半导体工艺要点精

合集下载

半导体制造工艺简介.

半导体制造工艺简介.


材料制备
பைடு நூலகம் 制造工艺简介
(a)n型硅晶片原材料(b)氧化后的晶片
1 制造工艺简介
(c)涂敷光刻胶(d)光刻胶通过掩膜版曝

1 制造工艺简介
(a)显影后的晶片(b)SiO2去除后的晶片 氧化工艺
1 制造工艺简介
(c)光刻工艺处理后的晶片 (d)扩散或离子注入形成PN结 光刻和刻蚀工艺;扩散和离子注入工艺
化学气相淀积
CVD生长的二氧化硅:用作金属间的绝缘层,
用于离子注入和扩散的掩蔽层,也可用于增 加热氧化生长的场氧化层的厚度 热生长的二氧化硅:具有最佳的电学特性。 可用于金属层之间的绝缘体,又可用作器件 上面的钝化层
主要内容
3.1半导体基础知识
工艺流程 3.3 工艺集成
3.2


氮化硅的制备
主要用作:金属上下层的绝缘层、场氧的屏蔽层、 芯片表面的钝化层。
8 常用工艺之五:薄膜制备
生产SiO2
8 常用工艺之五:薄膜制备
氧化质量
物理气相淀积
(2)物理气相淀积
利用某种物理过程,例如蒸发或溅射,来实
现物质的转移,即把材料的原子由源转移到 衬底表面,从而实现淀积形成薄膜。 金属的淀积通常是物理的。 两种方法:真空蒸发;溅射
电阻值计算,xj为结深
当W=L时,G=g
1/g用R■表示,称为方块电阻,单位为欧姆,
习惯上用Ω/ ■表示。
2 无源器件
2、电容
基本上分为两种:MOS电容和P-N结电容 (1)MOS电容:重掺杂区域作为极板,氧
化物作为介质 单位面积的电容为 (2)P-N结电容:N+P结电容,通常加反向 偏置电压

