中考数学第二轮复习专题个

合集下载

中考数学第二轮复习专题(14个)

中考数学第二轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

中考二轮复习专题分类中考数学作图型试题精讲

中考二轮复习专题分类中考数学作图型试题精讲

中考二轮复习——专题分类专题一、作图型试题例1、无锡已知图1和图2中的每个小正方形的边长都是1个单位.1将图1中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.2在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形. 知识点:考查学生平移变换,利用勾股定理进行三角形的有关计算,全等及相似三角形的判定; 精析:本题关键是计算出△ABC的三边的长度,然后找一个不等于1的相似比,比如相似比为2,计算出△DEF 三边长或计算出一边长后,利用平移得出△DEF;准确答案.1 2答案不唯一.中考对该知识点的要求:,点阵中对称点对称图形问题及利用格点进行面积计算已经成为最近几年中考试题的考点问题;目标达成:1-1-1、太原在4×4的正方形网格中,每个小方形的边长都是1;线段AB 和CD 分别是图1-1中1×3的两个矩形的对角线,显然AB ∥CD;请你用类似的方法画出过点E 且垂直于AB 的直线,并证明;1-1-2、连云港如图1-2,在55 的正方形网格中, 每个小正方形的边长都为1.请在所给网格中按下列要求画 出图形.图2F D E A B C 图1 A BC 图1A 1B 1C 1 图2F D EGF E D C BA图1-1-1(1) 从点A 出发的一条线段AB ,使它的另一个端点落在格点即小正方形的顶点上,且长度为22; 2以1中的AB 为边的一个等腰三角形ABC , 使点C 在格点上,且另两边的长都是无理数;3以1中的AB 为边的两个凸多边形,使它们都是中心对 称图形且不全等,其顶点都在格点上,各边长都是无理数. 1-1-3、宿迁如图1-3,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图一中四边形ABCD 就是一个“格点四边形”.1求图一中四边形ABCD 的面积;2在图二方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.图一 图二 1-1-4、潍坊如图,ABC ∆等的一个格点三角形.1-1-5ABCD.1画出1B 1C 1D 1使 1B 1C 1D 1与 2画出 A 2B 2C 2D 2,A 2B 2C 2D 2与3 A 1B 1C 1D 1与A 2B 2C 2D 2是对称图形吗若是,请在图上画出对称轴或对称中心图1-1-2图1-3 DCBAB例2、河南课改有一块梯形状的土地,现要平均分给两个农户种植即将梯形的面积两等分,试设计两种方案平分方案画在备用图上,并给予合理的解释;知识点:考查有关图形的面积计算问题;精析:一般对于简单的图形可直观的进行分割,而对于稍复杂的题目,是通过计算或是转化为三角形问题来解决的;准确答案:设梯形上、下底分别为a 、b,高为h;方案一:如图1,连结梯形上、下底的中点E 、F,则S 四边形ABFE =S 四边形EFCD =错误!方案二:如图2,分别量出梯形上、下底a 、b 的长,在下底BC 上截取BE =错误!a +b,连接AE,则S △ABE =S 四边形AECD =错误!;方案三:如图3,连结AC,取AC 的中点E,连结BE 、ED,则图中阴影部分的面积等于梯形ABCD 的面积的一半;分析此方案可知,∵AE =EC,∴S △AEB =S △EBC ,S △AED =S △ECD , ∴S △AEB +S △AED =S △EBC +S △ECD ,∴图中阴影部分的面积等于梯形ABCD 的面积的一半中考对该知识点的要求:对于图形分割,是历年来各省市的中考试题的一个考点也是难点之一;它要求学生除了考查学生的基础知识外,还能较好的考查学生的观察、分析、创新能力;目标达成1-2-1.贵阳在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1) 根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线 有 组;A B C DE F 图1A B C D E 图 2A B CD E 图 3ABCDABCDDCBAA B CD 备用图⑴ABCD备用图⑵图1-1-5图1-2-12请在图1-2-1的三个平行四边形中画出满足小强分割方法的直线; 3由上述实验操作过程,你发现所画的饿两条直线有什么规律1-2-2.梅州如图5,Rt ΔABC 中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形的等腰三角形;保留作图痕迹,不要求写作法和证明1-2-3.黄冈蓝天希望学校正准备建一个多媒体教室,计划做长120cm,宽30cm 的长条形桌面;现只有长80cm,宽45cm 的木板,请你为该校设计不同的拼接方案,使拼出来的桌面符合要求;只要求画出裁剪、拼接图形,并标上尺寸,设计出一种得5分,设计出两种再加1分1-2-4. 临沂小芸在为班级办黑板报时遇到了一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助她设计一个合理的等分方案.要求用尺规作出图形,保留作图痕迹,并简要写出作法.A B1-2-5. 2005年 佛山学校有一块如图所示的扇形空地,请你把它平均分成两部分.要求:用尺规作图,保留作图痕迹,写出作法,不用证明.能力提高:A B C A B C 图1-2-2 80cm 45cm 80cm 45cm1-1.常州如图,有一木制圆形脸谱工艺品,H 、T 两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D 处打一小孔.现在只有一块无刻度单位的直角三角板斜边大于工艺品的直径,请你用两种不同的方法确定点D 的位置画出图形表示,并且分别说明理由.1-2、武汉.