图形的运动及位置与方向
第3讲 图形的运动(教师版)(知识梳理+典例分析+举一反三+巩固提升)北师大版

第3讲图形的运动知识点一:图形的旋转1. 图形旋转的含义及三要素旋转中心、旋转方向、旋转角度2. 在方格纸上画简单图形绕其顶点旋转90°后的图形图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转了相同的度数,对应点到旋转点的距离相等,对应线段相等,对应角相等。
3.旋转的特点旋转不改变图形的形状和大小,只改变图形的位置。
知识点二:图形的运动1.在方格纸上图形的平移、旋转(1)图形平移时,先确定移动的方向,再确定移动的格数;(2)旋转应找准旋转中心、旋转方向以及旋转角度;(3)作轴对称图形要先确定对称轴。
图形经过平移、旋转、轴对称变换后,图形大小不变。
2. 记录图形位置的“还原”过程用平移或旋转进行图形运动时,要先观察变化前后各部分的位置,再确定如何通过平移或旋转得到。
知识点三:欣赏与设计利用平移、旋转和轴对称设计美丽的图案一个图形通过平移、旋转或轴对称变换可以得到不同的图案。
复杂的图案是由一个或几个简单的基本图形变换而来的。
考点一:图形的旋转例1.(2020春•綦江区期末)画一画,填一填.(1)画出把长方形绕0点顺时针方向旋转90°后的图形.(2)旋转前A点的位置是(4,3),旋转后A点的位置是(2,5).(3)画出把三角形向下平移4格后的图形.(4)画出三角形的各边缩小为原来的后的图形.【分析】(1)根据旋转的特征,长方形绕点O顺时针旋转90°,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。
(2)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,及长方形旋转前、后A所在的列与行即可分别用数对表示出来。
(3)根据平移的特征,把三角形的各顶点分别向下平移4格,依次连结即可得到平移后的图形。
(4)图中三角形是两直角边分别为4格、2格的直角三角形,根据图形放大与缩小的意义,缩小后的图形是两直角分别为(4×)格、(2×)格的直角三角形。
_基本图形运动

基本图形运动概述基本的图形运动指图形的翻折、旋转、平移三种运动。
图形经过这三种基本的运动,位置发生变化,但是形状、大小保持不变,即运动前后的图形是全等。
反过来,形状、大小相同的图形(即全等三角形)经过图形的运动一定能够重合。
考点梳理1.图形的平移、旋转、翻折有关概念及有关性质(1)在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等.图形平移后,图形的形状和大小都不变。
平移可以不是水平的。
(2)在平面内,一个图形绕着一个定点按某个方向旋转一个角度,成为一个与原来图形全等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角。
图形的旋转,是图形上的每一个点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
图形旋转时,图形中的每一点旋转的角度都相等,都等于图形的旋转角。
(3)把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。
(0度< 旋转角<360度)。
2.轴对称、中心对称的有关概念和有关性质(1)平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线即使对称轴。
这两个图形中的对应点叫做关于这条直线的对称点。
(2)一个图形沿着一条直线翻折,如果直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线就叫做这个图形的对称轴。
(3)把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
图形的运动教案(推荐5篇)

图形的运动教案(推荐5篇)图形的运动教案(1)教学内容:轴对称;平移。
教学目标:1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学重、难点:1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学建议:1、注意让学生真正地、充分地进行活动和探究。
2、恰当把握教学目标。
3、注意知识的科学性。
章节名称图形的运动(二) 课时课标要求教学目标1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
内容分析学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。
学情分析在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。
本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
教学重点1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学难点1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
学生课前需要做的准备工作教学策略轴对称教学目标:进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
教学重难点:认识图形的对称轴,并能画出轴对称图形。
教学环节问题情境与教师活动学生活动媒体应用设计意图目标达成导入新课一、创设情境出示轴对称图片师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。
2021年北师大版数学六下第三单元《图形的运动》章节知识点、达标训练附解析

