2008年高考数学全国一卷试题和答案

合集下载

2008年普通高等学校招生全国统一考试全国卷Ⅰ数学文科试题及答案(河北、河南、山西、广西).doc

2008年普通高等学校招生全国统一考试全国卷Ⅰ数学文科试题及答案(河北、河南、山西、广西).doc

2008年普通高等学校招生全国统一考试(全国卷Ⅰ:河北、河南、山西、广西)文科数学(必修+选修Ⅰ)第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题1.函数y = ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )A .B .C .D .3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B C D .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122n n n a a +=+. (Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.CDE AB(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试(全国卷Ⅰ:河北、河南、山西、广西)文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.12 16 三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.233AC CD CG AD ==,DG =,EG==,CE =则222cos 2CG GE CE CGE CG GE +-∠== πarccos CGE ∴∠=-⎝⎭.19.解:(1)122n n n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+.20.解:依方案甲所需化验次数ξ为:1、2、3、4; P(ξ=1)=15; P(ξ=2)=142515A A =;P(ξ=3)=243515A A =;P(ξ=4)=32155-=(第4次是,结束,不是时,就是最后的哪一个,也结束); 依方案乙所需化验次数η为:2、3.P(η=2)=32114411331553315C C C A C C A ⨯⨯+⨯=;(3只血液混在一起化验结果呈阴性,另两只再化验一次就可以了,或者3只血液混在一起化验结果呈阳性, 再逐个化验时的第一次查出)P(η=3)=21141131532(1)5C C A C A ⨯⨯-= (3只血液混在一起化验结果呈阳性, 再逐个化验时的第一次没有查出,第二次是,结束,不是时,就是最后的哪一个,也结束)依方案甲所需化验次数不少于依方案乙所需化验次数的概率:P(ξ≥η)=P(ξ=2) ×P(η=2) +[P(ξ=3)+ P(ξ=4)][ P(η=2)+ P(η=3)]=33255+. 1825==0.72(由于标准答案不好看懂,我特用用此法与提供的标准答案的方法不一致,但结论是一致的!――――王新敞)21.解:(1)32()1f x x ax x =+++ 求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥()f x 在R 上递增当23a >,()0f x '=求得两根为3a x -±=即()f x在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增 (2)23133a -⎨-+⎪-⎪⎩,且23a >解得:74a ≥22.解:(1)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =则离心率2e =(2)过F 直线方程为()ay x c b=-- 与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b+=124x =-=将数值代入,有4=解得3b =最后求得双曲线方程为:221369x y -=. 点评:本次高考题目难度适中,第12道选择题是2007年北京市海淀区第二次模拟考试题,新东方在2008年寒假强化班教材的220页33题选用此题进行过详细讲解,在2008年春季冲刺班教材30页33题也选用此题,新东方的老师曾在多种场合下对此题做过多次讲解.第19道计算题也是一个非常典型的题型,在2007年12月31日,新东方在石家庄的讲座上曾经讲过这类问题的解法,在2008年的讲课中也多次提过此题型是重点.其他的题型也都很固定,没有出现偏题怪题,应该说,本次高考题的难度,区分度都非常恰当.。

2008年高考新课标全国I卷数学(理)试题精解精析(解析版)

2008年高考新课标全国I卷数学(理)试题精解精析(解析版)