用四块如图1所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形如图2,请你分别在图3、图4中各画一种与图2不同的拼法,要求两种拼法各不相同,且其中至少有一个图形既是中心对称图形,又是轴对称图形;1-3锦州如图,己知四边形ABCD,用尺规将它放大,使放大前后的图形对应线段的比为1:2.不写作法,但保留作图痕迹1-4.青岛某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛; 1若要使花坛面积最大,请你在这块公共区域如图内确定圆形花坛的圆心P ; 2若这个等边三角形的边长为18米,请计算出花坛的面积;AB C1-5.上海1在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ; 2在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1A BDC1-6.苏州如图,平行四边形纸条ABCD 中,E 、F 分别是边AD 、BC的中点;张老师请同学们将纸条的下半部分平行四边形ABEF 沿EF 翻折,得到一个V 字形图案;1请你在原图中画出翻折后的图形平行四边形A 1B 1FE ; 用尺规作图,不写画法,保留作图痕迹 2已知∠A=63°,求∠B 1FC 的大小;1-7.温州小明家用瓷砖装修卫生间,还有一块墙角面未完工如图甲所示,他想在现有的六块瓷砖余料中如图乙所示挑选2块或3块余料进行铺设,请你帮小明设计两种不同的铺设方案在下面图丙、图丁中画出铺设示意图,并标出所选用每块余料的编号;1-8.盐城已知:如图,现有的正方形和的矫形纸片若干块,试选用这些纸片每种至少用一次在下面的虚线方框中拼成一个矫形每两个纸片之间既不重叠,也无空隙,批出的图中必须保留拼图的痕迹,使批出的矫形面积为,并标出此矫形的长和宽;1-9.茂名一条小船,(1) 若把小船平移,使点A 平移到点B,请你在图中画出平移后的小船;(2) 若该小船先从点A 航行到达岸边L 的点P 处补给后,再航行到点B,但要求航程最短, 试在图中画出点P 的位置a b1-10.丽水某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. 1按圆形设计,利用图1画出你所设计的圆形花坛示意图;2按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; 3若想新建的花坛面积较大,选择以上哪一种方案合适请说明理由1-11. 曲沃-阳城在下面方格纸中设计一个对称图案,在这个图案中必须用到等腰三角形、正方形、圆三种基本图形;1-12、曲沃-阳城下面是天都市三个旅游景点的平面图,请你选用适当的方式借助刻度尺、量角器等基本作图工具,确定出三个景点的位置;图1 图2 A B C A B C1-13、深圳南山区平移方格纸中的图形如图13,使A 点平移到A ′点处,画出平移后的图形,并写上一句贴切、诙谐的解说词.解说词:一、作图型试题答案1-1-1.1-1-2.天都市旅游景点示意图 •碑林 •博物馆 •动物园 北 比例尺 0 5 10千米A · ·A ′ C'BACD 6C 6D 5C 5D 4C 4C 2D 1D 3C 3D 2C 1BA 第2题答图1 第2题答图21-1-3. 1方法一:S =12×6×4 =12方法二:S =4×6-12×2×1-12×4×1-12×3×4-12×2×3=122只要画出一种即可1-1-4. 只画出一个符合题意的三角形即可.1-1-5. 1如图,平行四边形A 1B 1C 1D 1,就是所求的平行四边形. -2如图,平行四边形A 2B 2C 2D 2,就是所求的平行四边形. 3是轴对称图形,对称轴是直线EF.1-2-1.1无数;2只要两条直线都过对角线的交点就给满分;3这两条直线过平行四边形的对称中心或对角线的交点; 1-2-2. 解:作法一:作AB 边上的中线; 作法二:作∠CBA 的平分线;作法三:在CA 上取一点D,使CD=CB;1-2-3.D 2C 2C 1D,D 1C O FEN M A 2A 1A B B 1B 2A B C DAB C DABC D1-2-4. 作法:1作AB 的垂直平分线CD 交AB 于点O ; 2分别以A 、B 为圆心,以AO 或BO 的长为半径画弧,分别交半圆干点M 、N ;3连结OM 、ON 即可.1-2-5. 解法一:1以O 为圆心,任意长为半径画弧,分别交OA 、OB 于C 、D 两点;2分别以C 、D 为圆心,大于CD 21的长为半径画弧,两弧交于E 点不与O 点重合;注:也可直接以A 、B 为圆心作图. 3射线OE 交弧AB 于F ; 则线段OF 将扇形AOB 二等分; 解法二:1连接AB ; 2分别以A 、B 为圆心,大于AB 21的长为半径画弧,两弧交于C 点不与O 点重合; 3连接OC 交弧AB 于D 点;则线段OD 将扇形AOB 二等分.能力提高:1-1③②①D LHTO反面D LH T O 反面反面OTHLC EFG D方法一:如图①,画TH 的垂线L 交TH 于D,则点D 就是TH 的中点;依据是垂径定理;方法二:如图②,分别过点T 、H 画HC ⊥TO,TE ⊥HO,HC 与TE 相交于点F,过点O 、F 画直线L 交HT 于点D,则点D 就是HT 的中点;由画图知,Rt △HOC ≌Rt △TOE,易得HF=TF,又OH=OT所以点O 、F 在HT 的中垂线上,所以HD=TD 方法三:如图③,原理同方法二 1-2、1-3.可按位似图形放大,且位似中心的位置可在图形顶点处、图形边上、图形内部、图形外部,在每一处都会有两种图形,因此,此题属开放试题,仅举示例供参考:1-4.12如图,中,米,Rt BOD BD OBD ∆=∠=︒930 ∴︒=tan30ODBD∴=⋅︒=⨯=OD BD tan 3093333 ∴⋅=花坛面积为:(米)ππ()3327221-5.1 ①、②; ①、③. 2如图1-6. 1作图如图;D 1 DC 1C B 1BA D D 1CC 1B 1BAAOB D C20000636318054ABFE EFB A A B EF ABEF B FE EFB B FC B FE EFB ∴∠=∠='''∴∠=∠=''∴∠=-∠-∠=是平行四边形,是由翻折得到的,。

