FSK调制及解调实验报告
FSK调制及解调实验报告

FSK调制及解调实验报告FSK调制及解调实验报告一、实验目的1.深入理解频移键控(FSK)调制的基本原理和特点;2.掌握FSK调制和解调的实验方法和技能;3.通过实验观察和分析FSK调制解调的性能和应用。
二、实验原理频移键控(Frequency Shift Keying,FSK)是一种常见的数字调制方法,它利用不同频率的信号代表二进制数据中的“0”和“1”。
在FSK调制中,输入信号被分为两种频率,通常表示为f1和f2,分别对应二进制数据中的“0”和“1”。
FSK调制的基本原理是将输入的二进制数据序列通过频率切换的方式转换为高频信号序列。
具体来说,当输入数据为“0”时,选择频率为f1的信号进行传输;当输入数据为“1”时,选择频率为f2的信号进行传输。
解调过程中,接收端将收到的混合信号进行滤波处理,根据不同的频率将其分离,再通过低通滤波器恢复出原始的二进制数据序列。
三、实验步骤1.FSK调制过程(1) 将输入的二进制数据序列通过串并转换器转换为并行数据序列;(2) 利用FSK调制器将并行数据序列转换为FSK信号;(3) 通过高频信道发送FSK信号。
2.FSK解调过程(1) 通过高频信道接收FSK信号;(2) 利用FSK解调器将FSK信号转换为并行数据序列;(3) 通过并串转换器将并行数据序列转换为原始的二进制数据序列。
四、实验结果与分析1.FSK调制结果与分析在FSK调制实验中,我们选择了两种不同的频率f1和f2分别表示二进制数据中的“0”和“1”。
通过对输入的二进制数据进行FSK调制,我们成功地将原始的二进制数据转换为FSK信号,并可以通过高频信道进行传输。
在调制过程中,我们需要注意信号转换的准确性和稳定性,以确保传输的可靠性。
2.FSK解调结果与分析在FSK解调实验中,我们首先接收到了通过高频信道传输过来的FSK信号,然后利用FSK解调器将信号转换为并行数据序列。
最后,通过并串转换器将并行数据序列恢复为原始的二进制数据序列。
fsk实验报告

fsk实验报告实验报告:FSK调制与解调技术的研究引言FSK(Frequency Shift Keying)调制与解调技术是一种常见的数字调制与解调技术,广泛应用于无线通信、数据传输等领域。
本实验旨在研究FSK调制与解调技术的原理、特点以及相关应用。
一、FSK调制原理FSK调制是通过改变信号的频率来传输数字信息的调制技术。
其原理是将数字信号转换为两个不同频率的载波信号,分别代表二进制的0和1。
当数字信号为0时,载波信号的频率为f1;当数字信号为1时,载波信号的频率为f2。
通过这种方式,可以实现数字信号的传输。
二、FSK调制过程1. 数字信号转换:将待传输的数字信号转换为二进制形式。
例如,将“101010”转换为二进制序列101010。
2. 载波信号生成:根据FSK调制的要求,生成两个不同频率的载波信号。
例如,f1代表0,f2代表1。
3. 调制过程:将二进制序列与载波信号进行调制,即根据二进制序列的每个比特值选择相应的载波频率进行调制。
例如,对于二进制序列101010,选择f1、f2、f1、f2、f1、f2进行调制。
三、FSK解调原理FSK解调是将调制后的信号恢复为原始的数字信号的过程。
解调器通过监测信号的频率变化来识别二进制序列。
四、FSK解调过程1. 接收信号:接收经过传输的调制信号。
2. 信号分析:对接收到的信号进行频谱分析,确定信号的频率变化情况。
3. 频率判决:根据信号的频率变化情况,判断每个比特的值。
例如,当频率为f1时,判定为0;当频率为f2时,判定为1。
4. 信号恢复:将频率判决的结果恢复为原始的数字信号。
五、FSK调制与解调技术的特点1. 抗干扰能力强:由于FSK调制与解调是通过频率变化来传输和识别信号的,相对于其他调制技术,具有较强的抗干扰能力。
2. 带宽利用率高:FSK调制与解调技术可以将多个数字信号通过不同频率的载波信号进行传输,从而提高带宽利用率。
3. 实现简单:FSK调制与解调技术的原理相对简单,实现起来较为容易。
实验四 FSK调制与解调

