第04讲第二章数列极限定义证明

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

数列极限的证明

数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A|<|Xn-A|/A 以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ; |Xn-1-A|<|Xn-2-A|/A; …… |X2-A|<|X1-A|/A; 向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n) 2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。 3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9

数列极限的证明

数列极限的证明 数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|以此类推,改变数列下标可得 |Xn-A||Xn-1-A|…… |X2-A|向上迭代,可以得到|Xn+1-A|2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1设x(k)x(k+1)=√[2+3x(k)]3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1)

则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。n/(n^2+1)=0 √(n^2+4)/n=1 sin(1/n)=0

数列极限四则运算法则的证明

数列极限四则运算法则 的证明 https://www.360docs.net/doc/4b4304996.html,work Information Technology Company.2020YEAR

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n→+∞的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使 得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身) 法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.② 设N=max{N?,N?},由上可知当n>N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε. 由于ε是任意正数,所以2ε也是任意正数. 即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理2:若limAn=A,则lim(C·An)=C·A.(C是常数) 证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得: |C·An-CA|<Cε. 由于ε是任意正数,所以Cε也是任意正数. 即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε. 由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证) 法则2的证明: lim(An-Bn) =limAn+lim(-Bn) (法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理.

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注 2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一 的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?, ,有G x n >,则称{}n x 为无穷大量,记

数学分析9数列极限存在的条件

§3 数列极限存在的条件 教学目的:使学生掌握判断数列极限存在的常用工具。 教学要求:(1)掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限;(2)初步理解Cauchy 准则在极限理论中的主要意义,并逐步会应用Cauchy 准则判断某些数列的敛散性。 教学重点:单调有界定理、Cauchy 收敛准则及其应用。 教学难点:相关定理的应用。 教学方法:讲练结合。 教学程序: 引言 在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题)。这是极限理论的两基本问题。在实际应用中,解决了数列{}n a 极限的存在性问题之后,即使极限值的计算较为困难,但由于当n 充分大时,n a 能充分接近其极限a ,故可用n a 作为a 的近似值。 本节将重点讨论极限的存在性问题。 为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断。 从收敛数列的有界性可知:若{}n a 收敛,则{}n a 为有界数列;但反之不一定对,即{}n a 有界不足以保证{}n a 收敛。例如{} (1)n -。但直观看来,若{}n a 有界,又{}n a 随n 的增大(减少)而增大(减少),它就有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛)。 为了说明这一点,先给出具有上述特征的数列一个名称——单调数列。 一、 单调数列 定义 若数列{}n a 的各项满足不等式11()n n n a a a a ++≤≥,则称{}n a 为递增(递减)数列。递增和递减数列统称为单调数列. 例如:1n ??????为递减数列;{} 2n 为递增数列;(1)n n ??-????不是单调数列。 二、 单调有界定理 〔问题〕 (1)单调数列一定收敛吗?;(2)收敛数列一定单调吗? 一个数列{}n a ,如果仅是单调的或有界的,不足以保证其收敛,但若既单调又有界,就可以了。此即下面的极限存在的判断方法。 定理(单调有界定理) 在实数系中,有界且单调数列必有极限。 三、 应用

用极限定义证明极限

例1、用数列极限定义证明:22lim 07 n n n →∞+=- (1)(2)(3)(4)222222222224|0|77712 n n n n n n n n n n n n n n ε>++-=<<=<=<------时 上面的系列式子要想成立,需要第一个等号和不等号(1)、(2)、(3)均成立方可。第一个等号成立的条件是n>2;不等号(1)成立的条件是22;不等号(4)成立的条件是4[]n ε >,故取N=max{7, 4[]ε}。这样当n>N 时,有n>7,4[]n ε >。 因为n>7,所以等号第一个等号、不等式(1)、(2)、(3)能成立;因为4 []n ε >,所以不等式(4)能成立,因此当n>N 时,上述系列不等式均成立,亦即当n>N 时,22| 0|7n n ε+-<-。 在这个例题中,大量使用了把一个数字放大为n 或2 n 的方法,因此,对于具体的数,.......可.把它放大为.....kn ..(.k .为大于零的常数)的形式........... 例2、用数列极限定义证明:24lim 01 n n n n →∞+=++ (1)422224422|0|111n n n n n n n n n n n n n n ε>+++-=<<=<++++++时 不等号(1)成立的条件是2[]n ε>,故取N=max{4, 2[]ε },则当n>N 时,上面的不等式都成立。 注:对于一个由若干项组成的代数式,可放大或缩小为这个代数式的一部分...............................。. 如: 22 222211(1)1 n n n n n n n n n n n n ++>++>-<+>+ 例3、已知2(1)(1) n n a n -=+,证明数列a n 的极限是零。 证明:0(01)εε?><<设,欲使(1)(2)22(1)11|0|||(1)(1)1 n n a n n n ε--==<<+++成立 由不等式11n ε<+解得:11n ε >-,由于上述式子中的等式和不等号(1)对于任意的正整数n 都是成立的,因此取1[1]N ε =-,则当n>N 时,不等号(2)成立,进而上述系列等式和不等式均成立,所以当n>N 时,|0|n a ε-<。