集成电路制造中的半导体器件工艺

集成电路制造中的半导体器件工艺

集成电路制造中的半导体器件工艺绪论随着信息技术的飞速发展,集成电路制造技术已成为现代电子工业的核心领域。

集成电路是现代电子产品的基础,在计算机、通讯、军事和工业等领域都有着广泛的应用。

而半导体器件工艺是集成电路制造技术的基石,其质量和效率直接决定了集成电路的性能和成本。

本文将从半导体制造的基本流程、光刻工艺、薄膜工艺、化学机械抛光、多晶硅工艺和后台工艺六个方面详细介绍集成电路制造中的半导体器件工艺。

一、半导体制造的基本流程半导体芯片制造的基本流程包括晶圆制备、芯片制造和包装封装。

具体流程如下:晶圆制备:晶圆是半导体器件制造的基础,它是由高纯度单晶硅材料制成的圆片。

晶圆制备的主要过程包括矽晶体生长、切片、抛光和清洗等。

芯片制造:芯片制造主要包括传输电子装置和逻辑控制逻辑电路结构的摆放和电路组成等操作。

包装封装:芯片制造完成后,晶体管芯片需要被封装起来的保护电路,使其不会受到外界环境的影响。

光刻工艺是半导体工艺中的核心部分之一。

光刻工艺的主要作用是将图形预设于硅晶圆表面,并通过光刻胶定位的方式将图形转移到晶圆表面中,从而得到所需的电子器件结构。

光刻工艺的主要流程包括图形生成、光刻胶涂布、曝光、显影和清洗等步骤。

三、薄膜工艺薄膜工艺是半导体制造中的另一个重要工艺。

它主要通过化学气相沉积、物理气相沉积和溅射等方式将不同性质的材料覆盖在晶圆表面,形成多层结构,从而获得所需的电子器件。

四、化学机械抛光化学机械抛光是半导体工艺中的核心工艺之一。

其主要作用是尽可能平坦和光滑化硅晶圆表面,并去除由前工艺所形成的残余物和不均匀的层。

化学机械抛光的基本原理是使用旋转的硅晶圆,在氧化硅或氮化硅磨料的帮助下,进行机械和化学反应,从而达到平坦化的效果。

五、多晶硅工艺多晶硅工艺是半导体工艺中的一个重要工艺,主要是通过化学气相沉积厚度约8至12个纳米的多晶硅层。

该工艺可以用于形成电极、连接线、栅极和像素等不同的应用。

多晶硅工艺的优点是不需要特殊的工艺装备,因此较为简单。

半导体八大工艺顺序

半导体八大工艺顺序

半导体八大工艺顺序半导体八大工艺顺序,是指半导体制造过程中的八个主要工艺步骤。

这些工艺步骤包括晶圆清洗、光刻、沉积、刻蚀、扩散、离子注入、退火和包封。

下面将逐一介绍这些工艺步骤的顺序及其作用。

1. 晶圆清洗晶圆清洗是半导体制造过程中的第一步。

在这一步骤中,晶圆将被放入化学溶液中进行清洗,以去除表面的杂质和污染物。

这样可以确保后续工艺步骤的顺利进行,同时也可以提高器件的质量和性能。

2. 光刻光刻是半导体制造中的关键工艺步骤之一。

在这一步骤中,将使用光刻胶覆盖在晶圆表面上,并通过光刻机将图形投射到光刻胶上。

然后,利用化学溶液将未曝光的光刻胶去除,从而形成所需的图形。

3. 沉积沉积是指在晶圆表面上沉积一层薄膜的工艺步骤。

这一层薄膜可以用于改变晶圆表面的性质,增加其导电性或绝缘性。

常用的沉积方法包括化学气相沉积和物理气相沉积。

4. 刻蚀刻蚀是将多余的材料从晶圆表面去除的工艺步骤。

在这一步骤中,利用化学溶液或等离子刻蚀机将不需要的材料去除,从而形成所需的图形和结构。

5. 扩散扩散是将杂质或掺杂物diffused 到晶圆中的工艺步骤。

这一步骤可以改变晶圆的电学性质,并形成PN 结等器件结构。

常用的扩散方法包括固体扩散和液相扩散。

6. 离子注入离子注入是将离子注入到晶圆中的工艺步骤。

这可以改变晶圆的导电性和掺杂浓度,从而形成电子器件的结构。

离子注入通常在扩散之前进行。

7. 退火退火是将晶圆加热至一定温度并保持一段时间的工艺步骤。

这可以帮助晶圆中的杂质扩散和掺杂物活化,从而提高器件的性能和稳定性。

8. 包封包封是将晶圆封装在外部保护材料中的工艺步骤。

这可以保护晶圆不受外部环境的影响,同时也可以方便晶圆的安装和使用。

半导体制造过程中的八大工艺顺序是一个复杂而精密的过程。

每个工艺步骤都起着至关重要的作用,只有严格按照顺序进行,才能生产出高质量的半导体器件。

希望通过本文的介绍,读者对半导体制造过程有了更深入的了解。

半导体工艺要点(精)

半导体工艺要点(精)

半导体⼯艺要点(精)半导体⼯艺要点1、什么是集成电路通过⼀系列特定的加⼯⼯艺,将晶体管、⼆极管等有源器件和电阻、电容等⽆源器件,按照⼀定的电路互连,“集成”在⼀块半导体单晶⽚(如硅或砷化镓)上,封装在⼀个外壳内,执⾏特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯⽚制造-芯⽚功能检测-封装-测试3、集成电路发展的特点特征尺⼨越来越⼩硅圆⽚尺⼨越来越⼤芯⽚集成度越来越⼤时钟速度越来越⾼电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯⽚的集成度每三年提⾼4倍,⽽加⼯特征尺⼨(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏⼒半导体制造有限公司TI 美国德州仪器7、直拉法⽣长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引⼊籽晶作为⾮均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的⽅向长⼤。

1.籽晶熔接: 加⼤加热功率,使多晶硅完全熔化,并挥发⼀定时间后,将籽晶下降与液⾯接近,使籽晶预热⼏分钟,俗称“烤晶”,以除去表⾯挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液⾯接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这⼀步骤叫“引晶”,⼜称“下种”。

“缩颈”是指在引晶后略为降低温度,提⾼拉速,拉⼀段直径⽐籽晶细的部分。

其⽬的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈⼀般要长于20mm3.放肩:缩颈⼯艺完成后,略降低温度,让晶体逐渐长⼤到所需的直径为⽌。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>⽅向应有对称三条棱,<100>⽅向有对称的四条棱。

