BGP同步实验与总结

合集下载

BGP 总结

BGP 总结

如要转载请写明出处。

1、收到一条BGP路由后,如果路由器发现自己的AS号出现在AS-Path里,将丢弃该路由。

2、从EBGP Peers处学来的路由转发给另外的EBGP Peers时,将不会把原来的MED属性通报给EBGP Peers,而会把MED属性设为“0”3、当向IBGP Peers通告路由时,如学到此路由时就没有Loc-Pref,则DUT应把此属性设为“100”之后再发布给IBGP Peers;而当DUT把此路由通告给EBGP Peers时,则不论原来的值为多少,一概不把该Loc-Pref值加到自己发出的Update报文中去。

4、BGP同步:第一,当DUT没有得到IGP传来的相同的路由时,它是否会不把从IBGP Peers处学来的路由通告给EBGP Peers;第二,若用命令“no synchronization”关闭了同步,得到的结果是否与第一条相反;第三,如果DUT 得到了从IGP传来的相同的路由,得到的结果是否也与第一条相反。

5、BGP只将Internal Update发给EBGP Peers而不发给IBGP Peers。

6、BGP会将External Update发给IBGP Peers和其它EBGP Peers。

7、由network命令注入的BGP路由,其origin属性应为IGP、而由redistribute 命令注入的BGP路由其origin属性应为 Incomplete。

8、BGP在发送Update报文时对AS-Path的修改遵从下列原则:1)在向IBGP Peers通告路由时,不更改AS-Path属性;2)在向EBGP Peers通告路由时,把自己的AS号加到原AS-Path的最前面再通报出去;9、BGP在发送Update报文时对next hop的修改是否遵从下列原则:1)在向IBGP Peers通告从EBGP学来的路由时,不更改next hop属性;2)在向IBGP Peers通告始发的路由时,把next hop设为自己的出端口IP地址再通报出去;3)在向EBGP Peers通告路由时,把next hop设为自己的出AS的端口IP地址再通报出去;10、 EBGP-Multi-Hop(EBGP多中继)是指EBGP连接的两端不必有物理的直连,它们中间只要能够有一条逻辑的链路即可建立连接,但是EBGP 的特性要有相应的改变。

雷光全BGP实验报告二

雷光全BGP实验报告二

一、实验名称
BGP同步
二、实验要求
分析BGP同步的好处,BGP同步的路由情况,以及在什么情况下使用同步。

三、实验拓扑
四、重要实验配置
Igp的配置:
RT1:
RT2:
RT3:
RT4:
BGP的配置RT1:
RT2:
RT5:
RT6:
五、实验现象
各设备的bpg表:
RT1:
RT2:
RT1路由表:
用ping命令进行全网互联的测试
在RT5上进行跟踪
六、实验分析
分析PC5(10.5.5.10)访问PC6(10.6.6.10)的过程
PC5:10.6.6.10与自己不在同一个网段,它将数据包发送给网关10.5.5.1(RT5)
RT5:查找路由表,发现:
RT1:查找路由表,发现:
RT3:查找路由表,发现:
RT4:查找路由表:发现:
一直到目标地址。

BGP同步,就是使IGP和BGP达到同步,如果没有达到同步的路由,将不会通告给邻居,也不会转发出去。

但是如果
开启同步的话,也有一点的危害,如果BGP的路由条目过多,发布到IGP的话,就会导致IGP路由器崩溃。

所以小心认真使用。

七、实验总结
通过本次实验,我掌握了BGP同步的概念,在什么情况下使用BGP同步,使用BGP同步的时候,要注意些什么,以及我们应该怎样去解决这种状况,显然BGP同步还是比较简单的。