2025年中考数学二轮复习专题训练:辅助圆

2025年中考数学二轮复习专题训练:辅助圆

2025年中考数学二轮复习专题训练:辅助圆类型一、定点定长辅助圆例1.我们在学习圆的知识时,常常碰到题目中明明没有圆,但解决问题时要用到,这就是所谓的“隐圆”问题:下面让我们一起尝试去解决:(1)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.(2)如图,在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同的速度在边DC、CB上移动,连接AE和DF交于点P,由于点E、F的移动,使得点P也随之运动.若AD=2,则线段CP的最小值是.(3)如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF =2,点G为EF的中点,点P为BC上一动点,则P A+PG的最小值为多少?变式1.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,求PM的最小值.变式2.如图,在等腰Rt△ABC中,AC=BC=4,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,求点M运动的路径长.变式3.如图,矩形ABCD中,AB=2,AD=3,点E、F分别为AD、DC边上的点,且EF =2,点G为EF的中点,点P为BC上一动点,求P A+PG的最小值.变式4.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,求∠CBD.变式5.如图,在Rt△ABC中,∠ABC=90°,BC=2,点D在AC边上运动,将△BCD沿BD翻折,点C的对应点为C′,在点D从点C到点A的动过程中,q求点C′运动的路径长.类型二:定弦定角辅助圆例2.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,求线段CP的最小值.变式1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB+∠PBA=90°,则线段CP长的最小值为.变式2.如图,Rt△ABC中,AC=2,∠CAB=30°,点D和点B分别在线段AC的异侧,且∠ADC=30°,连BD,求BD的最大值.变式4.[问题提出]我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?[初步思考](1)如图1,AB是⊙O的弦,∠AOB=100°,点P1、P2分别是优弧AB和劣弧AB上的点,则∠AP1B=°,∠AP2B=°;(2)如图2,AB是⊙O的弦,圆心角∠AOB=m°(m<180°),点P是⊙O上不与A、B重合的一点,求弦AB所对的圆周角∠APB的度数为;(用m 的代数式表示)[问题解决](3)如图3,已知线段AB,点C在AB所在直线的上方,且∠ACB=135°,用尺规作图的方法作出满足条件的点C所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);[实际应用](4)如图4,在边长为6的等边三角形ABC中,点E、F分别是边AC、BC上的动点,连接AF、BE,交于点P,若始终保持AE=CF,当点E从点A运动到点C时,点P运动的路径长是.类型三、四点共圆辅助圆例3.(1)[学习心得]小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图①,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C,D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)[问题解决]如图②,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:△ABD的外接圆就是以BD的中点为圆心,BD长为半径的圆;△BCD的外接圆也是以BD的中点为圆心,BD长为半径的圆.这样A,B,C,D四点在同一个圆上,进而可以利用圆周角的性质求出∠BAC的度数,请运用小刚的思路解决这个问题.(3)[问题拓展]如图③,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2,求AD 的长.变式1.如图,在△ABC中,∠ABD=∠ACD=60°,∠ADB=90°﹣∠BDC.求证:△ABC是等腰三角形.变式2.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:(1)∠CFD=∠CAD;(2)EG<EF.变式3.已知,如图1,在平面直角坐标系中,△AOC为等边三角形,AD=AO,连接OD 交AC于N,连接CD.(1)求∠ODC的度数;(2)证明:∠CAD=2∠COD;(3)如图2,CA的延长线交y轴于P点,连接PD,延长OA交PD于K,连接KN,PK =7,求NK的值.变式4.如图,△AOB是等边三角形,以直线OA为x轴建立平面直角坐标系,若B(a,b)且a、b满足+(b﹣5)2=0,D为y轴上一动点,以AD为边作等边△ADC,CB交y轴于E.(1)如图1,求A点坐标;(2)如图2,D为y轴正半轴上一点,C在第二象限,CE的延长线交x轴于M,当D 点在y轴正半轴上运动时,M点坐标是否变化,若不变,求M点的坐标,若变化,说明理由;(3)如图3,D在y轴负半轴上,以DA为边向右构造等边△DAC,CB交y轴于E点,如果D点在y轴负半轴上运动时,仍保持△DAC为等边三角形,连BE,试求CE,OD,AE三者的数量关系,并证明你的结论.。