2008年普通高等学校统一考试数学(理科)参考答案一、选择题 1.B 2.B 3.D 4.C 5.A 6.B 7.C 8.D 9.A10.D11.A12.C二、填空题 13.314.321515.43π 16.1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).3.甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题 17.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--. 所以2n =时,n S 取到最大值4. 18.解:如图,以D 为原点,DA则(100)DA =,,uu u r ,(001)CC '=,,u u u r .连结BD ,B D ''.在平面BB D D ''中,延长DP 交B D ''于H . 设(1)(0)DH m m m =>,,u u u r,由已知60DH DA <>=,o uuu r uu u r, 由cos DA DH DA DH DADH =<>,uu u r uuu r uu u r uuu r uu u r uuu rg可得2m解得2m =,所以1DH ⎫=⎪⎪⎝⎭uuu r .(Ⅰ)因为0011cos 2DH CC +⨯+⨯'<>==,uuu r uuu r 所以45DH CC '<>=,o uuu r uuu r. 即DP 与CC '所成的角为45.(Ⅱ)平面AA D D ''的一个法向量是(010)DC =,,u u u r.因为01101cos 2DH DC ⨯+⨯+⨯<>==,uuu r uuu r , 所以60DH DC <>=,o uuu r uuu r. 可得DP 与平面AA D D ''所成的角为30. 19.解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为150.8100.26EY =⨯+⨯=,221(56)0.8(106)0.24DY =-⨯+-⨯=,220.280.5120.38EY =⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312DY =-⨯+-⨯+-⨯=.(Ⅱ)12100()100100x x f x D Y D Y -⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x x DY DY -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22243(100)100x x ⎡⎤=+-⎣⎦ 2224(46003100)100x x =-+⨯, 当6007524x ==⨯时,()3f x =为最小值.20.解:(Ⅰ)由2C :24y x =知2(10)F ,. 设11()M x y ,,M 在2C 上,因为253MF =,所以1513x +=, 得123x =,13y =.M 在1C 上,且椭圆1C 的半焦距1c =,于是 222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩, 消去2b 并整理得 4293740a a -+=,解得2a =(13a =不合题意,舍去). 故椭圆1C 的方程为22143x y +=. (Ⅱ)由12MF MF MN +=u u u r u u u u r u u u r知四边形12MF NF 是平行四边形,其中心为坐标原点O , 因为l MN ∥,所以l 与OM 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=.设11()A x y ,,22()B x y ,,12169mx x +=,212849m x x -=. 因为OA OB ⊥uu r uu u r,所以12120x x y y +=. 121212126()()x x y y x x x m x m +=+-- 2121276()6x x m x x m =-++22841676699m m m m -=-+g g21(1428)09m =-=.所以m =.此时22(16)49(84)0m m ∆=-⨯->, 故所求直线l的方程为y =-,或y =+.21.解: (Ⅰ)21()()f x a x b '=-+, 于是2123210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,, 解得11a b =⎧⎨=-⎩,, 或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-. (Ⅱ)证明:已知函数1y x =,21y x=都是奇函数. 所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形. 而1()111f x x x =-++-. 可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+⎪-⎝⎭,.由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,. 令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.22.解:(Ⅰ)证明:因为MA 是圆O 的切线,所以OA AM ⊥. 又因为AP OM ⊥.在Rt OAM △中,由射影定理知,2OA OM OP =g .(Ⅱ)证明:因为BK 是圆O 的切线,BN OK ⊥.同(Ⅰ),有2OB ON OK =g,又OB OA =, 所以OP OM ON OK =g g ,即ON OMOP OK=. 又NOP MOK =∠∠,所以ONP OMK △∽△,故90OKM OPN ==∠∠. 23.解:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C的普通方程为0x y -+=.因为圆心1C到直线0x y -=的距离为1, 所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数). 化为普通方程为:1C ':2241x y +=,2C ':12y x =,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同. 24.解:(Ⅰ)44()2124848.x f x x x x ⎧⎪=-+<⎨⎪->⎩, ≤,, ≤,图像如下:(Ⅱ)不等式842x x --->,即()2f x >, 由2122x -+=得5x =.由函数()f x 图像可知,原不等式的解集为(5)-∞,.2019高中教师读书心得体会作为教师,在教授知识的提示,也应该利用空暇时刻渐渐品读一些好书,吸收书中的精华。

2008年全国统一考试数学卷(全国新课标.文)

2008年全国统一考试数学卷(全国新课标.文)