FSK 调制解调一、实验目的1. 掌握FSK 调制器的工作原理及性能测试;2. 学习基于软件无线电技术实现FSK 调制、解调的实现方法。
二、 实验仪器1. RZ9681实验平台 2. 实验模块: ● 主控模块● 基带信号产生与码型变换模块-A2 ● 信道编码与频带调制模块-A4 ● 纠错译码与频带解调模块-A5 3. 信号连接线 4. 100M 四通道示波器三、实验原理3.1 FSK 调制电路工作原理2FSK (二进制频移键控,Frequency Shift Keying )信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0、1状态而变化。
2FSK 信号的产生方法主要有两种:一种采用模拟调频电路来实现;另一种采用键控法来实现,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元期间输出0f 或1f 两个载波之一。
FSK 调制和ASK 调制比较相似,只是把ASK 没有载波的一路修改为了不同频率的载波,如下图所示。
图3.3.2.1 FSK 调制电路原理框图上图中,将基带时钟和基带数据通过两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
-A图3.3.2.2 2FSK 调制信号波形示意图在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1和0)。
通常,FSK 信号的 表达式为:bc bbFSK T t t f f T E S ≤≤∆+=0)22cos(2ππ(二进制1)bc bbFSK T t t f f T E S ≤≤∆-=0)22cos(2ππ(二进制0)其中Δf 代表信号载波的恒定偏移。
FSK调制解调实验报告

FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。
同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。
二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。
在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。
在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。
实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。
2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。
3.通过示波器观察和记录已调制的FSK信号波形。
4.将已调制的信号通过电缆传输到解调器端。
5.调整解调器的参考频率和解调器的解调方式。
6.通过示波器观察和记录解调器输出的数字信号波形。
7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。
三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。
在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。
对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。
2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。
FSK调制及解调实验报告

FSK调制及解调实验报告1. 实验目的本次实验旨在了解FSK调制及解调原理,并通过实践掌握其实现方法。
主要内容包括:1.了解FSK调制及解调原理;2.掌握FSK调制解调的实现方法;3.验证FSK调制解调的正确性。
2. 实验原理2.1 FSK调制原理FSK调制就是将待传输的信息信号通过在不同的频率上进行调制,从而使信号能够在载波上传输的调制方式。
其基本原理如下:将准备发送的低频信号(m(t))的幅度等效为模拟式数字信号,通过频率劈裂产生两个频率分别为f1和f2的载波信号,然后将m(t)信号加到其中一个载波上,m(t)信号经过调制后,就可传送该信号f1载波的频段。
同理,m(t)信号也可以加到另一个载波上,这个信号就可以传送f2载波的频段。
具体的数学描述为:s(t)=Acos(2πf1t), (m(t)>=0);s(t)=Acos(2πf2t), (m(t)<0);其中,m(t)为信号的幅度,f1和f2分别是两个载波频率,A是使用的载波偏移量。
将传输的差分FSK信号转换为基频(F0)的正弦波信号,通过一个鉴频器(包括一个本振发生器、一个四象限乘法器和一个低通滤波器)将接收到的信号解调为原来的信号。
其基本原理如下:传输的信息被调制后后,接收的信号采用同样的方法分成两个部分,对每个部分分别进行解调,然后通过比较解调出来的两个信号的幅度大小即可得到原来发送的信息。
模块分为两个模块的组成,一个是FSK激励信号的发射模块,一个是FSK解调信号的接收模块。
fsk调制模块,由信号源、两路解调模块、FSK调制器和混频器组成, fsk解调模块,由前置放大、两路鉴频器、差分比较器、计数器等组成。
3. 实验装置及材料(1)信号发生器(2)示波器(3)功率放大器(4)低通滤波器(5)鉴频器(包括本振发生器、乘法器和低通滤波器)4. 实验过程及结果首先,对于fsk调制信号,我们搭建了一个基于ad654的fSK调制器,并通过示波器观察到了调制前后fsk波形的变化,确认了fsk信号的调制正确。
fsk调制与解调实验实验报告