2024年中考数学二轮复习模块专练—化归思想(含答案)

2024年中考数学二轮复习模块专练—化归思想(含答案)

2024年中考数学二轮复习模块专练—化归思想(含答案)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题.三角函数,几何变换,因式分解,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想.常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等.转化思想亦可在狭义上称为化归思想.化归思想就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B ,通过解决问题B 来解决问题A 的方法.考点解读:有理数减法转化为有理数的加减,有理数的除法转化为有理数的乘法;多项式乘以多项式转化为单项式乘以单项式,异分母的分式相加减转化为同分母的分式相加减;数式的化归,递进式变化,构建起数式知识与方法的脉络.【例1】(2023·广东江门·统考一模)1.在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求234111112222+++++⋅⋅⋅的和中,“…”代表按此规律无限个数相加不断求和.我们可设234111112222x =+++++⋅⋅⋅.则有234111*********x ⎛⎫=++++++⋅⋅⋅ ⎪⎝⎭,即112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地,请你计算:2468111113333+++++⋅⋅⋅=.(直接填计算结果即可)【变1】考点解读:从一般的三角形到等腰三角形、等边三角形,从平行四边形到矩形、菱形,试卷第2页,共14页A .BEA ∠B .DEB ∠C .ECA ∠D .ADO∠【变1】(2023·浙江·统考中考真题)4.小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是 BC上一动点,连接AG ,延长CG 交AB 的延长线于点F .①当点G 是 BC的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由;③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.考点解读:三元一次方程转化为二元一次方程,分式方程转化为整式方程,一元二次方程转化为一元一次方程.方程化归,构成了方程知识和方法体系.【例1】(2019·浙江台州·统考中考真题)考点解读:由正比例函数图像的平移来研究一次函数图像及性质,试卷第4页,共14页(1)求点C,D的坐标;(2)当13a=时,如图1,该抛物线与x轴交于A,B直线AD上方抛物线上一点,将直线PD沿直线AD 2试卷第6页,共14页三、解答题(2023·山西忻州·校联考模拟预测)16.下面是小彬同学解二元一次方程组的过程,请认真阅读并完成相应的任务.用上面方法所作出的正方形,有一个顶点恰好是直角三角形的直角顶点.△的内接正方形的一边恰好在斜边AB上,我就可用如下方法,如图2,如果Rt ABC⊥,垂足为D;第一步:过直角顶点C作CD AB第二步,延长AB到M,使得BM AD=,连接CM;试卷第8页,共14页试卷第10页,共14页试卷第12页,共14页(1)求EPF ∠的度数;(2)设PE x =,PF y =,随着点P 的运动,32x y +的值是否会发生变化?若变化,请求出它的变化范围;若不变,请求出它的值;(3)求EF 的取值范围(可直接写出最后结果).试卷第14页,共14页参考答案:答案第2页,共31页∵O 的直径CD 垂直弦∴10CD CE DE =+=,∴152OA OD CD ===在Rt OAE △中,AE =∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,答案第4页,共31页∵O 的直径CD 垂直弦AB 于点∴ AC BC=,∴CAF CGA ∠=∠,在Rt CEF △中,2EF CF CE =-在Rt DEF △中,2EF DF DE =-在Rt CEF △中,2CF CE EF =+∴464BF EF BE =-=-,同理FGB FAC ∽△△,答案第6页,共31页次方程转化为二元一次方程组是解题关键.7.D【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s -->,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++,整理得,()210t x tx s +++=∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆-+=-->∵对于任意实数s 总成立,∴()()24440,s s --⨯-<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s <⎧⎨+>⎩,或010s s >⎧⎨+<⎩,当010s s <⎧⎨+>⎩时,解得10s -<<,当010s s >⎧⎨+<⎩时,此不等式组无解,∴10s -<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.