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

数学分析数列极限分析解析

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,32 1,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得: 对数列{}n a ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛;

{}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对??? ? ??-+n n )1(()3以3为极限,对ε =10 1 3)1(3--+ =-n a a n n =10 11 n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式a a n -<ε,可用a n -替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一.... 的,只要存在一个N ,就会存在无穷多

数列极限常见题型及解法

数列极限常见题型及解法 汤原县鹤立高级中学 乔春华 数列极限是描述数列当项数n 无限增大时的变化趋势,是高考考点之一,多以选择题、填空题出现。对于常见类型,应熟悉其解法和 变形技巧。注意向三个重要极限C C n =∞→lim (C 为常数),0lim =∞→n c n (c 为常数),0lim =∞ →n n q (1

综上:???? ?????><==++++++++----∞→) (极限不存在q p q p q p b a b n b n b n b a n a n a n a q q q q p p p p n )(0)(lim 0011101110 二、无限项形式变为有限项形式再求极限 因为极限的运算法则,只适用于有限个数列之和求极限,所以求项数不定的积式、和式的极限分两步①将积式、和式化为有限项的积或和;②求极限 例4.求极限n n n n n n n n -+++-+-∞ →2221374lim 解:原式=n n n n n -++∞→22) 134(lim 2 32253lim =-+=∞→n n n 例5.求极限)211()411()311(lim +--?-∞→n n n 解:原式=?? ????++?????∞→21544332lim n n n n 22 2lim =+=∞→n n n 三、无理式求极限 通常是将分子或分母有理化,使式子中的减号变为加号。 1.没有分母的,可将分母看作1,再对分子进行有理化 2.分子、分母都含有无理式(减法)的,可分子、分母同时有理化 例6.求极限)1(lim n n n n -+∞ → 解:原式=n n n n n n n n ++++-+∞→1)1)()1(lim

用定义证明函数极限方法总结[1]

用定义证明函数极限方法总结: 用定义来证明函数极限式lim ()x a f x c →=,方法与用定义证明数列极限式类似,只是细节 不同。 方法1:从不等式()f x c ε-<中直接解出(或找出其充分条件)()x a h ε-<,从而得()h δε=。 方法2:将()f x c -放大成() x a ?-,解() x a ?ε-<,得()x a h ε-<,从而得 ()h δε=。 部分放大法:当 ()f x c -不易放大时,限定10x a δ<-<,得 ()()f x c x a ?-≤-,解()x a ?ε-<,得:()x a h ε-<,取{}1min ,()h δδε=。 用定义来证明函数极限式lim ()x f x c →∞ =,方法: 方法1:从不等式()f x c ε-<中直接解出(或找出其充分条件)()x h ε>,从而得 ()A h ε=。 方法2:将()f x c -放大成() x a ?-,解() x a ?ε-<,得()x h ε>,从而得 ()A h ε=。 部分放大法:当()f x c -不易放大时,限定1x A >,得() ()f x c x a ?-≤-,解 ()x a ?ε-<,得:()x h ε>,取{}1max ,()A A h ε=。 平行地,可以写出证明其它四种形式的极限的方法。 例1 证明:2 lim(23)7x x →+=。 证明:0ε?>,要使: (23)722x x ε+-=-<,只要 22x ε-<,即022 x ε <-< , 取2 εδ= ,即可。 例2 证明:22 112 lim 213 x x x x →-=--。 分析:因为,22 11212 213213321 x x x x x x x --+-=-=--++放大时,只有限制