bgp实验报告总结

bgp实验报告总结

bgp实验报告总结
BGP实验报告总结
背景
BGP(Border Gateway Protocol)是用于在互联网中交换路由信息的协议。

它是一种路径矢量协议,用于确定最佳路径,并且能够适应网络拓扑的变化。

在本次实验中,我们对BGP进行了实验,并对实验结果进行了总结和分析。

实验过程
在实验中,我们使用了模拟器来模拟网络环境,并配置了多个路由器和主机。

我们通过配置BGP协议来模拟网络中的路由器之间的路由信息交换。

我们还模拟了网络中的故障情况,以观察BGP协议对网络拓扑变化的适应能力。

实验结果
通过实验,我们观察到BGP协议在网络拓扑变化时能够快速地重新计算最佳路径,并更新路由表。

当网络中发生故障时,BGP能够及时地发现并通知其他路由器,从而保证了网络的稳定性和可靠性。

此外,我们还观察到BGP协议在处理大规模网络时的效率和性能表现良好。

总结与分析
通过本次实验,我们对BGP协议的工作原理和性能有了更深入的了解。

BGP作为互联网中最重要的路由协议之一,具有很强的稳定性和可靠性。

它能够适应网络拓扑的变化,并且能够处理大规模网络的路由信息交换。

因此,BGP协议在互联网中扮演着至关重要的角色。

结论
通过本次实验,我们对BGP协议有了更深入的了解,并且验证了其在网络中的
稳定性和可靠性。

BGP协议的高效性和性能表现使其成为互联网中不可或缺的一部分,对于构建稳定和可靠的互联网具有重要意义。

我们将继续深入研究BGP协议,并将其应用于实际网络中,以提高网络的稳定性和可靠性。

bgp综合实验总结

bgp综合实验总结

——————————————袁月BGP综合实验1拓扑图拓扑说明:如图,有R1-R5五台路由器R1,R3,R4的S0/0、S0/1、S0/2口通过FR连接,R1为hub,帧中继链路ip为10.10.134.0/24R1,R2的F1/0口通过以太网连接,链路ip为10.10.12.0/24R4,R5的s0/1口直连,网段10.10.45.0/24每台路由器的环回0口ip为x.x.x.x/32R1上有lo1-lo5,ip地址为192.168.1.1/24---192.168.5.1/24R5上有lo1-lo5,ip地址为172.16.1.1/24---172.16.5.1/24实验要求:1.配置底层:配置每台设备的接口ip,配置完成后确保直连可达每个路由器的环回口是X.X.X.X/322.配置IGP全网运行OSPF area0,仅宣告lo0口和链路ip进入ospf,NBMA区域任意处理3.建立BGP邻居BGP AS区域划分如图,按照如下规则建立对等关系.使用回环口建立邻居.R1 peer R2R2 peer R1,R3R3 peer R2,R4R4 peer R5R5 peer R44.BGP 路由宣告邻居建立完成后,将R1和R5的lo0口宣告进入BGP,使用network命令要求R1,R5使用适当的方式宣告各自的lo1-lo5宣告完成后要求每台设备的bgp转发表可见这些路由5.BGP路由控制要求做出适当控制,达成下列条件,具体方法不限1、使下列条目出现在R1的bgp表中*> 172.16.1.0/24 2.2.2.2 100 0 255 2 3 i*> 172.16.2.0/24 2.2.2.2 255 10 20 2 3 ? *> 172.16.3.0/24 2.2.2.2 0 2 3 i*> 172.16.4.0/24 2.2.2.2 255 2 3 i*> 172.16.5.0/24 2.2.2.2 100 0 255 2 3 i2、使下列条目出现在R5的bgp表中*> 192.168.0.0/21 0.0.0.0 100 32768 2 1 i *> 192.168.1.0 4.4.4.4 0 2 1 i *> 192.168.2.0 4.4.4.4 0 2 1 is> 192.168.3.0 4.4.4.4 0 2 1 is> 192.168.4.0 4.4.4.4 0 2 1 i *> 192.168.5.0 4.4.4.4 0 2 1 i3、完成后,R1,R5互相可PING通对方宣告的这些bgp路由实验效果:R1上查看BGP表R5上查看BGP表BGP综合实验2拓扑图实验要求如下:1 R1与R2为EBGP R2与R3、R4为EBGP R3与R4为IBGP R3与R4、R5为EBGP每台路由器都有X.X.X.XX/32作为router-id 全网底层跑EIGRP 1002 R3、R4学到R1上的bgp路由下一跳必须为AS100的,R5上学到的R1和R3的路由,优走R33 在R1和R5上的回环口分别是20.20.20.0/24和30.30.30.0/24,都重分布到BGP中,使其相互学到并互相连通!实验效果:R3和R4上查看BGP表R5上查看路由表R1和R5上的lo0互相ping通BGP综合实验3拓扑图实验要求如下:1 R4上有192.168.1.0/24、192.168.2.0/24、192.168.3.0/24、192.168.4.0/24和100.100.100.0/24网段,R5上有172.16.1.0/24、172.16.2.0/24、172.16.3.0/24、172.16.4.0/24和50.50.50.1/32网段2 R1为DR,R2和R3不参与DR选举每台路由器都有x.x.x.x/24做为router-id3 Ospf学到的是192.168汇总和172.16的汇总以及100.100的明细路由4 EIGRP不能学到192.168的路由,能学到100.100的路由5 R4为AS100R2为AS200R5为AS300R4只与R2建立EBGP,R5只与R2建立EBGP,R4能学到50.50.50.1/32的路由,且可达!。