答案第8页,共31页答案第10页,共31页(3)解:①当1a =时,抛物线解析式为∴4EH EF FG ===,∴()16H ,,()56G ,,②如图3-1所示,当抛物线与∵当正方形EFGH 的边与该抛物线有且仅有两个交点,∴点T 的纵坐标为2+151 4.5a -++=如图3-2所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴15 2.5a-=,解得0.4a=(舍去,因为此时点如图3-3所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴21152 a aa a⎛⎫-⋅+⋅+⎪⎝⎭17 3.5aa=.综上所述,0.5【点睛】本题主要考查了二次函数综合,勾股定理,轴对称的性质,正方形的性质等等,利用分类讨论和数形结合的思想求解是解题的关键.9.C答案第12页,共31页答案第14页,共31页抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B .【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.13.12x y =⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩,即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩,答案第16页,共31页答案第18页,共31页证明:FD AB ⊥ ,FE AC ⊥,90AEG GDF ∴∠=∠=︒,AGE FGD ∠=∠ ,180BAC ∠=BAC DFE ∴∠=∠;(2)解:BC CD ⊥ ,90BCD ∴∠=︒,在Rt BCD 中,tan BC CD BDC =∠在Rt BCE 中,BC CE =答案第20页,共31页解得:9m BC =,9 1.610.6m AB BC AC ∴=+=+=,答:大树的高度AB 为10.6m .【点睛】本题考查了三角形的内角和定理,解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.(1)当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)16t =;(3)y x =-,答案不唯一,合理即可.【分析】(1)根据一元二次方程根的判别式说明根的情况和函数图像交点的情况即可;(2)联立方程组,化简成一元二次方程的一般形式,用根的判别式Δ0=,代入求解;(3)函数图像有两个交点,保证根的判别式0∆>即可.【详解】(1)解:根据一元二次方程根的判别式可得:当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)联立函数表达式:253y x x y x t ⎧=-+⎨=-+⎩,可得:253x x x t -+=-+,答案第22页,共31页由旋转的性质,可证明△BPP ′是等边三角形,再证明C 、P 、A ′、P ′四点共线,最后由勾股定理解答.【详解】(1)解:∵ACP ABP ' ≌,∴AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,由题意知旋转角∠PAP ′=60°,∴△APP ′为等边三角形,PP ′=AP =3,∠AP ′P =60°,由旋转的性质可得:AP ′=AP =PP ′=3,CP ′=4,PC=5,∵32+42=52∴△PP ′C 为直角三角形,且∠PP ′C =90°,∴∠APB =∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°;故答案为:150°;(2)证明:∵点P 为△ABC 的费马点,∴120APB ∠=︒,∴60APD ∠=︒,又∵AD AP =,∴APD 为等边三角形∴AP PD AD ==,60PAD ADP ∠=∠=︒,∴120ADE ∠=︒,∴ADE APC ∠=∠,在△APC 和△ADE 中,PAC DAE AP AD APC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.21.(1)120︒(2)不会;9(3)9219 7EF≤<【分析】(1)延长EP交BC于点G,根据平行线的性质得出答案第24页,共31页,∵PE CD∠=∠,∴PGB DCB∥,∵PF AB∠=∠,∴PFC ABC答案第26页,共31页则90EHP ∠=︒,∵120EPF ∠=︒,∴18012060EPH ∠=︒-︒=︒,∴906030PEH ∠=︒-︒=︒,22.(1)60︒;(2)①丙;②10【分析】(1)连接BC ',则A BC ''△为等边三角形,即可求得既不相交也不平行的两条直线BA '与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ',∵//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BA C ''∠,根据正方体性质可得:A B BC A C ''''==,∴A BC ''△为等边三角形,∴=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',答案第28页,共31页∵90ABC ∠=︒,DQ ∴四边形DBNQ 是矩形,∴90DQN ∠=︒,QN答案第30页,共31页∵A ABN BNQ AQN ∠+∠+∠+∠∴180ABN AQN ∠+∠=︒,∴AQN PBN ∠=∠.。

