行程问题(三)

合集下载

第27讲 行程问题(三)

第27讲 行程问题(三)

第27讲:行程问题(三)行程问题注意:1、相遇问题的数量关系式:速度之和×时间=全程2、追击问题的数量关系式:速度之差×时间=差距3、在水流中航行问题数量关系式:顺水速度=船速+水速,逆水速度=船速-水速4、火车过桥问题:火车过桥所用时间=(火车长+桥长)÷平均速度1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11后相遇,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米 ?解:AB距离=(4.5×5)÷(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4相遇时货车行全程的4/9 此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36 那么全程=28÷(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7那么4小时就是行全程的4/7 所以乙行一周的时间=4÷(4/7)=7小时4、甲乙两人同时从A地步行走向B地,当甲走了全程的1/4时,乙离B地还有640米,当甲走余下的5/6时,乙走完全程的7/10,求AB两地距离是多少米?5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?6、甲,已两人要走完这条路,甲要走30分,乙要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么再有(11/20)÷(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72÷12=6小时追上甲8、甲乙两人分别从相距36千米的AB两地同时出发,相向而行,甲从A地出发至1千米时,发现有物品遗忘在A地,便立即返回,取了物品又立即从A地向B地行进,这样甲、乙两人恰好在A,B两地的中点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇时相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇,那么需要时间=(400-100)÷100=3小时已经相遇,那么需要时间=(400+100)÷100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。

小学数学四年级 行程问题(三)追及问题教案 例题+练习+作业+答案

小学数学四年级 行程问题(三)追及问题教案 例题+练习+作业+答案

行程问题(三)知识点总结:1:路程差÷速度差=追及时间。

2:速度差×追及时间=路程差。

3:路程差÷追及时间=速度差。

【例题精讲】第一关1-1甲、乙两地相距300 千米,一列慢车从甲地出发,每小时行驶70 千米,同时一列快车从乙地出发,每小时行驶100 千米。

如果两车同向行驶,慢车在前,快车在后,经过多长时间快车可以追上慢车?【答案】300÷(100-70)=10小时【例题小结】追及时间=路程差÷速度差。

1-2 甲、乙两辆列车从相距150 千米的A、B 两地同时出发,向C 城驶去,乙车在前,甲车在后,行驶10 小时后甲车追上乙车,乙车每小时行驶45 千米,甲车每小时行驶多少千米?【答案】150÷10=15(千米/小时)45+15=60(千米/小时)【例题小结】速度差=路程差÷追及时间。

过关练习A1 甲、乙两人分别从相距24 千米的两地同时向东行驶,甲骑自行车每小时行驶13 千米,乙步行每小时走5 千米,几小时后甲可以追上乙?【答案】24÷(13-5)=3小时【解析】追及时间=路程差÷速度差。

A2 一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一方向前进,摩托车在前,每小时行驶25 千米,汽车在后,每小时行驶60 千米,经过4 小时汽车追上摩托车。

求甲、乙两地相距多少千米?【答案】(60-25)×4=140千米【解析】追及路程=速度差×追及时间。

B1 甲地和乙地相距40 千米,旭旭和曼曼由甲地骑车去乙地,曼曼每小时行驶14 千米,旭旭每小时行驶17 千米,当曼曼走了6 千米后,旭旭才出发,当旭旭追上曼曼时,距乙地还有多少千米?【答案】6÷(17-14)=2小时,40-2×17=6千米【解析】可以先求出追及时间,总路程减去旭旭所走的路程就是距乙地的路程。

B2 甲、乙两人分别在相距240 千米的A、B 两地乘车同时出发,相向而行,3 小时相遇。

一元一次方程应用题专题——行程问题3

一元一次方程应用题专题——行程问题3

一元一次方程应用题专题讲解---行程问题【基本关系式】(1) 行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间(2) 基本类型① 相遇问题:快行距+慢行距=原距② 追及问题:快行距-慢行距=原距③ 航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。

常见的还有:相背而行;环形跑道问题。

例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。

解:设快车开出x 小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 ,23161 x 答:快车开出23161小时两车相遇 (2)分析:相背而行,画图表示为: 等量关系是:两车所走的路程和+480公里=600公里。

解:设x 小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x=2312 答:2312小时后两车相距600公里。