2008年全国统一考试数学卷(全国新课标.文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|(2)(1)0M x x x =+-<,{}|10N x x =+<,则M N =A .(1,1)-B .(2,1)-C .(2,1)--D .(1,2)2.双曲线221102xy-=的焦距为A.B. C.D .3.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .4.设()ln f x x x =,若0()2f x '=,则0x =A .2eB .eC .ln 22D .5.已知平面向量(1,3)a =- ,(4,2)b =-,a b λ+ 与a 垂直,则λ=A .1-B .1C .2-D .26.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >7.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a8.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1729.平面向量,a b共线的充要条件是A .,a b方向相同 B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=10.点(,)P x y 在直线430x y +=上,且x ,y 满足147x y ≤-≤,则点P 到坐标原点距离的取值范围A .[]0,5B .[]0,10C .[]5,10D .[]5,1511.函数()cos 22sin f x x x =+的最小值和最大值分别为A .1-,1B .2-,2C .3-,32D .2-,3212.已知平面α⊥平面β,l αβ= ,点A α∈,A l ∉,直线A B ∥l ,直线A C ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是 A .A B ∥mB .AC ⊥mC .A B ∥βD .A C ⊥β第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知{}n a 为等差数列,1322a a +=,67a =,则5a = .14.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,那么这个球的体积为 .15.过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△O A B 的面积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲品种271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种284292295304306307312313315315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,△A C D 是等边三角形,△ABC 是等腰三角形,90ACB ∠=B D 交AC 于E ,2A B =. (1)求cos C A E ∠的值; (2)求A E .18.(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的正视图和俯视图在下面画出(单位:cm )(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结1BC ,证明1BC ∥面EFG .27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙A BCC 1DB 1D 1EGF19.(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10. 把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 20.(本小题满分12分)已知m R ∈,直线2:(1)4l m x m y m -+=和圆:C 2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?21.(本小题满分12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()f x 的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠=23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.文)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧13.14.15.16.三、解答题 17.一、选择题: 1.C 2.D 3.A 4.B 5.A 6.A 7.B8.C9.D10.B11.C12.D二、填空题: 13.1514.43π15.5316.(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀. 注:上面给出了四个结论.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)因为9060150BCD =+= ∠,C B A C C D ==, 所以15CBE = ∠.所以cos cos(4530)4C BE =-= ∠. ··························································· 6分(Ⅱ)在A B E △中,2A B =, 由正弦定理2sin (4515)sin(9015)AE =-+.故2sin 30cos15AE =124⨯==. ·······························································12分18.解:(Ⅰ)如图···················································································· 3分 (Ⅱ)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭(俯视图)(正视图)(侧视图)2284(cm )3=. ·································································· 7分 (Ⅲ)证明:在长方体A B C D A B C D ''''-中, 连结A D ',则A D B C ''∥. 因为E G ,分别为A A ',A D ''中点,所以A D E G '∥,从而E G B C '∥.又B C '⊄平面EFG , 所以B C '∥面EFG . ·································································································12分 19.解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. ·················································································· 4分 (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果. 事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =. ··············································································································12分20.解:(Ⅰ)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21m k m =+, ···························································································· 2分因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.········································································· 5分 (Ⅱ)不能.················································································································ 6分 由(Ⅰ)知l 的方程为(4)y k x =-,其中12k ≤.圆C 的圆心为(42)C -,,半径2r =.ACDE FGA 'B 'C 'D '圆心C 到直线l 的距离d =············································································································· 9分由12k ≤,得1d >≥,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. ···················································12分21.解:(Ⅰ)方程74120x y --=可化为734y x =-.当2x =时,12y =. ··································································································· 2分又2()b f x a x'=+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,,解得13.a b =⎧⎨=⎩,故3()f x x x=-. ········································································································ 6分(Ⅱ)设00()P x y ,为曲线上任一点,由231y x'=+知曲线在点00()P x y ,处的切线方程为002031()y y x x x ⎛⎫-=+- ⎪⎝⎭,即00200331()y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭. 令0x =得06y x =-,从而得切线与直线0x =的交点坐标为060x ⎛⎫- ⎪⎝⎭,. 令y x =得02y x x ==,从而得切线与直线y x =的交点坐标为00(22)x x ,.···············10分所以点00()P x y ,处的切线与直线0x =,y x =所围成的三角形面积为016262x x-=.故曲线()y f x =上任一点处的切线与直线0x =,y x =所围成的三角形的面积为定值,此定值为6. ·························································································································12分 22.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥. 又因为A P O M ⊥,在R t O A M △中,由射影定理知,2OA OM OP = . ········································································································ 5分 (Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥. 同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN == ∠∠. ············································10分 23.解:(Ⅰ)1C 是圆,2C 是直线. ························································································ 2分1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C的普通方程为0x y -+=.因为圆心1C到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. ···················································································· 4分 (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数) 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)························· 8分化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=,其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同. ················································································································10分008年普通高等学校统一考试(海南、宁夏卷)数学(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( )A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)【标准答案】C【试题解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<- M N x x 【高考考点】一元二次不等式的解法及集合的交集及补集运算 【易错提醒】混淆集合运算的含义或运算不仔细出错【全品备考提示】一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.2、双曲线221102xy-=的焦距为( )【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c 【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【全品备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高 3、已知复数1z i =-,则21zz =-( )A. 2B. -2C. 2iD. -2i 【标准答案】A【试题解析】将1=-z i 代入得()22122111--===----i zi z i i,选A【高考考点】复数的加减、乘除及乘方运算 【易错提醒】运算出错【全品备考提示】简单的复数运算仍然是需要掌握的内容,但要求不高,属于必须得分的内容. 