2023年重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类

2023年重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类

重庆中考数学第二轮专题复习第24题二次函数综合题等腰三角形类(2022-2023学年版)1.二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使得△PBC为等腰三角形?若存在,请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位长度的速度在AB上向点B运动,另一个点N从点D同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,设运动时间是t且0≤t≤5,当点M,N运动到何处时,△MNB的面积最大,试求出最大面积.2.如图,已知点A的坐标为(−2,0).直线y=−3x+3与x轴,y轴分别交于点B和点C,连接AC,4顶点为D的抛物线y=ax2+bx+c过A,B,C三点.(1)求拋物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN//AB,交AC于点N,Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当以MN为直角边的▵QMN是等腰直角三角形时,直接写出此时t的值.3.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A、B、C,已知A(−1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动MB的最小值以及此时点M、N的坐标.点,请直接写出CN+MN+124.抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的解析式;(2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.5.已知:如图,抛物线y=ax2+bx+c(a≠0)与坐标轴分别交于点A(0,6),B(6,0),C(−2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE//x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.6.如图,在平面直角坐标系中,抛物线y=−23x2−23x+4与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D是抛物线的顶点,对称轴与x轴交于点E,过点E作BC的平行线交AC于点F.(1)如图1,求点D的坐标和直线BC的解析式;(2)如图1,在对称轴右侧的抛物线上找一点P,使得∠PDE=45°,点M是直线BC上一点,点N是直线EF上一点,MN//AC,求PM+MN+NB的最小值;(3)如图2,将△BOC绕点O逆时针旋转至△B′O′C′的位置,点B,C的对应点分别为点B′,C′,点B′恰好落在BC上,点T为B′C′的中点,过点T作y轴的平行线交抛物线于点H,将点T沿y轴负方向平移3个单位长度得到点K.点Q是y轴上一动点,将△QHK沿直线QH折叠为△QHK′,△BKK′是否能为等腰三角形?若能,请直接写出所有符合条件的点Q的坐标;若不能,请说明理由.7.如图,直线y=−3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x−2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.8.如图,抛物线y=ax2+bx−3经过点A(2,−3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)若抛物线上有一点N,且S△OCN=6,求点N的坐标;(3)点P是对称轴上的一个动点,若存在P使△ABP是等腰三角形,请求出此时P点的坐标.9.如图,已知二次函数y=−x2+bx+3的图象与x轴的两个交点为A(4,0)与点C,与y轴交于点B.(1)求此二次函数关系式和点C的坐标;(2)请你直接写出△ABC的面积;(3)在x轴上是否存在点P,使得△PAB是等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(−2,0)、B(6,0)两点,与y轴交于点C(0,6),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.11.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A,B,C,已知A(−1,0),C(0,3).(1)求抛物线的表达式.(2)如图①,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标.(3)如图②,抛物线的顶点为点E,EF⊥x轴于点F.若N是直线EF上一动点,M(m,0)是x轴上MB的最小值以及此时点M,N的坐标.一个动点,请直接写出CN+MN+1212.如图,抛物线y=ax2+bx+2交x轴于点A(−3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(−1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使△MNO为等腰直角三角形,且∠MNO为直角?若存在,求出点N的坐标;若不存在,请说明理由.13.如图,抛物线y=−35x2+125x+3与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C,连接BC.(1)直接写出A、B、C三点坐标及直线BC的函数表达式;(2)如图1,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.点P是直线AB上的动点.当△NBC面积取得最大值时,求出点N的坐标及△NBC面积的最大值,并求此时PN+CP 的最小值;(3)如图2,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.14.抛物线y=ax2+bx+c(a、b、c为参数)与x轴交于A、B两点,与y轴交于点C,其中A(−2,0).已知M(−1+n,m)和N(5−n,m)是抛物线上两点.图1图2(1)求抛物线的解析式(结果用含a的式子表示);(2)如图1,对称轴与x轴的交点为D,若△AOC绕原点顺时针旋转90°得到△COD,点E为x轴正半轴上一点,且满足∠CDO=∠CEO+∠CBO,求点E的坐标;(3)如图2,若△OBC为等腰三角形,点F为OC中点,连接BF;若点P在B点左侧的抛物线上,过点P作PQ⊥BF,垂足为Q,直线PQ与x轴交于点R,且S△PQB=2S△QRB,求点P的坐标.15.如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.对称轴交x轴于点H,直线y=12备用图(1)求抛物线的解析式.(2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.(3)点P为抛物线上一个动点,当点P关于直线y=1x+1的对称点恰好落在x轴上时,请直接2写出此时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,连结AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作ON⊥BC,垂足为点N.设点M的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点且以AC为腰长的三角形是等腰三角形.若存在,求出此时点Q的坐标;若不存在,请说明理由.17.已知抛物线y=ax2+34x+c经过点A(−2,0)和C(0,94),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠DAB,设AE=x,BF=y,求y与x的函数关系式;(3)在(2)问的条件下,△DEF能否为等腰三角形?若能,求出DF的长;若不能,请说明理由;18.如图,抛物线y=1x2+bx+c与x轴交于A(−3,0),B(4,0)两点,与y轴交于点C,连接AC,3BC,点M是抛物线在第四象限内的一个动点,过点M作MN⊥BC于点N,点M的横坐标为m.(1)求抛物线的表达式;(2)请用含m的代数式表示线段MN的长;(3)试探究在点M运动的过程中,是否存在点N,使得△ACN是等腰三角形?若存在,直接写出点N的坐标;若不存在,请说明理由.第11页,共1页。