高数极限60题及解题思路

高数极限60题 1.求数列极限)sin 1(sin lim n n n -+∞ →。 2.设∑==n k k n b k S 1,其中)!1(+=k b k ,求n n S ∞→lim 。 3.求数列极限)321(lim 1 2-∞→+?+++n n nq q q ,其中1>a x ,且n n ax x =+1,证明:n n x ∞→lim 存在,并求出此极限值。 16.设21=x ,且n n x x +=+21,证明:n n x ∞ →lim 存在,并求出此极限值。 17.设2221...31211n x n ++++=(n 为正整数),求证:n n x ∞→lim 存在。

第一讲 数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →, , 0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00, , 0lim ε,有00 ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞ →, , 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

数列极限例题

三、数列的极限 观察数列})1(1{1 n n --+当∞→n 时的变化趋势. 问题: 当n 无限增大时, n x 是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察: 当n 无限增大时, n x n n 1 )1(1--+=无限接近于1. 问题: “无限接近”意味着什么?如何用数学语言刻划它. =-1n x n n n 11)1(1 =-- 给定,1001 由,10011n 时, 有,100 11<-n x 给定,10001只要1000>n 时, 有,1000 11<-n x 给定,100001只要10000>n 时, 有,10000 11<-n x 给定,0>ε只要])1[(ε =>N n 时, 有ε<-1n x 成立. 定义 如果对于任意给定的正数ε(不论它多么小), 总存在正整数N , 使得对于N n >时的一切n x , 不等式ε<-a x n 都成立, 那末就称常数a 是数列n x 的极限, 或者称数列n x 收敛于a , 记为 ,lim a x n n =∞ → 或).(∞→→n a x n 如果数列没有极限, 就说数列是发散的. 注意: N -ε定义,0,0lim :>?>??=∞ →N a x n n ε 使N n >时, 恒有.ε<-a x n 其中记号:?每一个或任给的; :?至少有一个或存在. 数列收敛的几何解释: 当N n >时, 所有的点n x 都落在),(εε+-a a 内, 只有有限个(至多只有N 个)落在其外. 注意:数列极限的定义未给出求极限的方法. 121+N 3

例1 证明.1)1(lim 1 =-+-∞→n n n n 证 注意到1-n x 1)1(1--+=-n n n n 1=. 任给,0>ε 若要,1ε<-n x 只要,1εn 所以, 取 ],1 [ε =N 则当N n >时, 就有 ε<--+-1)1(1 n n n . 即.1)1(lim 1 =-+-∞→n n n n 重要说明:(1)为了保证正整数N ,常常对任给的,0>ε给出限制10<<ε; (2)逻辑“取 ],1 [ε=N 则当N n >时, 就有ε<--+-1)1(1 n n n ”的详细推理见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理. 由于111+<≤??????=N N ε ε,所以当N n >时一定成立ε11>+≥N n ,即得εε 不妨取10<<ε, 若要1-n x =1)1(1--+=-n n n n 1=<ε ,只要 ,1ε>n 所以, 取 ],1[ε=N 则当N n >时, 由于111+<≤??????=N N ε ε,所以当N n >时一定成立ε11>+≥N n ,即得εε寻找N , 但不必要求最小的N. 例3证明0lim =∞→n n q , 其中1

用定义证明二重极限

用定义证明二重极限 用定义证明二重极限利用极限存在准则证明: (1)当x趋近于正无穷时,(Inx/x^2)的极限为0; (2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。 1)用夹逼准则: x大于1时,lnx>0,x^2>0,故lnx/x^2>0 且lnx1),lnx/x^2故(Inx/x^2)的极限为0 2)用单调有界数列收敛: 分三种情况,x0=√a时,显然极限为√a x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在. 设数列极限为A,Xn和X(n-1)极限都为A. 对原始两边求极限得A=[A+(a/A)]/2.解得A=√a 同理可求x0综上,数列极限存在,且为√ (一)时函数的极限: 以时和为例引入. 介绍符号: 的意义, 的直观意义. 定义( 和. ) 几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1验证例2验证例3验证证…… (二)时函数的极限: 由考虑时的极限引入. 定义函数极限的“ ”定义. 几何意义. 用定义验证函数极限的基本思路. 例4 验证例5 验证例6验证证由= 为使需有为使需有于是, 倘限制, 就有 例7验证例8验证( 类似有(三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域然后介绍等的几何意义. 例9验证证考虑使的 2.单侧极限与双侧极限的关系: Th类似有: 例10证明: 极限不存在. 例11设函数在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(3学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学: 我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证. 二、讲授新课: (一)函数极限的性质:以下性质均以定理形式给出. 1.唯一性:

数列极限存在的条件

§2.3 数列极限存在的条件 教案内容:第二章 数列极限 ——§2.3 数列极限存在的条件 教案目标:使学生掌握判断数列极限存在的常用工具. 教案要求:(1) 掌握并会证明单调有界定理,并会运用它求某些收敛数列的极限; (2) 初步理解Cauchy 准则在极限理论中的主要意义,并逐步会应用Cauchy 准则判断某些数列的敛散性. 教案重点:单调有界定理、Cauchy 收敛准则及其应用. 教案难点:相关定理的应用. 教案方法:讲练结合. 教案过程: 引言 在研究比较复杂的极限问题时,通常分两步来解决:先判断该数列是否有极限(极限的存在性问题);若有极限,再考虑如何计算些极限(极限值的计算问题).这是极限理论的两基本问题.在实际应用中,解决了数列{}n a 极限的存在性问题之后,即使极限值的计算较为困难,但由于当n 充分大时,n a 能充分接近其极限a ,故可用n a 作为a 的近似值. 本节将重点讨论极限的存在性问题. 为了确定某个数列是否有极限,当然不可能将每一个实数依定义一一加以验证,根本的办法是直接从数列本身的特征来作出判断. 从收敛数列的有界性可知:若{}n a 收敛,则{}n a 为有界数列;但反之不一定对,即{}n a 有界不足以保证{}n a 收敛.例如{}(1)n -.但直观看来,若{}n a 有界,又{}n a 随n 的增大(减少)而增大(减少),它就有可能与其上界(或下界)非常接近,从而有可能存在极限(或收敛). 为了说明这一点,先给出具有上述特征的数列一个名称——单调数列. 一、单调数列 定义 若数列{}n a 的各项满足不等式11()n n n a a a a ++≤≥,则称{}n a 为递增(递减)数列.递增和递减数列统称为单调数列. 例如:1n ??????为递减数列;{} 2 n 为递增数列;(1)n n ??-???? 不是单调数列.

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设 limAn=A,limBn=B, 则有 法则 1:lim(A n+B n)=A+B 法则 2:lim(An-Bn)=A-B 法则 3:lim(An ? Bn)=AB 法则 4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T + g的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£>0(不论它多么小),总存在正数 N,使得对于满足n > N的一切Xn,不等式|Xn-A| N?寸恒有|An-A| <£ .(极限定义) 同理对同一正数& ,存在正整数N?,使n > N?时恒有|Bn-B| <£ .② 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时 |(An+Bn)-(A+B)|=|An-A)+(Bn- B)| < |AA|+|Bn-B| <£ + £ =2 £. 由于&是任意正数,所以2 &也是任意正数.

即:对任意正数2 £ ,存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 £. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理 2:若 limAn=A,贝U lim(C ? An)=C(C?是常数) 证明:vlimAn=A, 二对任意正数e ,存在正整数N,使n > N时恒有|An-A| Ve .(极限定义) ①式两端同乘|C|,得:|C ? -CA| v C e. 由于e是任意正数,所以C e也是任意正数. 即:对任意正数 C e ,存在正整数N,使n > N时恒有|C -C A n V C e. 由极限定义可知,lim(C ?AAn=O0的话更好证) 法则2的证明: lim(A n-B n) =limAn+lim(-Bn)( 法则 1) =limAn+(-1)limBn ( 引理 2) =A-B. 为了证明法则3,再证明1个引理. 引理 3:若 limAn=O,limBn=0, 贝U lim(An ? Bn)=0. 证明:vlimAn=0, 二对任意正数e ,存在正整数N ?,使n > N ?时恒有|An-0| Ve .(极限定义) 同理对同一正数 e ,存在正整数N?,使n > N?时恒有|Bn-0| Ve .④ 设N=max{N ?,N?},由上可知当n > N时③④两式全都成立.

相关文档
最新文档