(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

第19讲 行程问题三-完整版

第19讲  行程问题三-完整版

第19讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑。

在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律。

典型例题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校,如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?答案:每分钟159米解析:注意到莉莉与莎莎两人同时从家出发,同时到达学校,而且两人在途中都没有停留,因此两人用去的时间相同.当运动时间相同时,速度的倍数关系等于路程的倍数关系.如图,莉莉步行从家到学校,走的路程是家与学校的距离.在相同的时间内,莎莎骑车到学校,又马上从学校返回家,再回到学校,经过的路程是家与学校距离的3倍,因此莎莎骑车的速度是莉莉步行速度的3倍,由于莉莉每分钟走53米,所以莎莎骑车的速度是每分钟53×3=159米.2.小燕上学时骑车?回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟,求小燕往返都骑车所需的时间.答案:30分钟解析:如图,因为小燕往返都步行需要70分钟,所以她步行从学校回到家需要70÷2=35分钟.由于小燕上学时骑车,回家时步行需要50分钟,所以她骑车从家到学校需要50-35=15分钟,那么她往返都骑车需要15×2=30分钟.3.萱萱和卡莉娅从距离32千米的两地同时出发相向而行,萱萱每小时走4千米,卡莉娅乘坐“飞天扫帚”,每小时飞12千米,她俩迎面相遇后,卡莉姬发现自己忘记带东西了,立刻返回出发点,再掉头向萱萱前进.请问:她们第二次相遇的地点距离卡莉娅的出发点多少千米?答案:12千米解析:第一次相遇时卡莉娅走了32÷(4+12)×12=24(千米).从第一次相遇到第二次相遇,两人又合走了24×2=48(千米).这期间萱萱又往前走了48÷(4+12)×4=12(千米).因此第二次相遇点离卡莉娅的出发点24-12=12(千米).4.培英学校和电视机厂之间有一条公路,原计划下午2点整培英学校派车去电视机厂接劳模来校作报告,往返需用1小时.实际上这位劳模在下午1点便提前离厂步行向学校走来,途中遇到接他的汽车,劳模便立刻上车去往学校,并在下午2点40分到达.问:汽车行驶速度是劳模步行速度的几倍?答案:8倍解析:如图,汽车下午2时从工厂出发,途中遇到迎面走来的劳模后立即返回,于2时40分回到工厂,汽车的速度不变,因此汽车遇到劳模的时间是2时20分,另一方面,汽车往返学校与工厂需要1小时,因此从学校到工厂单程行驶需要30分钟,也即如果汽车2时从学校出发,按计划将于2时30分到达工厂.所以汽车途中遇到劳模提前了10分钟返回,而少行驶的10分钟路程正是劳模步行了60+20=80分钟的路程。

四年级数学思维训练——行程问题(三)

四年级数学思维训练——行程问题(三)

四年级数学思维训练——行程问题(三)【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?【2】自行车队出发24分钟后,通信员骑摩托车去追他们。

在距出发点9千米处追上自行车队。

通信员立即返回出发点,然后又返回去追自行车队,在追上时恰好离出发点18千米,求自行车队和摩托车的速度。

【3】某学校与某工厂之间有一条公路,该校下午2点钟派车到工厂接劳模作报告,往返需要1小时,这位劳模在下午1点钟便离厂步行去学校,途中遇到接他的车就立即上车驶往学校,于下午2点40分到达学校,汽车的速度是劳模步行速度的几倍?【4】家住郊外的工程师,每天在同一时候乘火车到达某站,这时工厂接工程师的汽车也同时到达,他乘车准时到达工厂。

有一天,工程师提前55分钟到某站,接他的汽车还未到,他就步行向工厂走去,在路上遇到接他的车,他再坐车,结果比平时提前10分钟到达工厂,问汽车的速度是工程师的几倍?【5】甲、乙两人在相距50米的A、B两端的水池里沿直线来回有用,甲的速度是1米/秒,乙的速度是2米/秒。

他们同时分别从水池的两端出发,来回游了10分钟,如果不计转向的时间,那么在这段时间内他们共相遇了多少次?【6】甲、乙两人在相距120米的直路上来回跑步,甲的速度为4米/秒,乙的速度为5米/秒。

如果他们同时分别从两个端点出发,且每人跑10分钟,问他们共相遇了多少次?【答案】【1】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上小明。