BGP路由黑洞问题,同步、IBGP全接

BGP路由黑洞问题,同步、IBGP全接

26、BGP路由黑洞问题,同步、IBGP全接一、实验拓扑图(一)二、组网要求三、基本连通性调试四、实验关键配置RT1:router ospf 1router-id 10.0.0.1redistribute connected metric 1000 metric-type 1 subnets passive-interface defaultno passive-interface Serial0/0network 10.0.0.1 0.0.0.0 area 0network 10.0.1.4 0.0.0.3 area 0default-information originate always metric 2000 metric-type 1 !router bgp 65000no synchronizationbgp log-neighbor-changesnetwork 10.0.0.0 mask 255.255.0.0neighbor 10.0.0.2 remote-as 65000neighbor 10.0.0.2 update-source Loopback0neighbor 10.0.0.2 next-hop-selfneighbor 10.0.15.2 remote-as 65001no auto-summary!ip route 10.0.0.0 255.255.0.0 Null0ip route 10.3.0.0 255.255.0.0 Null0!RT2:router ospf 1router-id 10.0.0.2redistribute connected metric 1000 metric-type 1 subnets passive-interface defaultno passive-interface Serial0/0network 10.0.0.2 0.0.0.0 area 0network 10.0.1.8 0.0.0.3 area 0default-information originate always metric 2000 metric-type 1 !router bgp 65000no synchronizationnetwork 10.3.0.0 mask 255.255.0.0 neighbor 10.0.0.1 remote-as 65000 neighbor 10.0.0.1 update-source Loopback0 neighbor 10.0.0.1 next-hop-selfneighbor 10.0.26.2 remote-as 65002no auto-summary!ip route 10.0.0.0 255.255.0.0 Null0ip route 10.3.0.0 255.255.0.0 Null0!RT3:router ospf 1router-id 10.0.0.3passive-interface defaultno passive-interface Serial0/0no passive-interface FastEthernet1/0 network 10.0.0.3 0.0.0.0 area 0network 10.0.1.0 0.0.0.3 area 0network 10.0.1.4 0.0.0.3 area 0network 10.3.3.0 0.0.0.255 area 0RT4:router ospf 1router-id 10.0.0.4log-adjacency-changesnetwork 10.0.0.4 0.0.0.0 area 0 network 10.0.1.0 0.0.0.3 area 0 network 10.0.1.8 0.0.0.3 area 0 network 10.3.4.0 0.0.0.255 area 0 !RT5:router bgp 65001no synchronizationnetwork 10.5.0.0 mask 255.255.0.0 neighbor 10.0.15.1 remote-as 65000 no auto-summary!ip route 10.5.0.0 255.255.0.0 Null0 !RT6:router bgp 65002no synchronizationnetwork 10.6.0.0 mask 255.255.0.0neighbor 10.0.26.1 remote-as 65000no auto-summary!ip route 10.6.0.0 255.255.0.0 Null0!五、实验连通性及其调试:Ping测试:10.6.6.1去往10.5.5.1..................由于rt3、rt4没有运行BGP,学习不到as外的路由。

BGP同步实验与总结

BGP同步实验与总结

BGP同步实验与总结
一、BGP同步学习总结。

1、BGP同步打开后:从IBGP学到的路由默认不会用(不会加入路由表),直到从IGP也学到。

2、BGP同步打开后:在bgp同步打开的情况下,一个BGP路由器不会把那些通过ibgp邻居学到的bgp路由通告给自己的ebgp邻居;除非自己的igb路由表中存在这些路由,才可以向ebgp路由器通告。

3、BGP同步目的:防止一个AS(不是所有的路由器都运行bgp)内部出现路由黑洞,即向外部通告了一个本AS不可达的虚假的路由。

二、实验:
1、拓扑。

R2开启BGP同步后,10.1.1.0路由的变化。

2、配置。

2.1 变化一:关闭BGP同步。

2.2 R2开启BGP同步。

AS 3中的R3没有收到10.1.1.0的路由,在R2上写入一条默认路由:ip route 10.1.1.0 255.255.255.0 12.1.1.1
R3上的BGP路由:
R3上的10.1.1.0 加入ip 路由表:。