半导体七大核心工艺步骤

半导体七大核心工艺步骤

半导体七大核心工艺步骤
1. 晶圆生长,晶圆是制造芯片的基础,晶圆生长是指在高温下
将单晶硅材料生长成圆形晶圆。

2. 晶圆清洗,晶圆在生长过程中会附着各种杂质和污染物,因
此需要进行严格的清洗,以确保表面的干净和平整。

3. 晶圆扩散,在这一步骤中,通过高温处理将掺杂物质(如硼、磷等)扩散到晶圆表面,改变硅的导电性能。

4. 光刻,光刻技术是将光敏胶涂覆在晶圆表面,然后使用光刻
机将芯片图案投影到光敏胶上,形成光刻图案。

5. 蚀刻,蚀刻是利用化学反应将未被光刻覆盖的部分材料去除,从而形成芯片上的线路和结构。

6. 沉积,在芯片制造过程中,需要在特定区域沉积金属或者绝
缘材料,以形成导线、电容等元件。

7. 清洗和测试,最后一步是对芯片进行清洗和测试,确保芯片
的质量和性能符合要求。

这七大核心工艺步骤构成了半导体制造的基本流程,每一步都至关重要,任何一处的错误都可能导致芯片的失效。

半导体工艺的不断创新和完善,为现代电子技术的发展提供了坚实的基础。

半导体工艺要点(精)

半导体工艺要点(精)

半导体工艺要点1、什么是集成电路通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯片制造-芯片功能检测-封装-测试3、集成电路发展的特点特征尺寸越来越小硅圆片尺寸越来越大芯片集成度越来越大时钟速度越来越高电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏力半导体制造有限公司TI 美国德州仪器7、直拉法生长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。

“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。

其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈一般要长于20mm3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。

半导体工艺(精)

半导体工艺(精)

半导体的生产工艺流程--------------------------------------------------------------------------------一、洁净室一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。

但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。

为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。

洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。

所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。

为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下:1、内部要保持大于一大气压的环境,以确保粉尘只出不进。

所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。

2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。

换言之,鼓风机加压多久,冷气空调也开多久。

3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。

4、所有建材均以不易产生静电吸附的材质为主。

5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。

6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。

) 当然,化妆是在禁绝之内,铅笔等也禁止使用。

7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。

半导体工艺要点(精)

半导体工艺要点(精)

半导体工艺要点1、什么是集成电路通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯片制造-芯片功能检测-封装-测试3、集成电路发展的特点特征尺寸越来越小硅圆片尺寸越来越大芯片集成度越来越大时钟速度越来越高电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏力半导体制造有限公司TI 美国德州仪器7、直拉法生长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。

“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。

其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈一般要长于20mm3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体工艺要点1、什么是集成电路通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能2、集成电路设计与制造的主要流程框架设计-掩模板-芯片制造-芯片功能检测-封装-测试3、集成电路发展的特点特征尺寸越来越小硅圆片尺寸越来越大芯片集成度越来越大时钟速度越来越高电源电压/单位功耗越来越低布线层数/I/0引脚越来越多4、摩尔定律集成电路芯片的集成度每三年提高4倍,而加工特征尺寸(多晶硅栅长)倍,这就是摩尔定5、集成电路分类6、半导体公司中芯国际集成电路制造有限公司(SMIC)上海华虹(集团)有限公司上海先进半导体制造有限公司台积电(上海)有限公司上海宏力半导体制造有限公司 TI 美国德州仪器7、直拉法生长单晶硅直拉法法是在盛有熔硅或锗的坩埚内,引入籽晶作为非均匀晶核,然后控制温度场,将籽晶旋转并缓慢向上提拉,晶体便在籽晶下按籽晶的方向长大。

1.籽晶熔接: 加大加热功率,使多晶硅完全熔化,并挥发一定时间后,将籽晶下降与液面接近,使籽晶预热几分钟,俗称“烤晶”,以除去表面挥发性杂质同时可减少热冲击2.引晶和缩颈:当温度稳定时,可将籽晶与熔体接触。