然后,爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米,问这时是几点几分?先得出小明的速度是时是爸爸速度的3倍.爸爸从家到第一次追上小明,小明走了4千米,若爸爸与小明同时出发,则爸爸应走出12千米,但是由于爸爸晚出发8分钟,所以只走了4千米,所以爸爸8分钟应走8千米.由于爸爸从出发到第二次追上小明共走了16千米,所以爸爸用了16分钟,此时离小明出发共用了8+16=24分钟,所以爸爸第二次追上小明时是8点32分【2】自行车队出发24分钟后,通信员骑摩托车去追他们。

六年级奥数第22讲:行程问题(三)

六年级奥数第22讲:行程问题(三)

行程问题(三)对于一些往返行程问题若用折线图来解,则会更形象、直观、简捷。

常用方法是借助时间比,作出运动轨迹图。

例1、甲、乙两人在相邻90米的直路上来回跑步,甲的速度是每秒跑3米,乙的速度是每秒跑2米。

问:如果他们同时分别从直路两端出发,当他们跑了10分钟时,在这段时间内共相遇多少次?做一做:甲、乙两名运动员同时从游泳池的两端相向下水,做往返游泳训练。

从池的一端到另一端,甲要游3分钟,乙要游3.2分钟。

两人下水后连续游了48分钟,求:一共相遇了多少次?例2、甲、乙两人同时从东镇出发,到相距90千米的西镇办事。

甲骑自行车每小时行30千米,乙步行每小时行10千米。

甲到西镇用1小时办完事情沿原路返回,途中与乙相遇。

问:这时乙走了多少千米?做一做:A、B两地相距60千米,甲、乙分别从A、B两地同时出发相向而行,甲的速度为20千米/时,乙的速度为30千米/时,两人到对方出发点休息1小时后立即折回。

问:两人再次相遇时跑B地多少千米?例3、甲、乙两车分别从A、B两地同时出发,在A、B之间不断地往返行驶。

已知甲车速度是15千米每小时,乙车速度是35千米每小时,并且甲、乙两车第三次相遇的地点与第四次相遇的地点恰好相距100千米,那么,A、B两地相距多少千米?做一做:甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断地往返行驶。

甲、乙两车的速度之比为3:7,并且甲、乙两车第1 996次相遇的地点和第1 997次相遇的地点恰好相距120千米。

(注:当甲、乙两车同向时,乙车追上甲车不算做相遇)那么A、B两地之间的距离是多少千米?例4、A、B两地之间公路长96千米,甲骑自行车自A往B行驶,乙骑摩托车自B往A行驶。

他们同时出发,经80分钟后两人相遇。

乙到A地后马上折回,在第一次相遇后40分钟追上甲。

乙到B地后又马上折回。

问:再过多长时间甲与乙又一次相遇?做一做:客、货两车分别从A、B两地同时出发,经过120分钟后两车相遇。

小学数学四年级行程问题(三)追及问题 PPT+作业+答案

小学数学四年级行程问题(三)追及问题  PPT+作业+答案

例题4
甲、乙两车相距48 千米,同时向西城出发,甲在前,乙在后。已知甲每小 时行驶40 千米,乙每小时行驶58 千米,当乙到西城时,甲距西城还有6 千 米,求乙到西城用了几个小时?
(48+6)÷(58-40)=3(小时)
答:乙到西城用了3小时。
小结:如果快车的人追上慢的人并且超过, 追及路程=路程差+最后的距离
练习10 甲、乙两车分别从A、B 两地出发,同向而行,乙车在前,
甲车在后。已知甲车比乙车提前出发1 小时,甲车的速度是76 千米/时,乙车的速度是60 千米/时,甲车出发4 小时后追上乙 车,求A、B 两地间的距离是多少千米?
(76-60)×3=48千米
48+76=124千米
答:A、B 两地间的距离是124千米。
旭旭步行上学,每分钟走75米。旭旭离家12 分钟后,爸爸发现他忘了 带文具盒,立刻骑自行车去追,每分钟骑175 米,爸爸出发多少分钟后 能追上旭旭?追上旭旭时他们离家有多远?
75×12=900米 900÷(175-75)=9分钟 9×175=1575米 答:爸爸出发9分钟后能追上旭旭,追上旭旭时他们离家,1575米。
练习5
旭旭和曼曼从相距1000 米的两地同时出发,同向而行,曼曼在前,每分
钟行驶90米,旭旭在后,每分钟行驶120 米,经过半小时后,两人相距多
少米? (120-90)×30=900米 1000-900=100米 答:经过半小时后,两人相距100米
练习6
动画片里熊大和熊二从相距1200 米的两地同时出发,同 向而行,熊大在前,每分钟行驶100 米,熊二在后,每分钟行 驶130 米,经过1 小时后,两人相距多少米?
例题3
一只狼和一只狗从相距500 米的两地同时出发,同向而行,狗在前,每分 钟行120米,狼在后,每分钟行140 米,经过多长时间它们第一次相距100 米?