4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC.ln 22D. ln 2【标准答案】B【试题解析】∵()ln =f x x x ∴()'1ln ln 1=+⋅=+fx x x x x∴由()'02=fx 得00ln 12 +=∴=x x e ,选B【高考考点】两个函数积的导数及简单应用 【易错提醒】不能熟练掌握导数的运算法则而出错【全品备考提示】导数及应用是高考中的常考内容,要认真掌握,并确保得分.5、已知平面向量a =(1,-3),b=(4,-2),a b λ+ 与a垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 【标准答案】A【试题解析】由于()()4,32,1,3,a b a a b λ+=λ+-λ-=-λ+ ∴()()43320λ+--λ-=,即101001λ+=∴λ=-,选A【高考考点】简单的向量运算及向量垂直【易错点】:运算出错 【全品备考提示】:6、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断 框中,应该填入下面四个选项中的( )权 A. c > x B. x > c C. c > bD. b > c【标准答案】:A【试题解析】:有流程图可知第一个选择框作用是比较x 与b 故第二个选择框的作用应该是比较x 与c 【高考考点】算法中的判断语句等知识.【易错点】:不能准确理解流程图的含义而导致错误. 【全品网备考提示】:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )【标准答案】:B【试题解析】:由()211i a x -<,得:22121i i a x a x -+<,即()220i i x a x a -<,解之得()200i ix a a <<>,由于1230a a a >>>,故120x a <<;选B.【高考考点】二次不等式的解法及恒成立知识 【易错点】:不能准确理解恒成立的含义而导致错误.【全品备考提示】:不等式恒成立问题是历年高考的一个重点,要予以高度重视 8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A. 2B. 4C.152D.172【标准答案】:C【试题解析】:由于()4141122,1512a q S a -=∴==- ∴4121151522S a a a ==;选C;【高考考点】等比数列的通项公式及求和公式的综合应用【易错点】:不能准确掌握公式而导致错误. 【全品备考提示】:等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点, 要予以高度重视9、平面向量a ,b共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=【标准答案】:D【试题解析】:若,a b均为零向量,则显然符合题意,且存在不全为零的实数12,,λλ使得120a b λ+λ=;若0a ≠ ,则由两向量共线知,存在0λ≠,使得b a =λ , 即0a b λ-=,符合题意,故选D【高考考点】向量共线及充要条件等知识.【易错点】:考虑一般情况而忽视了特殊情况【全品备考提示】:在解决很多问题时考虑问题必须要全面,除了考虑一般性外,还要注意特殊情况是否成立. 10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5] B. [0,10]C. [5,10]D. [5,15]【标准答案】:B【试题解析】:根据题意可知点P在线段()43063x y x +=-≤≤上,有线段过原点,故点P到原点最短距离为零,最远距离为点()6,8P -到原点距离且距离为10,故选B;【高考考点】直线方程及其几何意义【易错点】:忽视了点的范围或搞错了点的范围而至错. 【全品备考提示】:随着三大圆锥曲线的降低要求,直线与圆的地位凸现,要予以重视. 11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,32【标准答案】:C【试题解析】:∵()221312sin 2sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭∴当1sin 2x =时,()m ax 32f x =,当sin 1x =-时,()min 3f x =-;故选C;【高考考点】三角函数值域及二次函数值域【易错点】:忽视正弦函数的范围而出错.【全品备考提示】:高考对三角函数的考查一直以中档题为主,只要认真运算即可.12、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥βD. AC ⊥β【标准答案】:D【试题解析】:容易判断A、B、C三个答案都是正确的,对于D,虽然A C l ⊥,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直;【高考考点】线面平行、线面垂直的有关知识及应用 【易错点】:对有关定理理解不到位而出错.【全品备考提示】:线面平行、线面垂直的判断及应用仍然是立体几何的一个重点,要重点掌握.二、填空题:本大题共4小题,每小题5分,满分20分.13、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ____________ 【标准答案】:15【试题解析】:由于{}n a 为等差数列,故3856a a a a +=+∴538622715a a a a =+-=-= 【高考考点】等差数列有关性质及应用 【易错点】:对有关性质掌握不到位而出错.【全品备考提示】:等差数列及等比数列“足数和定理”是数列中的重点内容,要予以重点掌握并灵活应用.14、一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,那么这个球的体积为 _________【标准答案】:43V =π【试题解析】∵正六边形周长为3,得边长为12,故其主对角线为1,从而球的直径22R == ∴1R = ∴球的体积43V =π【高考考点】正六棱柱及球的相关知识【易错点】:空间想象能力不强,不能画出直观图而出错.【全品备考提示】:空间想象能力是立体几何中的一个重要能力之一,平时要加强培养. 15、过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为______________ 【标准答案】:53【试题解析】:将椭圆与直线方程联立:()224520021x y y x ⎧+-=⎪⎨=-⎪⎩,得交点()540,2,,33A B ⎛⎫- ⎪⎝⎭;故121145122233O AB S O F y y =⋅⋅-=⨯⨯+=;【高考考点】直线与椭圆的位置关系【易错点】:不会灵活地将三角形面积分解而导致运算较繁.【全品备考提示】:对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的 位置关系只要掌握直线与椭圆的相关知识即可.16、从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:① ; ② . 【试题解析】:参考答案(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度; (2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中).(3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm ;(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近),甲品种 棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀;【高考考点】统计的有关知识【易错点】:不会对数据作出统计分析. 【全品备考提示】:对数据的处理是新高考的一个新要求,此类问题今后仍然会出现.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17、(本小题12分)如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2.(1)求cos ∠CBE 的值;(2)求AE .【试题解析】:.(1)因为BA0009060150,BC D C B AC C D ∠=+===所以015CBE ∠=,()00cos cos 45304C BE ∴∠=-=(2)在ABE ∆中,2A B =,故由正弦定理得()()2sin 4515sin 9015AE =-+,故0122sin 30cos154AE ⨯===【高考考点】正弦定理及平面几何知识的应用【易错点】:对有关公式掌握不到位而出错. 【全品备考提示】:解三角形一直是高考的重点内容之一,不能轻视.18、(本小题满分12分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG .18. 【试题解析】(1)如图正视图E(2)所求多面体的体积()311284446222323V V V cm ⎛⎫=-=⨯⨯-⨯⨯⨯⨯= ⎪⎝⎭正长方体三棱锥 (3)证明:如图,在长方体''''ABCD A B C D -中,连接'AD ,则'AD ∥'BC因为E,G分别为''',AA A D 中点,所以'AD ∥E G ,从而E G ∥'BC ,又'BC EFG ⊄平面, 所以'BC ∥平面EFG;【高考考点】长方体的有关知识、体积计算及三视图的相关知识 【易错点】:对三视图的相关知识掌握不到位,求不出有关数据.【全品备考提示】:三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视.19、(本小题满分12分)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.19. 【试题解析】 (1)总体平均数为()156789107.56+++++=(2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”从总体中抽取2个个体全部可能的基本结果有:(5,6), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10),共15个基本结果.事件A包含的基本结果有:(5,9), (5,10), (6,8), (6,9), (6,10), (7,8), (7,9),共有7个基本结果; 所以所求的概率为()715P A =【高考考点】统计及古典概率的求法 【易错点】:对基本事件分析不全面.【全品备考提示】:古典概率的求法是一个重点,但通常不难,要认真掌握.20、(本小题满分12分)已知m ∈R ,直线l :2(1)4m x m y m -+=和圆C :2284160x y x y +-++=. (1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?20【试题解析】(1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21m k m =+因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦; (2)不能.由(1知l 的方程为()4y k x =-,其中12k ≤;圆C的圆心为()4,2C -,半径2r =;圆心C到直线l 的距离d =由12k ≤,得1d ≥>,即2r d >,从而,若l 与圆C相交,则圆C截直线l 所得的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两端弧;【高考考点】直线与圆及不等式知识的综合应用 【易错点】:对有关公式掌握不到位而出错.【全品备考提示】:本题不是很难,但需要大家有扎实的功底,对相关知识都要受熟练掌握;21、(本小题满分12分)设函数()b f x ax x=-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=.(1)求()y f x =的解析式;(2)证明:曲线()y f x =上任一点处的 切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值. 21. 【试题解析】1)方程74120x y --=可化为734y x =-,当2x =时,12y =;又()'2b f x a x =+,于是1222744b a b a ⎧-=⎪⎪⎨⎪+=⎪⎩,解得13a b =⎧⎨=⎩,故()3fx x x=-(2)设()00,P x y 为曲线上任一点,由'231y x=+知曲线在点()00,P x y 处的切线方程为()002031y y x x x ⎛⎫-=+- ⎪⎝⎭,即()00200331y x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭令0x =,得06y x =-,从而得切线与直线0x =的交点坐标为060,x ⎛⎫- ⎪⎝⎭;令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为()002,2x x ; 所以点()00,P x y 处的切线与直线0,x y x ==所围成的三角形面积为0016262x x -=;故曲线()y f x =上任一点处的切线与直线0,x y x ==所围成的三角形面积为定值,此定值为6;【高考考点】导数及直线方程的相关知识 【易错点】:运算不仔细而出错. 【全品备考提示】:运算能力一直是高考考查的能力之一,近年来,对运算能力的要求降低了,但对准确率的要求提高了.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 做答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22、(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP 垂直直线OM ,垂足为P . (1)证明:O M ·OP = OA 2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM = 90°.22.【试题解析】(1)证明:因为MA是圆O的切线,所以O A A M⊥,又因为A P O M⊥,在R t O A M∆中,由射影定理知2OA OM OP=⋅;(2)证明:因为BK是圆O的切线,B N O K⊥,同()1有:2OB ON OK=⋅,又O B O A=,所以O M O P⋅=O N O K⋅,即O N O MO P O K=,又N O P M O K∠=∠,所以O N P O M K∆∆,故090OKM OPN∠=∠=;【高考考点】圆的有关知识及应用【易错点】:对有关知识掌握不到位而出错【全品备考提示】:高考对平面几何的考查一直要求不高,故要重点掌握,它是我们的得分点之一.23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1:cos()sinxyθθθ=⎧⎨=⎩为参数,曲线C2:2()2xty⎧=-⎪⎪⎨⎪=⎪⎩为参数.(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;157417843.doc -第 21 页 (共 21 页) (2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线1'C ,2'C .写出1'C ,2'C 的参数方程.1'C 与2'C 公共点的个数和C 1与C 2公共点的个数是否相同? 说明你的理由.23. 【试题解析】(1)C1时圆,C2是直线C1的普通方程为221x y +=,圆心C1(0,0),半径1r =;C2的普通方程为0x y -+=,因为圆心C1到直线0x y -+=的距离为1, 所以C1与C2只有一个公共点;(2)压缩后的参数方程分别为()()''12cos 2::1sin 24x x C C t y y t ⎧=θ=-⎧⎪⎪⎪θ⎨⎨=θ⎪⎪⎩=⎪⎩为参数,为参数化为普通方程为'2'121::22C x C y x =+2+4y =1,联立消元得:2210x ++=,其判别式(24210∆=-⨯⨯=; 所以压缩后的直线与椭圆仍然只有一个公共点,和原来相同;【高考考点】参数方程与普通方程的互化及应用 【易错点】:对有关公式掌握不到位而出错.【全品备考提示】:高考对参数方程的考查要求也不高,故要重点掌握,它也是我们的得分点之一.。