此时要控制好温度,当籽晶与熔体液面接触,浸润良好时,可开始缓慢提拉,随着籽晶上升硅在籽晶头部结晶,这一步骤叫“引晶”,又称“下种”。

“缩颈”是指在引晶后略为降低温度,提高拉速,拉一段直径比籽晶细的部分。

其目的是排除接触不良引起的多晶和尽量消除籽晶内原有位错的延伸。

颈一般要长于20mm3.放肩:缩颈工艺完成后,略降低温度,让晶体逐渐长大到所需的直径为止。

这称为“放肩”。

在放肩时可判别晶体是否是单晶,否则要将其熔掉重新引晶。

单晶体外形上的特征—棱的出现可帮助我们判别,<111>方向应有对称三条棱,<100>方向有对称的四条棱。

4.等径生长:当晶体直径到达所需尺寸后,提高拉速,使晶体直径不再增大,称为收肩。

收肩后保持晶体直径不变,就是等径生长。

此时要严格控制温度和拉速不变。

5.收晶:晶体生长所需长度后,拉速不变,升高熔体温度或熔体温度不变,加快拉速,使晶体脱离熔体液面。

8、直拉法的两个主要参数:拉伸速率,晶体旋转速率悬浮区熔法倒角是使晶圆边缘圆滑的机械工艺9、外延层的作用EpitaxyPurpose1、Barrier layer for bipolar transistor2、Reduce collector resistance while keep high breakdown voltage.3、Improve device performance for CMOS and DRAM because much lower oxygen,4、carbon concentration than the wafer crystalEpitaxy application,bipolar transistorEpitaxy application, CMOS10、气相外延(CVD):在气相状态下,将半导体材料淀积在单晶片上,使它沿着单晶片的结晶轴方向生长出一层厚度和电阻率合乎要求的单晶层,这一工艺称为气相外延液相外延(LCD)是将溶质放入溶剂,并在一定温度下成为均匀溶液,然后使溶液在衬底上逐渐冷却,当超过饱和点后,便有固体析出,而进行晶体生长。

以GaAs 为例,是以Ga为溶剂,As为溶质溶解成溶液,布在衬底上,使之缓慢冷却,当溶液超过饱和点时,衬底上便析出GaAs而生成晶体。

金属有机物气相沉积(MOCVD):采用Ⅱ族,Ⅲ族元素的有机化合物和Ⅴ族,Ⅵ族元素的氢化物作为晶体生长的源材料,以热分解的方式在衬底上进行外延生长的方法分子束外延(MBE):在超高真空条件下,用分子束输运生长源进行外延生长的方法化学束外延(CBE): 用气态源进行MBE生长的方法蒸发(evaporation):在真空中,通过加热使金属、合金或化合物蒸发,然后凝结在器件表面上的方法溅射(Sputtering):利用高速正离子轰击靶材(阴极),使靶材表面原子以一定能量逸出,然后在器件表面沉积的过硅外延生长1.外延不同的分类方法以及每种分类所包括的种类按外延层性质:同质外延,异质外延按电阻率:正外延,反外延按生长方法:直接外延,间接外延按相变过程:气相,液相,固相外延2.硅气相外延分类,硅气相外延原料SiH4, SiH2CL2,(直接分解)SiHCL3,SiCL4,H2(氢还原法)3.用SiCL4外延硅的原理以及影响硅外延生长的因素以及优点基本原理:SiCL4+2H2===Si+4HCLSiCL4浓度,温度,气流速度,衬底晶向在电阻率极低的衬底上生长一层高电阻率外延层,器件制做在外延层上,高电阻的外延层保证管子有高的击穿电压,低电阻率的衬底又降低了基片的电阻,降低了饱和压降,4.硅的异质外延有哪两种在蓝宝石,尖晶石衬底上的SOS(Silicon On Sapphire, Silicon On Spinel)外延生长在绝缘衬底上进行的SOI(Silicon On Insulator)外延生长5.什么是同质外延,异质外延,直接外延,间接外延同质外延;衬底与外延层是同种材料异质外延;衬底与外延层是不同材料直接外延;用物理方法(加热,电场,离子轰击)将生长材料沉淀到衬底表面间接外延;用化学反应在衬底上沉淀外延层6.什么是自掺杂外掺杂抑制自掺杂的途径有哪些自掺杂:在外延生长过程中,衬底中的杂质进入气相中,再次掺入外延层的现象外掺杂:杂质不是来源于衬底,由人为控制的掺杂方式途径;减少杂质从衬底溢出采用减压生长技术外延的定义Sio2做掩埋层的原因,杂质在sio2中扩散速率远远小于在si中的扩散速率液相外延是将溶质放入溶剂,并在一定温度下成为均匀溶液,然后使溶液在衬底上逐渐冷却,当超过饱和点后,便有固体析出,而进行晶体生长。