四年级高思奥数之行程问题三 含答案

四年级高思奥数之行程问题三 含答案

第18讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑,在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律.典型问题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校.如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?2.小燕上学时骑车,回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟.求小燕往返都骑车所需的时间.3.一天,小悦到离自己家4000米的表哥家去玩.早晨7:20时,小悦从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到小悦家后才发现小悦已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上小悦后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了? 4.培英学校和电视机厂之间有一条公路,原计划下午2点时培英学校派车去电视机厂接劳模来校作报告,往返需用1小时.实际上这位劳模在下午l点便提前离厂步行向学校走来,途中遇到接他的汽车,劳模便立刻上车去往学校,并在下午2点40分到达问:汽车行驶速度是劳模步行速度的几倍?5.快车和慢车分别从甲、乙两地同时开出,相向而行,经过4小时在途中相遇.相遇后两车继续向前行驶.慢车到达甲地后停留1小时再返回乙地.快车到达乙地后停留2.5小时再返回甲地.已知慢车从乙地到甲地用了12小时,那么两车从第一次相遇到第二次相遇需要多长时间?6.甲、乙两车分别从相距300千米的A,B两地同时出发,在A、B两地之间不断往返行驶.已知甲车的速度是每小时30千米,乙车的速度是每小时20千米.请问:(1)出发后经过多长时间甲、乙两车第一次迎面相遇?(2)第一次迎面相遇后又经过多长时间甲、乙两车第二次相遇?(3)第二次迎面相遇后又经过多长时间甲、乙两车第三次相遇?7.甲、乙两车同时从A地出发,在相距300千米的A、B两地之间不断往返行驶.已知甲车的速度是每小时30千米,乙车的速度是每小时20千米.请问:(1)出发后经过多长时间甲、乙两车第一次迎面相遇?(2)第一次迎面相遇后又经过多长时问甲、乙两车第二次迎面相遇?(3)第二次迎面相遇后又经过多长时间甲、乙两车第三次迎面相遇?8.A、B两辆汽车从甲、乙两站同时出发,相向而行.在距甲站50千米处两车第一次迎面相遇,相遇后两车继续前进(保持原速)各自到达乙、甲两站后,立即沿原路返回.在距乙站30千米处两车第二次迎面相遇.问:甲、乙两站相距多远?若两车继续前进,则在何处第三次迎面相遇?9.A、B两辆汽车同时从甲地出发,在甲、乙两地间不断往返行驶.第一次迎面相遇距离甲地40公里,第二次迎面相遇距离乙地10公里.求甲、乙两地之间的距离.10.A、B两地是电车的两个起点站,每隔12分钟发一辆车,电车每小时行25千米.请问:(1)如果小明从A地坐电车去B地,那么他每隔多长时间会看见一辆电车迎面开来?(2)如果小明从B地步行走向A地,每小时行5千米,那么他每隔多长时间会看见一辆电车迎面开来?每隔多长时间会有一辆电车从后面超过他?拓展篇1. 甲、乙两人从同一个地点出发同向而行,甲比乙先出发.甲出发6分钟到达A地.此时乙距离起点150米.又过了3分钟乙到达A地,此时甲距离起点900米.问:乙比甲晚出发多长时间?2.自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队.然后通信员立即返回出发点;到达出发点后通信员又马上掉头去追自行车队,再次追上时恰好离出发点18千米.自行车队每分钟行多少千米?摩托车每分钟行多少千米?3.乌龟与兔子进行10000米赛跑,兔子的速度是乌龟的速度的5倍.当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉.兔子醒来时发现乌龟已经领先它5000米,于是奋起直追.当乌龟到达终点时,兔子仍落后100米.请问:兔子睡觉期间,乌龟跑了多少米?4. 甲、乙两车分别从A、B两地同时出发,相向而行,12小时后在C地相遇.相遇后,两车并不停顿,继续前进.甲车在相遇后继续行驶4小时到达B地,然后立即掉头以相同的速度返回A地.请问:(1)当甲车再次到达C地的时候,乙车还要再开几小时才能到达A地?(2)如果甲车从B地返回的时候不是原速返回,而是变慢了.而且当它经过C地的时候,乙车正好到达A地.甲车返回的速度是原来速度的多少倍?5.某科研单位每天派汽车早8点准时到工程师家接他上班.但今天早晨,工程师临时决定提前到单位,于是他没有等汽车来接,就自己步行去单位.步行途中遇到了前来接他的汽车,他马上上车赶到单位,结果发现比平时早到了30分钟,问:工程师上车时是几点几分?6.甲、乙两车分别从相距900千米的A,B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:(1)甲、乙两车第二次迎面相遇是在出发后多长时间?(2)第二次迎面相遇后又经过多长时间甲、乙两车第三次相遇?(3)甲车第一次从后面追上乙车是在出发后多长时间?7.甲、乙两车同时从A地出发,在相距900千米的A、B两地之间不断往返行驶.已知甲车的速度是每小时25千米,乙车的速度是每小时20千米.请问:(1)甲车第一次从后面追上乙车是在出发后多长时间?(2)甲车在第一次从后面追上乙车之后又经过多长时间第二次从后面追上乙车?(3)甲、乙两车第二次迎面相遇是在出发后多长时间?8.A、B两辆汽车分别从甲、乙两地同时出发,并在两地间不断往返行驶.两车在距离甲地40公里处第一次迎面相遇,在距离甲地10公里处第二次迎面相遇.求甲、乙两地之问的距离.9.甲、乙两人分别从A、B两地出发,在A、B两地之间不断往返行走.当甲走了3个来回的时候,乙恰好走了5个来回.在甲、乙两人行进的过程中,两人一共相遇了多少次?