fsk调制与解调实验实验报告FSK 调制与解调实验实验报告一、实验目的1、深入理解 FSK(频移键控)调制与解调的原理。
2、掌握使用相关实验设备和软件进行 FSK 调制与解调的方法。
3、观察和分析 FSK 信号在时域和频域的特性。
4、测量 FSK 系统的性能指标,如误码率等。
二、实验原理1、 FSK 调制原理FSK 是利用载波的频率变化来传递数字信息。
在二进制数字通信中,“1”和“0”分别用两个不同的频率 f1 和 f2 来表示。
当输入的数字信号为“1”时,输出频率为 f1 的载波;当输入数字信号为“0”时,输出频率为f2 的载波。
2、 FSK 解调原理FSK 解调方法主要有非相干解调(包络检波法)和相干解调(同步检波法)。
非相干解调是通过检测已调信号的包络变化来恢复原始数字信号;相干解调则需要在接收端产生与发送端频率相同的本地载波,通过相乘、低通滤波等操作恢复出原始数字信号。
三、实验设备及软件1、信号源用于产生不同频率的正弦波信号。
2、示波器用于观察输入输出信号的时域波形。
3、频谱分析仪用于分析信号的频谱特性。
4、通信原理实验箱集成了 FSK 调制与解调的模块。
5、相关软件用于数据处理和分析。
四、实验步骤1、连接实验设备按照实验原理图,将信号源、示波器、频谱分析仪和通信原理实验箱正确连接。
2、设置实验参数在信号源上设置 FSK 调制的两个频率 f1 和 f2,以及其他相关参数,如幅度等。
3、产生 FSK 调制信号通过实验箱中的调制模块,将输入的数字信号进行 FSK 调制,产生已调信号。
4、观察时域波形使用示波器分别观察输入的数字信号、已调信号的时域波形,记录其特点。
5、分析频域特性使用频谱分析仪观察已调信号的频谱,分析其频率分布情况。
6、进行解调通过实验箱中的解调模块对已调信号进行解调,恢复出原始数字信号。
7、测量性能指标测量解调后的数字信号的误码率等性能指标。
五、实验结果及分析1、时域波形分析输入的数字信号呈现高低电平的变化,而已调信号的幅度则随着数字信号的变化在两个不同的频率间切换。
FSK调制解调实验报告实验报告

FSK调制解调实验报告实验概述本次实验通过实际操作与测量,掌握FSK(频移键控)调制解调技术,理解如何在数字通信中实现数据的调制与解调。
实验原理FSK调制和解调是一种数字调制和解调技术,它采用离散值表示数据点,而不是模拟连续波形。
FSK调制是将比特流(0和1)编码成符号,通过改变载波频率发送给接收端。
在接收端,可以通过检测频率来恢复数据比特流。
在FSK调制中,使用两个不同的载波频率来表示“0”和“1”。
例如,我们可以使用频率f1代表“0”,使用频率f2代表“1”。
为了将比特编码成符号进行FSK调制,使用以下公式:$$s(t)={Acos(2\\pi f_1t), 0<t<T_b}$$$$s(t)={Acos(2\\pi f_2t), T_b<t<2T_b}$$其中,$T_b=\\frac{1}{R_b}$是一个码元的持续时间,R b是码元速率。
A是振幅,通常设置为1。
调制后的波形如下所示:FSK Modulation WaveformFSK Modulation Waveform在接收端,可以通过检测频率来恢复数据比特流。
实验步骤实验仪器准备1.两个信号发生器 AG3381B2.示波器DS 1054Z3.多用表实验操作步骤1.按照下图所示连接两个信号发生器以及示波器,具体如下:FSK Modulation Circuit DiagramFSK Modulation Circuit Diagram2.设置信号发生器1,调整以下参数,频率f1为2kHz 或 3kHz,振幅为2V。
3.设置信号发生器2,调整以下参数,频率f2为4kHz 或 6kHz,振幅为2V。
4.在示波器上显示两个信号波形,波形如下图所示:FSK Modulation Waveform SettingFSK Modulation Waveform Setting5.再次调整示波器参数,使得两个波形共同出现在示波器上,如下图所示:FSK Modulation Waveform DisplayFSK Modulation Waveform Display6.对实验数据进行记录和分析。
FSK调制解调实验报告_实验报告_