2008年高考全国卷1(理科数学)

2008年高考全国卷1(理科数学)
已知 只动物中有 只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取 只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这 只中的 只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外 只中任取 只化验.
(Ⅰ)求 的值;
(Ⅱ)求 的最大值.
18.(本小题满分 分)
四棱锥 中,底面 为矩形,侧面 底面 , , , .
(Ⅰ)证明: ;
(Ⅱ)设 与平面 所成的角为 ,求二面角 的大小.
19.(本小题满分 分)
已知函数 , .
(Ⅰ)讨论函数 的单调区间;
(Ⅱ)设函数 在区间 内是减函数,求 的取值范围.
20.(本小题满分 分)
15.在 中, , .若以 , 为焦点的椭圆经过点 ,则该椭圆的离心率 .
16.等边三角形 与正方形 有一公共边 ,二面角 的余弦值为 , , 分别是 , 的中点,则 , 所成角的余弦值等于.
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分 分)
设 中, , , 所对的边分别为 , , .且 .
(Ⅱ)设 被双曲线所截得的线段的长为 ,求双曲线的方程.
22.(本小题满分 分)
设函数 .数列 满足 , .
(Ⅰ)证明:函数 在区间 是增函数;
(Ⅱ)证明: ;
(Ⅲ)设 ,整数 .证明: .
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ) 表示依方案乙所需化验次数,求 的期望.
21.(本小题满分 分)
双曲线的中心为原点 ,焦点在 轴上,两条渐近线分别为 , ,经过右焦点 垂直于 的直线分别交 , 于 , 两点.已知 , , 成等差数列,且 与 同向.