以GaAs为例,是以Ga为溶剂,As为溶质溶解成溶液,布在衬底上,使之缓慢冷却,当溶液超过饱和点时,衬底上便析出GaAs而生成晶体。

介电强度衡量材料耐压能力大小的,单位是V/cm,表示单位厚度的SiO2所能承受的最大击穿电压介电常数,高K,低K高K:MOS器件中电介质要求具有较大的介电常数,栅氧化层电容要大,1、减小电容器的体积和重量 2、增大电荷容量提高电学性能低K:器件和衬底间的寄生电容要小SiO2在集成电路制造中的用途1.扩散,离子注入的(有时与光刻胶、Si3N4层一起使用) 掩蔽层(阻挡,屏蔽层不准确)2.器件表面保护和钝化层器件的组成部分--栅介质4.电容介质5.器件隔离用的绝缘层6.多层布线间的绝缘层Gate oxide and capacitor dielectric in MOS devicesIsolation of individual devices (STI)Masking against implantation and diffusionPassivation of silicon surface集成电路的隔离有PN结隔离和介质隔离两种,SiO2用于介质隔离.,漏电流小,岛与岛之间的隔离电压大,寄生电容小STI(Shallow Trench Isolation)热氧化分为干氧氧化、湿氧氧化、水气氧化以及掺氯氧化、氢氧合成等热氧化化学反应虽然非常简单,但氧化机理并非如此,因为一旦在硅表面有二氧化硅生成,它将阻挡O原子与Si原子直接接触,所以其后的继续氧化是O原子通过扩散穿过已生成的二氧化硅层,向Si一侧运动到达界面进行反应而增厚的通过一定的理论分析可知,在初始阶段氧化层厚度(X)与时间(t)是线性关系,而后变成抛物线关系。

通常来说,小于1000埃的氧化受控于线性机理。

这是大多数MOS 栅极氧化的范围。

无论是干氧或者湿氧工艺,二氧化硅的生长都要消耗硅,如图所示。

硅消耗的厚μm 的硅消耗(干、优点:1.杂质浓度不变,并100%激活.2.残留晶格缺陷少,均匀性和重复性好.3.加工效率高,可达200~300片/h.4.设备简单,成本低.5.温度较高(1200℃),升温速度较快(75~200 ℃/sec)6.掺杂物的扩散最小化快速加热工艺主要是用在离子注入后的退火,目的是消除由于注入带来的晶格损伤和缺陷目前的栅氧化层厚度大概在3nm 左右退火(Annealing )实际上这个工艺主要是针对离子注入的原 理:利用热能(Thermal Energy ),将物体内产生内应力的一些缺陷加以消除。

所施加的能量将增加晶格原子及缺陷在物体内的振动及扩散,使得原子的排列得以重整(b) 氧化后的硅片(a)氧化前的硅片离子注入过程是一个非平衡过程,高能离子进入靶后不断与原子核及其核外电子碰撞,逐步损失能量,最后停下来。

停下来的位置是随机的,一部分不在晶格上,因而没有电活性 ,需要退火激活不在晶格位置而在晶格间隙的杂质离子;同时修复晶格注入损伤主要的退火制程有:1.后离子注入(Post Ion Implantation);2.金属硅化物(Silicide)的退火。

主要硅化金属材料有:WSix, TiSi2(用于Salicide制程), MoSi2, CoSi2等。

退火后,金属硅化物电阻率可降到只有原来的10%。

——硼磷硅玻璃(Boro phospho silicate Glass)二氧化硅原有的有序网络结构由于硼磷杂质(B2O3,P2O5)的加入而变得疏松,在高温条件下某种程度上具有像液体一样的流动能力(Reflow)。

因此BPSG薄膜具有卓越的填孔能力,并且能够提高整个硅片表面的平坦化,从而为光刻及后道工艺提供更大的工艺范围(Spin-On Glass)旋涂式玻璃1.局部氧化隔离法隔离(LOCOS----local oxidation of silicon)传统的μm工艺以上的器件隔离方法是硅的局部氧化。

它利用了氧在Si3N4中扩散非常缓慢的性质,从而使得被氮化硅覆盖的硅层在氧化过程中极难生成氧化物。

氮化硅将作为氧化物阻挡层保持不变杂质在氮化硅中的扩散系数小于在二氧化硅中的衬垫氧化层的作用1缓冲氮化硅的高应力张力2预防应力产生硅的缺陷鸟嘴效应对工艺的影响1二氧化硅内部的横向扩散引起的2在氮化硅层下生长3鸟嘴”区属于无用的过渡区,既不能作为隔离区,也不能作为器件区,浪费许多硅表面区域,这对提高集成电路中的集成度极其不利4局域氧化层的高度对后道工艺中的平坦化也不利,影响光刻制程和薄膜沉积抑制鸟嘴效应,最普遍的方法就是多晶硅缓冲PBL(poly buffered LOCOS)制程。

使用一层多晶硅(500A)来缓冲氮化硅的应力,这样,衬垫氧化层的厚度就能从大约500A减小到100A,这样就可以大大减少氧化物的侵入。

相关文档
最新文档