流体力学PPT

合集下载

流体力学流体动力学完美版PPT

流体力学流体动力学完美版PPT

h ' h
气〔ρ〕-液〔ρ’〕 h ' h
解:水温40℃,汽化压强为7.38kPa 大气压强 pa 97.3103 10m
g 99.229.807
汽化压强
pgv 979.3.22891.803070.76m
p 12 v 1 2 ag 注z2意 z :1 z 2-p z2 1 ——2 v 2 2 下 游p 断w面高 度减上游断面高度〔±〕; ——用相对ρ压a-ρ强—计—算外的界气大体气伯密努度利减方管程内
常与连续性微分方程 ux uy uz 0 联立 x y z
2.粘性流体运动微分方程〔粘性作用→切应力〕
f 1 p 2 u d u u u u d t t
——纳维-斯托克斯方程〔N-S方程〕
分量式
X 1 p x 2 u x u tx u x u x x u y u y x u z u z x
pAagz2z1v 2 29v 2 2
1 9 2 .8 1 .2 0 .8 9 .8 4 0 0 0 .8 v 2 9 0 .8 v 2
2
2
1 1 18 528 .6 7 2.48 即 27 2 6.6 724 .48
Y 1 p y 2 u y u ty u x u x y u y u y y u z u z y Z 1 p z 2 u z u tz u x u x z u y u y z u z u z z
元流的伯努利方程
1.理想流体元流的伯努利方程 〔1〕推导方法一
将〔1〕、〔2〕、〔3〕各式分别乘以dx、dy、 dz,并相加
g 2g
单位重量流体的机械能守恒〔总水头不变〕
2.粘性流体元流的伯努利方程
z1pg 12 u1 g 2 z2pg 22 ug 2 2hw'

流体力学PPT

流体力学PPT

牛顿内摩擦定律表明: 切应力与速度梯度成正比;比例系数称动力粘度。
第 20 页
职教
绪论——1.2流体的主要力学性质 3、流体的粘度
——表示流体粘滞性大小
du dy
(1) 动力粘度

( Pa s)
P(泊) 1P 0.1Pa s
(2) 运动粘度

(m 2 / s )
St : cm2 / s
/ p
β↑,压缩性↑
可知: 液体β很小
第 26 页
职教
绪论——1.2流体的主要力学性质 弹性系数: 压缩系数的倒数
E 1

第 27 页
职教
绪论——1.2流体的主要力学性质 (2)液体的热胀性 热胀系数:压强不变时,单位温度变化所引起的 体积或密度的相对变化率
V / V a T
第 21 页
职教
绪论——1.2流体的主要力学性质 4、粘性的影响因素
粘度 液体 气体
流体种类 流体温度
o 气体 温度
液体:分子内聚力是产生粘度的主要因素。 温度↑→分子间距↑→分子吸引力↓→内摩擦力↓→粘度↓ 气体:分子热运动引起的动量交换是产生粘度的主要因素。 温度↑→分子热运动↑→动量交换↑→内摩擦力↑→粘度↑
第 4 页
职教
绪论——1.1概述


重要的专业基础课程,该课程的目的是 为了学习专业课以及从事技术工作提供必要 的基础理论和实践技能
第 5 页
职教
绪论——1.1概述
主要内容
绪论 流体静力学 不可压缩一元流体动力学 流动阻力和能量损失 管路计算 附面层与绕流阻力 孔口、管嘴出流和气体射流
第 6 页
职教

流体力学课件(全)

流体力学课件(全)
X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。

流体力学ppt

流体力学ppt

概念引入: 概念引入:
位置水头 :z 压强水头 :p/γ 测压管水头 :z+p/γ=C 同一容器内静止液体中, 同一容器内静止液体中, 测压管水头均相等。 测压管水头均相等。
三、压强的表示方法和度量单位
1、表示方法
(1)绝对压强Pj:以绝对真空为零点。 绝对压强P 以绝对真空为零点。 相对压强P 以大气压P 为零点。 (2)相对压强P: 以大气压Pa为零点。 工程中,通常采用相对压强, 可正可负。 工程中,通常采用相对压强,P可正可负。 绝对压强与相对压强的关系: 绝对压强与相对压强的关系:P=Pj–Pa P 为正值时: 称为正压(表压, P为正值时:Pj>Pa,称为正压(表压,即压力表 读数)。 读数)。 为负值时: 称为负压( P为负值时:Pj<Pa,称为负压(负压的绝对值称 真空度,即真空表读数)。 真空度,即真空表读数)。 真空度(只能是正值) 真空度(只能是正值):Pk=Pa-Pj=-P
§1-1 流体的主要力学性质 -
一、惯性
定义:惯性是物体维持原有运动状态的性质。 定义:惯性是物体维持原有运动状态的性质。 质量:表征惯性的物理量。 质量:表征惯性的物理量。 流体的质量:常以密度来反映。 流体的质量:常以密度来反映。 密度:对于均质流体, 密度:对于均质流体,单位体积的质量称为密度 ρ = m /V ,即: 重度:对于均质流体, 重度:对于均质流体,单位体积的流体所受的重 力称为流体的重力密度,简称重度。 力称为流体的重力密度,简称重度。 即:
h= p
γ
一标准大气压: 一标准大气压: 三种压强换算关系: 三种压强换算关系: 压强换算关系
101325 N / m 2 h= = 10.33m 3 9807 N / m