全国卷Ⅰ2008年全国各地高考文科数学试题及参考答案及参考答案

全国卷Ⅰ2008年全国各地高考文科数学试题及参考答案及参考答案

绝密★启用前2008年全国各地高考试题文科数学(必修1+选修Ⅰ)本试卷第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至9页。

考试结束后,将本试卷和答题卡一并交回。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A、B互斥,那么球的表面积公式P(A+B)=P(A)+P(B) S=4ΠR2如果事件A、B相互独立,那么其中R表示球的半径P(A+B)=P(A)+P(B) S=4ΠR2P(A·B)=P(A)·P(B) 球的体积公式ΠR3如果事件A在一次试验中发生的概率是P,那么V=43n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径P n(k)=C k n P k(1-p)n-k(k=0,1,2,…,n)一、选择题(1)函数y(A){x|x≤1}(B) {x|x≥1}(C){x|x≥1或x≤0}(D) {x|0≤x≤1}(2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是(3)(1+2x )5的展开式中x 2的系数 (A)10(B)5 (C)52 (D)1(4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30°(B)45°(C)60°(D)12°(5)在△ABC 中,AB =c ,AC =b .若点D 满足BC =2DC ,则AD = (A)c b 3132+ (B)b c 3235- (C)c b 3132- (D)c b 3231+ (6)y =(sin x -cos x )2-1是(A)最小正周期为2π的偶像函数(B)最小正周期为2π的奇函数(C)最小正周期为π的偶函数(D)最小正周期为π的奇函数(7)已知等比数列{a n }满足a 1+a 2=3,a 2+ a 3=6,则a 1= (A)64(B)81(C)128(D)243(8)若函数y =f (x )的图像与函数y =1n 1+x 的图像关于直线y =x 对称,则f (x )= (A)22e-x(B) x2e(C) 12e+x(D) 22e+x(9)为得到函数y =cos(x +3π)的图像,只需将函数y =sin x 的图像 (A)向左平移6π个长度单位 (B)向右平移6π个长度单位(C)向左平移65π 个长度单位 (D)向右平移65π个长度单位(10)若直线bya x +=1与图122=+y x 有公共点,则(A)122≤+b a (B) 122≥+b a (C)11122≤+b a (D) 11122≥+ba(11)已知三棱柱ABC -111C B A 的侧棱与底面边长都相等,1A 在底面ABC 内的射影为△ABC 的中心,则A 1B 与底面ABC 所成角的正弦值等于(A)31(B)32 (C)33 (D)32 (12)将1,2,3填入3×3的方格中,要求每行、第列都没有重复数字,下面是一种填法,则不同的填写方法共有 (A)6种 (B)12种 (C)24种 (D)48种2008年全国各地高考试题文科数学(必修+选修1)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解