(迎面碰到和追上都算相遇)10.小明和小刚的速度分别为每分钟90米和每分钟70米.早上8:00他们分别从A、B两站同时出发,相向而行,第一次相遇后两人继续前进,分别到达B、A后返回并在途中第二次相遇.第二次相遇地点距离A、B两站的中点450米.从两人同时出发到第二次相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次相遇是几点几分?11.甲、乙两车分别从A、B两地同时出发,在A、B之间不断往返行驶.已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(两车同时到达同一地点即称为相遇)的地点与第四次相遇的地点恰好相距100千米.请问:两地之间的距离是多少千米?12.某人从甲地走往乙地.甲、乙两地之间有定时的公共汽车往返,而且两地发车的间隔都相等.他发现每隔6分钟开过来一辆去甲地的公共汽车,每隔12分钟开过去一辆去乙地的公共汽车.问:公共汽车每隔多少分钟从各自的始发站发车?超越篇1.每天早上7:30王经理都从家出发,由司机开车前往公司,8:00准时到达.然后司机开车原速返回王经理家.一天早上,王经理想要锻炼一下,因此中途下车走到公司,结果9:00才到.而司机8:10就已经回到王经理家中.请问:车速是王经理步行速度的多少倍?如果第二天,王经理仍然中途下车,但是下车地点比前一天距离公司要近一些,结果8:30就赶到了公司.司机回到王经理家应该是几点几分?2.一辆大轿车与一辆小轿车从甲地驶往乙地.大轿车的速度是小轿车速度的0.8倍.已知大轿车比小轿车早出发17分钟,但在两地中点停留了5分钟,然后继续驶往乙地;小轿车出发后中途没有停留,直接驶往乙地.最后小轿车比大轿车早4分钟到达乙地.已知大轿车是上午10点从甲地出发的,求小轿车追上大轿车的时间.3.A、B两地间相距950米.甲、乙两人同时由A地出发,并在A、B两地间往返行进.共行讲了40分钟.甲步行速度是每分钟40米,乙跑步速度是每分钟150米.那么甲、乙两人第几次迎面相遇时距B地最近,距离是多少米?4.甲、乙两车分别从A、B两地同时出发,在A、B两地间不断地往返行驶.甲车每小时行20千米,乙车每小时行50千米.已知两车第10次与第18次迎面相遇的地点相距60千米.问:A、B间的路程是多少千米?5.小明家在颐和园.如果他骑车到人大附中,每隔3分钟能见到一辆332路公共汽车迎面开来;如果他步行到人大附中,每隔4分钟能见到一辆332路公共汽车迎面开来.已知任意两辆332路汽车的发车间隔都是一样的,并且小明骑车速度是小明步行速度的3倍.请问:如果小明坐332路汽车到人大附中,每隔多少分钟能见到一辆332路公共汽车迎面开来?6.甲、乙两人分别从A、B两地出发,在A、B两地之间不断往返行进.当甲第3次到达B地的时候,乙恰好第5次回到了B地.请问:在甲、乙两人在行进的过程中,一共相遇了多少次?(迎面碰到和追上都算相遇)7.从电车总站每隔一定时间开出一辆电车.甲和乙两人在一条街上沿着同一方向步行.甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.问:电车总站每隔多少分钟开出一辆电车?8.A、B两地相距22.4千米.有一支游行队伍从A地出发,向B地匀速前进;当游行队伍队尾离开A地时,甲、乙两人分别从A、B两地同时出发.乙向A地步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾,……,当甲第5次追上队头时恰与乙相遇在距B地5.6千米处;当甲第7次追上队头时.甲恰好第一次到达B地,求此时乙离A地的距离.第18讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑,在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律.典型问题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校.如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?答案:159详解:视从家到学校的路程为一个全程,由题意知道莎莎到校,再返回家,再到学校,一共走了三个全程,在同样时间内莉莉走了一个全程,即莎莎速度是莉莉的三倍53×3=1592.小燕上学时骑车,回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟.求小燕往返都骑车所需的时间.答案:30分钟详解:视从家到学校的路程为一个全程,往返情况:骑车+步行=50步行+步行=70得知一个全程骑车比步行多用20分钟70-2×20=30分钟3.一天,小悦到离自己家4000米的表哥家去玩.早晨7:20时,小悦从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到小悦家后才发现小悦已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上小悦后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了?答案:差4分钟详解:表哥从自己家到小悦家的时间是4000/260=200/13分,在这段时间小悦行走了4000/260×60=12000/13米同时这个距离也是表哥要返回去追小悦时两个人之间的路程差,路程差÷速度差=追及时间,所以追及时间是4000/260×60/(260-60)=60/13分;追上小悦时距离小悦家的路程为60/13×260=1200米,这时距离表哥家还有4000-1200=2800米,走这2800米的速度为175米/分所以用的时间是2800÷175=16分,因此本题所用总时间分三部分从表哥家到小悦家的时间200/13,追及时间60/13,回去时间16,共200/13+60/13+16=36分钟20+36=56分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时行程问题(三)
姓名:
1.小华和小军家相距400米。