流体力学ppt课件

流体力学ppt课件
6
三、特例 ❖ 火箭在高空非常稀薄的气体中飞行以及高真空技术中,如真空泵,其分子距与设备
尺寸可以比拟,不再是可以忽略不计了。这时不能再把流体看成是连续介质来研究。 ❖ 流体性质有局部突变时,如汽化。 ❖ 研究区域很小时。
7
第三节 作用在流体表面上的力 表面力 质量力
两类作用在流体上的力:表面力和质量力
M V d M V d d V 0
V dV d
E1 pd1V 1d d p0.0 1% 25 140 2.5 18P 0 a
Vdp
13
二、流体的膨胀性 当压强一定时,流体温度变化体积改变的性质称为流体的膨胀性,膨胀性的大小用
温度膨胀系数来表示。 1.膨胀系数
单位温度增加所引起的体积相对变化量
17
三种圆板的衰减时间均相等。 库仑得出结论:衰减的原因,不是圆板与液体之间的相互摩擦 ,而是液体内部的摩擦 。
18
2.牛顿内摩擦定律
(1) 牛顿平板实验
当h和u不是很大时,两平板间沿y方向的流速呈线性分布,
uUy 或duUdy
h
h
h
dy
y U
uu+du
y
dudt
Aa
Bb
o
dy
d
d(dud)/tdtdu
3
第二节 流体作为连续介质的假设 问题的引出:
微观:流体是由大量做无规则热运动的分子所组成, 分子间存有空隙,在空间是不连续的。 宏观:一般工程中,所研究流体的空间尺度要比分子 距离大得多。
4
一、流体的连续介质假设 定义:不考虑流体分子间的间隙,把流体视为由
无数连续分布的流体微团组成的连续介质。这就是1755年欧拉提出的“连续介质 假设模型”。

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

流体力学ppt课件-流体动力学

流体力学ppt课件-流体动力学

g
g
2g
水头

z
p
g
v2
2g
总水头, hw 水头损失
第二节 热力学第一定律——能量方程
水头线的绘制
总水头线
hw
对于理想流体,总水
1
v12 2g
2
v22 2g
头线是沿程不变的,
测压管水头线
p2
为一水平直线,对于
g
实际流体,总水头沿 程降低,但测压管水
p1 g
头线沿程有可能降低、
z2
不变或者升高。
z1
v2 A2 e2
u22 2
gz2
p2
v1A1 e1
u12 2
gz1
p1
微元流管即为流线,如果不 可压缩理想流体与外界无热 交换,热力学能为常数,则
u2 gz p 常数
2
这个方程是伯努利于1738年首先提出来的,命名为伯努利 方程。伯努利方程的物理意义是沿流线机械能守恒。
第二节 热力学第一定律——能量方程
皮托在1773年用一根弯成直角的玻璃管,测量了法国塞纳河 的流速。原理如图所示,在液体管道某截面装一个测压管和 一个两端开口弯成直角的玻璃管(皮托管),皮托管一端正 对来流,一端垂直向上,此时皮托管内液柱比测压管内液柱 高h,这是因为流体流到皮托管入口A点受到阻滞,速度降为 零,流体的动能变化为压强势能,形成驻点A,A处的压强称 为总压,与A位于同一流线且在A上游的B点未受测压管的影 响,其压强与A点测压管测得的压强相等,称为静压。
第四章 流体动力学
基本内容
• 雷诺输运公式 • 能量方程 • 动量方程 • 流体力学方程应用
第一节 雷诺输运方程
• 前面解决了流体运动的表示方法,但要在流 体上应用物理定律还有困难.