中考数学第二轮复习:图表信息问题

中考数学第二轮复习:图表信息问题
专题二 图表信息问题
1
专 题 解 读
2
考情透析 图表信息题是中考常考的一种新题型,它是通过图象、 图形及表格等形式给出信息,通过认真阅读、观察、 分析、加工、处理等手段解决的一类实际问题.主要 考查同学们的读图、识图、用图能力,以及分析问题、 解决问题的能力.图表信息问题往往和“方程(组)、不 等式(组)、函数、统计与概率”等知识结合考查.
11
二、表格信息题
以表格的形式给出数据信息是这类信息题的特征,分析表中的数据,能从表
格中发现两个量之间存在规律,归纳出相应的关系式是解决此类问题的关键.
12
【例题2】 (2012· 浙江台州)某汽车在刹车后行驶的距离s(单
位:米)与时间t(单位:秒)之间的关系的部分数据如下表:
时间t(秒) 行驶距离s(米)
4
专 题 突 破
5
一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数、反比例函数的 图象等)表示物体的变化规律(体现在两个变量之间的数量关系),考查
数形结合的思想和函数建模能力.解答时往往根据图象的形状、位置、 变化趋势等信息来判断、分析、解决问题.
6
【例题1】 (2012· 浙江义乌)周末,小明骑自行车从家里出
10
(3)设从家到乙地的路程为m km,
则点 E(x1,m),点 C(x2,m),分别代 入 y=60x-80,y=20x-10, m+80 m+10 得:x1= , x2 = . 60 20 10 1 ∵x2-x1= = , 60 6 m+10 m+80 1 ∴ - = , 20 60 6 解得:m=30. ∴从家到乙地的路程为 30 km.
14
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由 所给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求), 即可求得答案.

中考数学第二轮复习资料—专题复习(共50页,大量对应练习)

中考数学第二轮复习资料—专题复习(共50页,大量对应练习)

中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。

涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。

一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产(2)某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示,正确的是( )(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.图中相遇的次数最多为( )A.4次B.5次C.6次.D.7次 2.填空:(1)已知关于X 的不等式2x-a>-3的解集如图所示,则a 的值等于 (2)如果不等式组8 4x-1x mx ⎧+⎪⎨⎪⎩的解集为x>3,则m 的取值范围是3.考虑2xy =的图象,当x=-2时,y= ;当x<-2时,y 的取值范围是 。

2024年九年级中考数学专题复习+课件++含参方程(组)、不等式(组)+

2024年九年级中考数学专题复习+课件++含参方程(组)、不等式(组)+
1
C.m>
3
3
1
D.m≥
3
变式
1.(2021·南充)已知关于x的一元二次方程x2-(2k+1)x+k²+h=0.
(1)求证:无论k取何值,方程都有两个不相等的实数根;
1
(2)如果方程的两个实数根为x1,x2,且k与 都为整数,求K所有可能的值.
2
2.若关于x的方程mx2-2(m+2)x+m+5=0无实数根,则关于x方程
8m + 9n = 10.
(1)试选择其中一名同学的思路,解答此题.
x + 3y
=4−α
(2)试说明在关于x,y的方程组
中,不论a取什么实数,x+y的值始终不
x − 5y = 3a
变,
变式:
mx − y = 47
1.如果关于x,y的二元一次方程组
的解是
nx + 3y = −39
x=5
,不求 m,n.的值,你能否求关于x,y的二元一次方程组
y=3
m(x + y) − (x − y) = 47
的解?如果能,请求出方程组的解.
n(x + y) + 3(x − y) = −39
2.若相异的实数a,b满足
则 ab =
.

22−1

= 2
2 −1
,
类型三 分式方程的解的问题

例3:若关于x的分式方程
2
−1
=
3
无解,则m=
2
−1
3
2或2
件的所有整数a.
2
− 2
4−
+
=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--中考数学专题复习之二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

【闯关夺冠】1.已知:反比例函数和一次函数图象的一个交点为(-3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定这两个函数的解析式。

2、如图所示,已知抛物线的对称轴是直线x=3,它与x 轴交于A 、B 两点,与y 轴交于C 点,点A 、C 的坐标分别是(8,0)、(0,4),求这个抛物线的解析式.中考数学专题复习之三:数学的转化思想转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。

具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。

转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。

【范例讲析】:例1:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。

求:cos ∠EDF 的值。

例2:如图,∆A B C中,BC =4,A C A C B =∠=︒2360,,P 为BC 上一点,过点P 作PD ∆A P D 3∆A B C ︒=∠=607B AC ,中考数学专题复习之四:数学的方程思想在解决数学问题时,有一种从未知转化为已知的手段就是通过设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化,这种解决问题的思想称为方程思想。

【范例讲析】:例1:已知:如图,正方形ABCD 的边长为a ,△PQA 是其内接等边三角形。

求:PB 的长。

例2: 如图,在△ABC 中,∠B=30°,∠ACB=120°,D 是BC 上一点,且∠ADC=45°,若CD=8,求BD 的长。

【闯关夺冠】1: 如图,EB 是直径,O 是圆心,CB 、CD 切半圆于B 、D 、CD 交BE 延长线于A 点,若BC=6,AD=2AE ,求半圆的面积。

2.如图,某农场要用总长24 m 的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),且中间隔有一道木栏,设鸡场的宽AB 为xm ,面积为S m2; (1)求S 关于x 的函数关系式;(2)若鸡场的面积为45 m2,试求出鸡场的宽AB 的长;(3)鸡场的面积能否达到50 m2若能,请给出设计方案;若不能,请说明理由.B中考数学专题复习之五:数形结合思想在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。