FSK调制解调实验报告一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。
观测基带数字和FSK(ASK)调制信号的频谱。
改变信噪比(S/N),观察解调信号波形。
四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK, OQPSK 等调制方式。
不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。
在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。
下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。
基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1、掌握用键控法产生FSK信号的方法。
2、掌握FSK非相干解调的原理。
二、实验器材
1、主控&信号源、9号模块各一块
2、双踪示波器一台
3、连接线若干
三、实验原理
1、实验原理框图
FSK调制及解调实验原理框图
2、实验框图说明
基带信号与一路载波相乘得到1电平的ASK调制信号,基带信号取反后再与二路载波相乘得到0电平的ASK调制信号,然后相加合成FSK调制输出;已调信号经过过零检测来识别信号中载波频率的变化情况,通过上、下沿单稳触发电路再相加输出,最后经过低通滤波和门限判决,得到原始基带信号。
四、实验步骤
实验项目一 FSK调制
概述:FSK调制实验中,信号是用载波频率的变化来表征被传信息的状态。
本项目中,通过调节输入PN序列频率,对比观测基带信号波形与调制输出波形来验证FSK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【FSK数字调制解调】。
将9号模块的S1拨为0000。
调节信号源模块的W2使128KHz载波信号的峰峰值为3V,调节W3使256KHz载波信号的峰峰值也为3V。
3、此时系统初始状态为:PN序列输出频率32KH。
4、实验操作及波形观测。
(1)示波器CH1接9号模块TH1基带信号,CH2接9号模块TH4调制输出,以CH1为触发对比观测FSK调制输入及输出,验证FSK调制原理。
(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。
实验项目二 FSK解调
概述:FSK解调实验中,采用的是非相干解调法对FSK调制信号进行解调。
实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证FSK解调原理。
观测解调输出的中间观测点,如TP6(单稳相加输出),TP7(LPF-FSK),深入理解FSK解调过程。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器分别观测9号模块TH1和TP6(单稳相加输出)、TP7(LPF-FSK)、 TH8(FSK解调输出),验证FSK解调原理。
3、以信号源的CLK为触发,测9号模块LPF-FSK,观测眼图。
五、实验报告
1、分析实验电路的工作原理,简述其工作过程;
(1)调制电路工作原理:输入的基带信号由转换开关转接后分成两路,一路控制256KHz 的载频,另一路经倒相去控制?168KHz的载频。
当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=256KHz,当基带信号为"0"时,模拟开关1关闭,模拟开关2开通。
此时输出f2=168KHz,于是可在输出端得到已调的FSK信号。
?电路中的两路载频(f1,f2)由内时钟信号发生器产生,经过开关送入。
两路载频分别经射随、选频滤波、射随、再送至模拟开关。
?
(2)解调电路的工作原理:已调信号经过过零检测识别出信号中载波频率是否发生变化。
经限幅、微分、整流后形成与频率变化相对应的尖脉冲序列,再经过脉冲展宽把这些尖脉冲变换成较宽的矩形脉冲以增大其直流分量,然后经过低通滤波器取出直流分量完成频率——幅度变换。
?
2、分析FSK调制解调原理。
频移键控是利用载波的频率变化来传递数字信息。
在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。
故2FSK可以看成是两个不同载频的2ASK信号的叠加。
解调原理是将2FSK信号分解为上下两路2ASK信号分别进行调解然后进行判决得到恢
复出的原始信号。
???。