2008年普通高等学校招生全国统一考试数学卷全国Ⅰ文含详解

2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题1.函数y = )A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( )A .10B .5C .52D .14.曲线324y x x =-+在点(13),处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°5.在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b -C .2133b c - D .1233b c +6.2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数7.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( ) A .64B .81C .128D .2438.若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( ) A .22ex -B .2e xC .21ex +D .2+2ex9.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位10.若直线1x y a b+=与圆221x y +=有公共点,则( )A .221a b +≤B .221a b +≥ C .22111a b+≤D .2211a b +≥1 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .B .C .D .A .13BCD .2312.将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( ) A .6种 B .12种 C .24种 D .48种2008年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 15.在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)(注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .18.(本小题满分12分)(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设侧面ABC 为等边三角形,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 在数列{}n a 中,11a =,122nn n a a +=+.(Ⅰ)设12nn n a b -=.证明:数列{}n b 是等差数列; (Ⅱ)求数列{}n a 的前n 项和n S . 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任CDE AB取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. 21.(本小题满分12分)(注意:在试题...卷上作答无效......) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.2008年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅰ)参考答案一、1.D 2.A 3.C 4.B 5.A 6.D 7.A 8.A 9.C 10.D 11.B 12.B二、13.9 14.12 15.1216.2三、17.解:(1)由cos 3a B =与sin 4b A =两式相除,有:3cos cos cos cot 4sin sin sin a B a B b BB b A A b B b ==== 又通过cos 3a B =知:cos 0B >,则3cos 5B =,4sin 5B =,则5a =.(2)由1sin 2S ac B =,得到5c =.由222cos 2a c b B ac+-=,解得:b =最后10l =+.18.解:(1)取BC 中点F ,连接DF 交CE 于点O , AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE , ∴AF ⊥面BCDE , ∴AF CE ⊥.tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF , CE AD ∴⊥.(2)在面ACD 内过C 点做AD 的垂线,垂足为G . CG AD ⊥,CE AD ⊥, AD ∴⊥面CEG , EG AD ∴⊥,则CGE ∠即为所求二面角.233AC CD CG AD ==,3DG =,EG ==CE =则222cos 2CG GE CE CGE CG GE +-∠==,πarccos CGE ∴∠=-⎝⎭.19.解:(1)122nn n a a +=+,11122n nn n a a +-=+, 11n n b b +=+,则n b 为等差数列,11b =,n b n =,12n n a n -=.(2)01211222(1)22n n n S n n --=+++-+12121222(1)22n n n S n n -=+++-+两式相减,得01121222221n n n n n S n n -=---=-+.20.解:设1A 、2A 分别表示依方案甲需化验1次、2次。

2008年高考理科数学试题及参考答案(全国卷Ⅰ)

2008年高考理科数学试题及参考答案(全国卷Ⅰ)

1.Amdahl提出的计算机系统机构的经典定义是:计算机系统结构是程序员看到的计算机属性,即概念性结构和功能特性。

2.计算机系统中的提高并行性的措施很多,但就其基本思想而言,可以归为3类技术途径,这就是时间重叠、资源重复和资源共享。

3.MIPS的数据寻址方式有立即数寻址和偏移量寻址两种,但通过把0作为偏移量可实现寄存器间接寻址,而把 RO作为基址寄存器可实现16位绝对寻址方式。

4.交叉访问存储器通常有两种地址映像方式:顺序交叉和取模交叉,其中取模交叉方式不仅可以减少体冲突而且可以使用位选择方法来代替在确定体内地址时使用的除法运算。

5.互联网络从拓扑结构上可分为静态互连网络和动态…。

6.根据存储器的分布方式,多处理器计算机有两种基本结构,就是集中式共享存储结构和具有分布的物理存储器结构。

7.在多处理器系统中并行性遇到的挑战,一个是程序中的并行性有限,另一个是相对较高的通信开销。

1.系列机软件必须保证( C )A.向前兼容,并向上兼容B.向前兼容,并向下兼容C.向后兼容,力争向上兼容D.向后兼容,力争向下兼容2.计算机系统结构不包括( C )A.数据表示 B.机器工作状态的定义和切换C.主存速度 D.信息保护3.字串位并是指同时对一个字的所有位进行处理,其并行等级( D )A.不存在并行性 B.较高的并行性C.最高一级的并行性D.已经开始出现并行性4.RISC计算机的指令系统集类型是(C )A.堆栈型 B.累加器型C.寄存器—寄存器型 D.寄存器-存储器型5.关于“一次重叠”说法不正确的是( A )A.仅“执行K”与“分析K+1”重叠B. 应尽量使“分析K+1”与“执行K”时间相等C. “分析K”完后立即开始“执行K”D. 只需一套指令分析部件和一套执行部件6.在Cache存储器中常用的地址映象方式是( C )A.全相联映 B.页表法映象C.组相联映象 D.段页表映象7.块冲突概率最高的Cache地址映象方式是( A )A.直接 B.组相联 C.段相联 D.全相联8.设8个处理器编号分别为0,1,2,…,7用Cube2 (交换函数中的C2)互联函数时,第3号处理机与第( D )号处理机相联。