《流体力学基础》课件

《流体力学基础》课件

流体力学的发展与前景
流体力学的历史
流体力学的发展可以追溯到古代,如亚历山大在水力学方面的研究奠定了基础。
流体力学的现状
随着计算机和数值模拟技术的发展,流体力学得到了迅速进展,推动了各个领域中的应用。
流体力学的未来
未来的流体力学研究将继续突破技术限制,深入探索流体力学领域中的未知,并应用于更多 的实际问题。
《流体力学基础》PPT课 件
流体力学是研究流体力学的基本原理和应用的学科。它涉及到流体的运动、 特性和行为,以及在各个领域中的应用。
流体力学的定义
什么是流体力学?
流体力学研究流体在宏观上的物理性质和运动规律,包括流体的压力、密度、速度、流量等。
为什么流体力学重要?
流体力学是解决涉及流体的问题和设计各类工程设备的基础,对于工程、天文学和生物学等 领域都具有重要意义。
3
流体的流动行为
流体在管道、河流、以及涡流等情况下,会产生不同的流动行为,如旋涡、沉积 和分层等。
应用案例介绍
流体力学在工程中的应用
流体力学在建筑物、水利工程、 飞行器设计等领域中有着广泛 的应用,帮助解决各种流体相 关的问题。
流体力学在天文学中的 应用
天文学中的星系、恒星和行星 的运动,以及宇宙中物质的分 布都与流体力学有着密切的关 系。
流体力学在生物学中的 应用
生物中的血液循环、鱼类的游 泳、鸟类的飞行等现象都受到 流体力学的影响,帮助揭示生 物机制。
流体力学研究的挑战
1 流体力学领域的未解之谜
2 流体力学研究的技术难题
尽管流体力学取得了许多成果,但仍有一ห้องสมุดไป่ตู้些现象和问题,如湍流、颗粒流等,尚未 完全理解。
流体力学研究需要借助先进的计算方法、 实验设备和数值模拟技术,来解决复杂的 流体问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7 液体的相对平衡
一圆桶中盛有水,静止时自由面为______ 当圆桶以匀加速度作水平运动时,自由
面为_______。当圆桶以匀角速度绕中心轴 作等速旋转时,自由面为_______。 A、斜面 B、曲面 C、水平面
流体力学
液体的相对平衡2
匀加速度直线运动
X= -a g
a
x
流体力学
等角速转动液体的平衡1
静止流体受力平衡
f xyz pxyz 0
静止流体平衡方程-欧拉平衡方程
1 f p 0

静止流体中压强的变化由质量力引起
流体力学
流体平衡的微分方程式2
静止流体平衡方程-欧拉平衡方程
1 fx 1 fy 1 fz
流体力学
几何意义和能量意义1
流体静压强分布的另一种表达方式

dp g dz
p gz const
流体力学
几何意义和能量意义2
z p

C
同一种静止流体中任意点的z + p/ 总是常数
几何意义
位势头或 位置水头
z
流体力学
几何意义和能量意义3
p
测压管高度 或压强水头
2.4 压强测量
基准
绝对真空 当地大气压强
绝对压强 p
流体力学
计示压强 (表压) pm
真空压强
pv
绝对压强、表压、真空压强
绝对压强总为正 表压有正有负
pm p pa
表压为负,取其绝 对值,为真空压强
pv pa p
流体力学
相互关系
+ 计示压强 绝对压强 = 地方大气压强 - 真空压强
三、压强测量
四、作用在壁面上的流体静压力
流体力学
2.1 作用在流体上的力
质量力
作用在流体的每个质点上
ΔV
Pn
n
ΔS
大小与流体质量成正比
重力、惯性力等 单位质量力
流体力学
F
V
s
F f lim V 0 V
m/s2
作用在流体上的力2
表面力
作用在流体的封闭界面上
非惯性系,相对静止问题
流体相对于运动坐标系静止,质点间无相 对运动,流体与器壁间也无相对运动 相对静止平衡微分方程
1 f p 0

流体力学
等角速转动液体的平衡2
单位质量力
z y -ay -a
x
θ
-ax
fx 2x
f y 2 y
fz g
流体力学
-a
g f
等角速转动液体的平衡3
(1) 闸门所受总压力
F ps ghC A
(2) 压力中心
I xC g sin y D yC ps g sinyC A
力势函数
W (x, y, z)
W W W fx , fy , fz x y z
流体力学
等压面
p const
W const
z
f
等压面即为等势面
O x
ds
y
等压面微分方程
dW f ds 0
等压面处处与质量力合力垂直
流体力学
2.3 重力场中的平衡流体

