变 化,且流线与迹线重合;
•对于不可压缩流体,流线簇的疏密程度反映了该时刻 流场中各点的速度大小。
[例2]已知速度ux=x+t,uy=-y+t 求:在t=0时过(-1,-1)点的流线和迹线方程。
•元流:流管封闭曲线无限小,故元流又称微元流束。 •总流:流管封闭曲线取在流场边界上,总流即为许
多元流的有限集合体。
3.过流断面
与流束中所有流线正交的横断面。
过流断面一般为曲面,在特殊情况下才是平面。
五、流量、断面平均流速
1.流量
单位时间内通过过流断面的流体量。 元量之和,即
解:(1)流线: dx dy
xt yt
积分: ln(x t)(y t) c
t=0时,x=-1,y=-1 c=0
xy 1
——流线方程(双曲线)
(2)迹线:
dx dt
xt
dy dt
yt
dx x t dt dy y t
x c1et t 1 y c2et t 1
dt
由t=0时,x=-1,y=-1 得 c1=c2=0
工程流体力学
第三章 流体动力学理论基础
第三章 流体动力学理论基础
§3-1 描述流体运动的方法 §3-2 研究流体运动的若干基本概念 §3-3 流体运动的连续性方程
第三章 流体动力学理论基础
§3-4 理想流体的运动微分方程及其积分 §3-5 伯努利方程 §3-6 动量方程
第三章 流体动力学理论基础 (6学时)
•流场:充满运动流体的空间(流体运动所有物理量场的总体)。
•运动要素:表征流体运动状态的物理量,如流速、加速度、
压强等。
2.研究对象
流场
z
t时刻
M (x,y,z) O
x
y
3.运动描述 ux ux (x, y, z,t)
•流速场: uy uy (x, y, z,t) uz uz (x, y, z,t)
若x,y,z为常数,t为变数 若t 为常数, x,y,z为变数
•压强场: p p(x, y, z,t)
•加速度场:
ax
ux t
ux
ux x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
即 a du u (u )u dt t
一、本章学习要点:
•研究流体运动的若干基本概念
•流体的连续性方程 •流体运动微分方程 •伯努利方程及其应用 •动量方程及其应用
二、本章研究思路
理想流体( 0 )
三、基本理论
质量守恒定律 牛顿第二定律 动量定理
实际流体( 0)
§3-1 描述流体运动的方法
一、拉格朗日方法
1.方法概要
着眼于流体各质点的运动情况,研究各质点 的运动历程,并通过综合所有被研究流体质点的 运动情况来获得整个流体运动的规律。
式中: x,y,z为流场中空间点的坐标 x,y,z,t称为欧拉变量
u uxi uy j uzk i j k 为哈密顿算子符
x y z
说明:
用欧拉法描述流体运动时,流体质点的 加速度由两部分组成:
• u :当地加速度或时变加速度,表示通过固 t
定空间点的流体质点速度随时间的变化率;
1.定义
运动要素是几个坐标的函数,就称为几元流动。
如: u f (x)或u f (s) 为一元流动
u f (x, y) 为二元流动 u f (x, y, z) 为三元流动
2.实际流体力学问题均为三元流动.但三元 流动问题研究较为困难,工程中一般根据具 体情况加以简化
3.工程流体力学主要研究一元流动