域内MP BGP实验总结

域内MP BGP实验总结

域内MP BGP /MPLS VPN配置实验总结CE----PE:可运行静态路由、RIPV2、EIGRP、OSPF、EBGP。

PE----P: 只运行MPLS IP即可,PE1—P—PE2在同一路由选择域内(IGP)。

PE1--PE2: 建立MP-IBGP VPNV4邻居关系,传递VPN路由。

所有VRF均配置在PE设备上,CE设备不知道VPN信息。

P:Provider Router PE: Provider Edge Router CE: Customer Edge RouterCE—PE间静态路由CE:无需知道VPN信息,配置一条指向CE—PE间互联链路PE侧接口的缺省路由即可。

CE(config)#ip route 0.0.0.0 0.0.0.0 10.10.12.2PE:在PE上宣告CE站点上存在的私网(VPN)路由即可。

PE(config)#ip route vrf VPNA 1.1.1.1 255.255.255.255 serial 1/0PE(config)#ip route vrf VPNA 172.16.1.1 255.255.255.0 serial 1/0CE—PE间RIPV2路由协议CE:在RIPV2中宣告接口地址的网段;宣告作为VPN私网地址的网段,并将这些接口设置为被动接口(passive-interface)。

CE(config)#router ripversion 2network 10.10.12.1network 1.1.1.1network 172.16.1.1passive-interface loopback 0passive-interface loopback 10 这就是CE所需的全部配置!PE:启动RIPV2协议进程,在ipv4 vrf VPNA地址簇宣告互联接口地址,引入BGP中VRF VPNA 的路由信息。

在BGP的ipv4 vrf VPNA地址簇中引入RIPV2 路由信息。

bgp个人总结

bgp个人总结

BGP中的三张表:neighbor table、BGP table(forwarding database)、ip routing tableBGP的四种报文:open报文:包括hold time和BGP router-idrouter-id:手工指定、loopback 接口ip地址大的、物理接口IP地址大的keepalive报文:update报文:路由更新报文notification报文:错误报告报文EBGP:在不同的AS之间建立,一般需直连20 IBGP:在同一个AS内建立,无需直连200 BGP的水平分割:EBGP的水平分割:不接收含有本AS号的BGP路由IBGP的水平分割:从IBGP的学过来的路由不会再通告给其他的IBGP邻居如上图示:A与B之间建立的是EBGP邻居,E与F之间建立的也是EBGP邻居,B与E 之间建立的是IBGP邻居,C、D路由器没有运行BGP路由协议。

BE之间要建立IBGP邻居,则他们之间的要有到达彼此的路由,故在AS65102中必须运行IGP路由。

当所有BGP 邻居都建立起来以后,我们来分析:A通告出来的路由S通过EBGP可以传给B,B通过IBGP 可以传给E,E再通过EBGP可以传给F,从控制层面来说,是通的(类似于ARP逐跳改变了源目IP地址);但是我们从数据层面来看一下,从F来的数据包要发给A,F通过EBGP 交给E,E通过C或D交给B,但是由于C、D上没有运行BGP路由协议,根本就没有到达A的S路由,故数据包无法到达A。

------------------路由黑洞。

为什么C、D可以帮助传递路由信息而不能传递数据信息?答:因为BGP是通过TCP来建立连接的,A在将路由信息S发给B时,数据包的源目地址分别是A和B,B在将路由信息S发给E时,源目IP地址分别是S和E(通过IGP),E在将路由信息S传递给F时,其源目IP地址分别是E和F。

但数据包要从F交到A时,其目标地址一直是A,路由器C、D没有运行BGP协议,没有到达A的路由,故当E将此数据包交给没有运行BGP的路由器C、D时,数据包被丢弃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BGP同步实验与总结
一、BGP同步学习总结。

1、BGP同步打开后:从IBGP学到的路由默认不会用(不会加入路由表),直到从IGP也学到。

2、BGP同步打开后:在bgp同步打开的情况下,一个BGP路由器不会把那些通过ibgp邻居学到的bgp路由通告给自己的ebgp邻居;除非自己的igb路由表中存在这些路由,才可以向ebgp路由器通告。

3、BGP同步目的:防止一个AS(不是所有的路由器都运行bgp)内部出现路由黑洞,即向外部通告了一个本AS不可达的虚假的路由。

二、实验:
1、拓扑。

R2开启BGP同步后,10.1.1.0路由的变化。

2、配置。

2.1 变化一:关闭BGP同步。

2.2 R2开启BGP同步。

AS 3中的R3没有收到10.1.1.0的路由,在R2上写入一条默认路由:ip route 10.1.1.0 255.255.255.0 12.1.1.1
R3上的BGP路由:
R3上的10.1.1.0 加入ip 路由表:。

相关文档
最新文档