10 0.25 24 yD sin60 10 sin60 0.25 22
m 11.6366
2) 求力矩
M F yD yC 1.07 105 N m
流体力学
平面上的流体静压力-例题2
例:如果假设水箱是封闭的,自由液面上压力ps = 50kPa(表压),其他条件几何尺寸均和上例 相同,试重新求解上题。
流体力学
流体力学 流体的宏观平衡
流体的运动规律
流体静力学
流体动力学
流体力学
第二章
流体静力学
流体处于平衡时 的力学规律 流体质点间不 存在相对运动
流体静力学
绝对静止
静止
相对静止
基础知识
作用在流体上的力,不可压缩流体
流体力学
流体静力学概述
一、流体静压强及其特性 二、重力场中流体静压强的分布
静止流体平衡微分方程、等压面
代入方程
1 p x 0 x 1 p 2 y 0 y 1 p g 0 z
2
流体力学
等角速转动液体的平衡4
等压面
z
2
2g
r2 C
一族旋转抛物面 自由面
z
流体力学
2
2g
r2
z = 0, r = 0
等角速转动液体的平衡5
压强分布
p
dp 2 xdx 2 ydy gdz
流体中某点在压强作用 下流体沿测压管上升的 高度
z p
测压管水头或水静能头H
测压管内液面相对于基准面的高度
流体力学
几何意义和能量意义4
z p C
同一种静止流体中各点水静能头均相等 测压管静水头线 连接各点测压管水 头的液面线为水平 直线
流体力学
几何意义和能量意义5
能量意义
z
p z p
被测点
相界面
等高的两点必须在连 通的同一种液体中
沿液柱向上,压强减小。 液柱向下,压强增大 流体力学
U型管测压计2
U型管测压计特点 测量范围较大 可测量气体压强
pAm 2 gh2 1 gh1 2 gh2
可测量真空压强
指示液不能与被测液体掺混
流体力学
U形管测压计3
例:如图所示多管式压强计,若 B 容器中空气 的表压 p = - 2.74104Pa , h = 500mm, h1 = 200mm,h2 = 250mm,h3 = 150mm,求容器A 上部的表压
解: 1) 闸门所受总压力
F g hC A
1 10 9.8 10 42 1.23 10 6 N 4
3
压力中心位于OO’上
I xC y D yC yC A
F
由 I xC
流体力学
1 4 d 4
平面上的流体静压力-例题1
yC hC sin60
B、相同
C、与形状有关
流体力学
平面上的流体静压力-例题
例:水箱倾斜壁面上有一直径为4m的圆型闸门 该闸门可以围绕通过圆心的水平轴旋转, 轴位于水面以下10m处。 求: 1) 闸门所受总压力
2)为使闸门不旋转需施
加的力矩大小设水密
度 = 1000kg / m3,
壁面倾斜角为60º
流体力学
平面上的流体静压力-例题1
p
B
ΔS
s
流体力学
流体静压强的特性2
静止流体任意点处静压强的大小与其作 用面方位无关,只是作用点位置的函数 质量力
1 f dxdydz 6
py
dx z C
dz
表面力
1 p x dydz 2
流体力学
O
dy
B y
1 p y dxdz 2
A x
pz
流体静压强的特性2
表面力
1 pz dxdy 2
均质不可压缩流体
dp g dz
= 常数
p1 p2 gh
z2 与自由面等高
p pa gh
流体力学
不可压缩流体压强分布2Βιβλιοθήκη 公式的意义p p2 gh
在铅垂方向,压强与淹深成线性关系 等压面为水平面
p1 pa gh
密度为 ,高度为 h 的一段液柱的重量
流体力学
大气压强的测量
pv
大气压强随当地经纬 度,海拔高度及季节 时间的不同而不同
pa
H
1标准大气压 1.013105Pa
H 760mmHg
流体力学
水银气压计
压强的单位
2 国际单位制: 1Pa 1N / m。
工程单位制:大气压(at、atm), 巴(bar), 液柱高度。
1atm = 1.013105Pa = 760 mm(Hg) = 10.33 m(H2O)
pnA
z C
所受合力为零
py
dz
O
dy
B y
p f x, y, z
x
dx A
pz
p f x, y, z 理想流体中压强的特性? 理想流体压强
流体力学
流体静压强的特性3
流体静压强的方向垂直于 作用面,并指向流体内部
静止流体任意点处静压强的大小与其作 用面方位无关,只是作用点位置的函数
流体力学
2.2 流体平衡的微分方程式
质量力 f xyz
表面力
z
p 1 p z z 2
z
p 1 p x x x 2
y
p 1 p y y 2
O(p)
y
x
p 1 p y y 2
p 1 p x x 2
流体力学
p 1 p z z 2
流体平衡的微分方程式1
流体力学
作用在平面上的流体静压力1
均质平板形心
xC 1 xdA A A yC 1 ydA A A
y x dA (xc , yc)
X
A 对 x 轴的惯性矩
I x y 2dA
A
Y
惯性矩移轴定理
I x I xc y A
2 C
Ixc为A对通过形心并与x 轴平行的轴的惯性矩
流体力学
ΔV
Pn
n
ΔS
大小与流体表面积成正比
压力、摩擦力等
F
V
相关文档
最新文档