两人同时从家中出发在同一条路上行走,小华每分钟走60 米,小军
每分钟走70米,3分钟后两人相距多少米?
2.一队中学生前往某地进行军事训练,他们以每小时5千米的速度前进,走了6小时后,学校派秦
老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。

秦老师几小时可追上队伍?
追上时,队伍已行了多少路程?
3.学校组织四年级同学去东郊游玩,包了两辆达面包车从学校出发。

第一辆车速度是每小时30千
米,上午7:00出发,第二辆车晚开1小时,速度是每小时40千米,结果两辆车同时到达。

问:东郊风景区离学校多远?
4.龟兔赛跑,全程2000米。

龟每分钟爬25米,兔每分钟跑320米。

兔自以为速度快,在途中睡了
一觉,结果龟到终点时,兔离终点还有400米。

兔在途中睡了多长时间?
5.货车和客车同时由甲、乙两地相向而行,经过6小时相遇,相遇后客车再行5小时到达乙地。


知货车每小时行50千米,求甲、乙两地相距多少千米?
6.东、西两城相距35千米,甲、乙两人从东、西两城同时相向出发,甲每小时行4千米,乙每小
时行3千米。

乙出发时带一只狗,狗以每小时8千米的速度向甲走去,遇到甲又立即返回向乙走,遇到乙又立即返回向甲走,这样狗一直往返于甲、乙之间直到甲、乙两人相遇为止。

狗走了多少千米?。

相关文档
最新文档