2008年高考数学全国一卷试题和答案

2008年高考数学全国一卷试题和答案

2008年高考数学全国一卷试题和答案2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答.......无效... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R表示球的半径 ()()()P A B P A P B =g g 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=L ,,,一、选择题 1.函数(1)y x x x- )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x U ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r,则AD =u u u r ( )s OA s t Os t Os OB C DA .2133+b cB .5233-c bC .2133-b c D .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( )A .2B .1C .0D .1- 5.已知等差数列{}na 满足244aa +=,3510aa +=,则它的前10项的和10S =( )A .138B .135C .95D .23 6.若函数(1)y f x =-的图像与函数1y x =的图像关于直线y x =对称,则()f x =( ) A .21x e - B .2xe C .21x e + D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( )A .2B .12C .12- D .2- 8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x=的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( ) A .(10)(1)-+∞U ,, B .(1)(01)-∞-U ,, C .(1)(1)-∞-+∞U ,, D .(10)(01)-U ,,10.若直线1x y a b+=通过点(cos sin )M αα,,则( ) A .221ab +≤ B .221ab +≥ C .22111a b +≤D .22111a b +≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13B 2C 3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .48DB CA2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........)13.若x y,满足约束条件3003x yx yx⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y=-的最大值为 . 14.已知抛物线21y ax=-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C,则该椭圆的离心率e =.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(注意:在试题卷上作答无........效.) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb A c-=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.(注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,2CD =AB AC =. (Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45o,求二面角C AD E--的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x xax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.CDE A B(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB u u u r u u u r u u u r 、、成等差数列,且BFu u u r与FAu u u r同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}na 满足101a <<,1()n n af a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11nn aa +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b+>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1.C.2.A.3.A.4.D.5.C.6.B.7.D.8.A.9.D .10.D .11.B12.B.13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得 ,sin sin ,sin sin CB c bC A c a == c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高等学校夏季招生考试数学理工农医类(全国Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k kn k n n P k C P P k n -=-=,,,一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .B .C .D .A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( ) A .(10)(1)-+∞,, B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .3C D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值;(Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.CDE AB21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅱ)参考答案1. C.2. A .3. A.4. D.5. C.6. B.7.D.8.A.9.D .10.D .11.B12.B.13.答案:9.14. 答案:2.15.答案:38.16.答案:16. 三、17.解:(Ⅰ)由正弦定理得,sinsin ,sin sin CBc b C A c a ==c A CBB C A A b B a )cos sin sin cos sin sin (cos cos ⋅-⋅=-,1cot tan )1cot (tan sin cos cos sin sin cos cos sin )sin(cos sin cos sin +-=⋅+-=⋅+-=B A c B A c B A B A B A B A cB A AB B A 依题设得:.4cot tan .531cot tan )1cot (tan ==+-B A c B A c B A 解得(Ⅱ)由(Ⅰ)得tanA=4tanB,故A 、B 都是锐角,于是tanB>0.,43tan 41tan 3tan tan 1tan tan )tan(2≤+=+-=-B B BA B A B A且当tanB=21时,上式取等号。

因此tan(A-B)的最大值为43. (18)解法一:(Ⅰ)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE ,从而∠ODC=∠CED ,于是CE ⊥OD. 由三垂线定理知,AD ∠CE.(Ⅱ)由题意,BE ⊥BC ,所以BE ⊥侧面ABC , 又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC.作CF ⊥AB ,垂足为F ,连接FE ,则CF ⊥平面ABE. 故∠CEF 为CE 与平面ABE 所成的角,∠CEF=45°. 由CE=6,得CF=3。

又BC=2,因而∠ABC=60°。

所以△ABC 为等边三角形。

作CG ⊥AD ,垂足为G ,连接GE 。

由(Ⅰ)知,CE ⊥AD ,又CE CG=C ,故AD ⊥平面CGE ,AD ⊥GE ,∠CGE 是二面角C-AD-E 的平面角。

).1010arccos(,10103103226310342cos ,6,310652)21(,3262222222----=⨯⨯-+=⋅-+=∠==⨯=-⨯==⨯=⨯=为所以二面角E AD C GE CG CE GE CG CGE CE AD DE AD DE GE AD CD AC CG 解法二:(Ⅰ)作AO ⊥BC ,垂足为O 。

则AO ⊥底面BCDE ,且O 为BC 的中点。

以O 为坐标原点,射线OC 为x 轴正向,建立如图所示的直角坐标系O-xyz.设A (0,0,t ),由已知条件有 C(1,0,0), D(1,2,0),E(-1, 2,0),,AD CE t 0).,2,1(),0,2,2(=⋅-=-=所以得AD ⊥CE.(Ⅱ)作CF ⊥AB ,垂足为F ,连接FE.设F (x,0,z ),则),,0,1(z x -=).3,0,0(.602.36.45..0),0,2,0(A ,ABC FBC ,CB CF ,CE CEF ,ABE CE CEF ABE ,CF B ,BE AB BE CF 因此为等边三角形所以又得由所成的角与平面是平面所以又故∆=∠====∠∠⊥=⊥=⋅=作CG ⊥AD ,垂足为G ,连接GE ,在Rt △ACD 中,求得|AG|=.||32AD 故),33,322,32(G),33,32,35(),33,322,31(--=--=,)3,2(1,-=又.00=⋅=⋅,所以与的夹角等于二面角C-AD-E 的平面角.1010||||,cos -=⋅>=<GE GC 由 知二面角C-AD-E 为arccos(1010-). (19)解:(Ⅰ)3).a 4(,123)(22-=∆++='判别式ax x x f;f(x )0,(x )f )33a -a -,-(,33)1(2是增函数上则在或若>'-∞-<>a a.)(,0)(),33a a -()(,0)()33a a -,33a a -(222是增函数上在是减函数内在x f x f ;x f x f >'+∞-+<'-+--(2)若33<<-a ,则对所有R x ∈都有0)(>'x f ,故此时)(x f 在R 上是增函数.(3)若,0)(3,0)3(,3>'-≠=-'±=x f ax a f a 都有且对所有的则 .)(3上是增函数在时故当R x ,f a ±=(Ⅱ)由(Ⅰ)知,只有当,a a 时或33-<>).2[.23||31333233.)33,33()(2222∞+≥>-≥-+--≤----+----,a a ,a 。

相关文档
最新文档