解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。

【范例讲析】:例1:二次函数y=ax 2+bx+c 的图象如图所示,根据图象,化简||)(||2b a c b c a b -+----(提示:注意对称轴及-1)例2:(嘉峪关)某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的 (3)果你是推销员,应如何选择付费方案【闯关夺冠】1.实数a 、b 上在数轴上对应位置如图3-3-6所示,则2||a b b -+等于( ) A .a B .a -2b C .-a D .b -a2.已知抛物线c bx ax y ++=2如图所示,则下列结论:①c=1 ; ② a+b+c=0 ;③ a-b+c<0 ;④ b 2-4ac>0 ,其中正确的个数是( ) A .1 B .2 C .3 D .43.如图,点A ,D ,G ,M 在半圆O 上,四边型ABOC ,DEOF ,HMNO 均为矩形,设BC=a ,EF=b ,NH=c ,则下列各式中正确的是 ( )A. a>b>cB. a=b=cC. c>a>bD. b>c>a中考数学专题复习之六:数学的分类讨论思想我们在解数学题时,如果遇到的对象不确定,就要根据已知条件和题意的要求,分不同的情况作出符合题意的解答,这就是分类讨论。

比如:①对字母的取值情况进行筛选,根据题意作出取舍;②在不同的数的范围内,对代数式表达为不同的形式;③对符合题意的图形,作出不同的形状、不同的位置关系等。

【范例讲析】:例1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 或 32 D.37 或 33例2.在半径为1的圆O中,弦AB、AC的长分别是3、2,则∠BAC的度数是。

x-=,则第三边长为.. 例3、已知直角三角形两边x、y的长满足240∆中,AB=9,AC=6,,点M在AB上且AM=3,点N在AC上,联结MN,若△AMN与原三角形相似,例4.在ABC求AN的长。

【闯关夺冠】1.已知AB是圆的直径,AC是弦,AB=2,AC=2,弦AD=1,则∠CAD=.2. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.3.⊙O的半径为5㎝,弦AB∥CD,AB=6㎝,CD=8㎝,则AB和CD的距离是()(A)7㎝(B)8㎝(C)7㎝或1㎝(D)1㎝4.已知⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P这圆心,且与⊙O相切的圆的半径一定是()A.1或5 B.1 C.5 D.1或45.已知点P是半径为2的⊙O外一点,PA是⊙O的切线,切点为A,且PA=2,在⊙O内作了长为的弦AB,连接PB,求PB的长。

中考数学专题复习之七:方案决策型题方案决策型题的特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点。

【范例讲析】:例1:现由甲、乙两个氮肥厂向A、B两地运化肥。

已知甲厂可调出50吨化肥,乙厂可调出40吨化肥,A地需30吨化肥,B 地需60吨化肥,两厂到A 、B 两地路程和运费如下表(表中运费栏“元/吨·千米”表示每吨化肥运送1千米所需人民币):(1) 设甲厂运往A 地化肥x 吨,求总运费y (元)关于x (吨)的函数关系; (2) 当甲、乙两厂各运往A 、B 两地多少化肥时,总运费最省最省的总运费是多少 (3)【闯关夺冠】1. (福建德化)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价) (1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案 并直接写出其中获利最大的购货方案.2.某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种请你帮助设计出来.中考数学专题复习之八:信息型题所谓信息型题就是根据文字、图象、图表等给出数据信息,进而依据这些给出的信息通过整理、分析、加工、处理等手段解决的一类实际问题 【范例讲析】:例1:某开发区为改善居民的住房条件,每年都新建一批住房,人均住房面积逐年增加。

(人均住房面积=该区住房总面积/该区人口总数,单位:m 2/人),该开发区2003~2005年,每年年底人口总数和人均住房面积的统计结果分别如下图:请根据两图所所提供的信息,解答下面的问题:⑴该区2004年和2005年两年中,哪一年比上一年增加的住房面积多增加多少万m 2⑵由于经济发展需要,预计到2007年底,该区人口总数比2005年底路程 运费(元/吨·千米) 甲厂 乙厂 甲厂 乙厂 A 地 10866B 地 12 10 5 4甲 乙 进价(元/件) 15 35 售价(元/件)20452003 2004 2005 年某开发区每年年底人口总 数统计图2003 2004 2005 年某开发区每年年底人均住房面积统计图增加2万,为使到2007年底该区人均住房面积达到11m 2/人,试求2006年和2007年这两年该区住房总面积的年平均增加率应达到百分之几【闯关夺冠】如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图像回答或解决下面的问题: (1)谁出发的较早早多长时间谁到到达乙地较早早到多少时间 (2)两人在途中行驶的速度分别是多少(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x 的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面; ②自行车与摩托车相遇; ③自行车行驶在摩托车后面.中考数学专题复习之九:图形折叠型题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。

相关文档
最新文档