北师大版数学六年级下册章节复习知识点、达标训练附解析第三单元《图形的运动》知识点一:图形的旋转1.旋转后,图形的方向和位置发生了变化,但是图形的形状与大小都不会发生变化。
2.描述旋转时,要说明旋转中心、旋转方向和旋转角度。
3.在方格纸上画简单图形旋转90°后的图形:一要注意确定关键线段;二要明确旋转中心、旋转方向和旋转角度;三要注意对应线段的长度与相对位置不变;四要注意按原图的形状连接对应点知识点二:图形的运动1.图形的运动常见的方式有三种,分别是旋转、平移和轴对称。
2.图形平移时,注意移动的方向和距离。
3.画轴对称图形时,要注意各对应点到对称轴的距离相等。
4.图形在方格纸上旋转运动时,应找准旋转的中心、方向和角度。
5.逆用图形的运动可以将图形还原知识点三:欣赏与设计1.欣赏美丽的图案,要注意分析图案的构造,注意找出其中的基本图形,明确基本图形经过怎样的运动才能形成这幅图案。
2.可以单独利用图形的某一种运动方式设计图案,也可以综合运用两种或多种运动方式设计图案。
3.利用图形的变换方式设计图案时,首先要选好基本图形,然后确定运动方式,最后画出变换后的图案一、精挑细选(共5题;每题1分,共5分)1. 如图,三角形ABC怎样旋转可以得到三角形A'BC'?下面说法正确的是()A. 绕B点逆时针旋转90°B. 绕B点顺时针旋转90°C. 绕C点顺时针旋转90°D. 绕C点逆时针旋转180°2. 以点C为中心旋转的图形是()。
A. B. C.3. 如图,点A的位置用数对表示是(1,5)。
线段OA绕点O按顺时针方向旋转90°,点A的对应点A’的位置用数对表示是()。
A. (5,5)B. (5,1)C. (4,1)D. (6,1)4. 将图形A(),可以得到图形B.A. 向右平移3格,再绕O点逆时针旋转90°B. 向右平移5格,再绕O点顺时针旋转90°C. 向右平移3格,再绕O点顺时针旋转90°5. 如图中,图形A变换到图形B,下列描述不正确的是()A. 图形A先向右平移4格,再向下平移2格,然后以直径所在的直线作轴对称图形得到图形BB. 图形A先向下平移2格,再向右平移4格,然后以直径所在的直线作轴对称图形得到图形BC. 图形A先以直径所在的直线作轴对称图形,再向下平移4格,再向右平移2格,得到图形BD. 图形A先以直径所在的直线作轴对称图形,再向右平移4格,再向下平移2格,得到图形B二、判断正误(共5题;每题1分,共5分)6. 如图,图1先顺时针旋转90°,再向右平移6个格,就可以得到图2。
第三单元 图形的运动(学生版)-2022-2023学年二年级数学下册单元复习讲义(人教版)

人教版数学二年级下册第三单元图形的运动知识点01:轴对称图形定义:对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
知识点02:平移现象定义:物体或图形沿直线方向运动,而本身方向不发生改变,这种运动现象叫平移。
只有形状、大小、方向完全相同的图形通过平移才能互相重合。
知识点03:旋转现象1.定义:物体绕着一个点或轴进行转动的现象就是旋转。
2.剪轴对称图形:在剪轴对称图形时应用了由易到难,由简单到复杂的学习方法,使剪纸变的不再复杂。
考点01:轴对称图形【典例分析01】判断,是轴对称图形的打“√”,不是轴对称图形的打“×”【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可。
【解答】解:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合。
【变式训练01】小明说:“平行四边形一定是轴对称图形。
”你的理由是:。
【变式训练02】下面图形是轴对称图形的画“√”,不是的画“×”。
【变式训练03】下面图形是轴对称图形吗?是的在下面的方框里画“√”,不是的画“×”。
考点02:平移现象【典例分析02】是平移现象画“√”,是旋转现象画“〇”【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动。
平移后图形的位置改变,形状、大小、方向不变。
旋转:在平面内,将一个图形绕一点按某个方向转动一定的角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
旋转前后图形的位置和方向改变,形状、大小不变。
【解答】解:【点评】此题考查了平移与旋转的意义及在实际当中的运用。
【变式训练01】长方形障碍物①②③④只能横向或纵向移动。
怎样移动才能使小猴子以最短的路程到达出口?(1)长方形障碍物①向上移动格。
(2)小猴子先向下移动格,再向移动格即可以最短的路程到达出口。
图形的运动及位置与方向

图形的运动及位置与方向在计算机科学中,图形的运动和位置是非常重要的概念,因为它们直接影响到图形的出现和行为。
在本篇文章中,我们将探讨图形的运动及其位置和方向。
什么是图形?在计算机科学中,图形是指一种二维或三维的视觉表现形式,它们由包括点、线、曲线、多边形、立方体等基本要素所组成。
在计算机图形学中,图形是由计算机程序所生成的数字化视觉图像。
这些图像可以由人眼观看,也可以被电子设备处理,例如数字摄像机和计算机。
图形的运动图形的运动指图形在二维或三维空间中沿着一个路径进行移动。
在计算机图形学中,通常使用数学函数来描述图形的运动。
二维图形的运动在二维空间中,图形可以沿X轴和Y轴进行平移、旋转和缩放的运动。
平移运动平移运动指在X轴和Y轴上平移图形。
在计算机图形学中,平移运动可以通过将每个坐标点的X和Y值分别增加或减少一个特定的量来实现。
例如,如果我们希望将一个矩形向右平移10个单位,我们可以将其每个点的X坐标值增加10。
旋转运动旋转运动可以让图形绕着某一点进行旋转。
在计算机图形学中,旋转运动可以通过将每个坐标点的X和Y值分别使用旋转矩阵计算来实现。
旋转矩阵是一个二维数学函数,可以将一个点绕某一点旋转一个特定的角度。
缩放运动缩放运动可以让图形增加或减少大小。
在计算机图形学中,缩放运动可以通过将每个坐标点的X和Y值分别乘以缩放因子来实现。
三维图形的运动在三维空间中,图形可以沿X、Y和Z轴进行平移、旋转和缩放的运动。
平移运动在三维空间中,平移运动可以将图形向任何方向移动。
在计算机图形学中,平移运动可以通过将每个坐标点的X、Y和Z值分别增加或减少一个特定的量来实现。
例如,如果我们希望将一个立方体向左移动5个单位,我们可以将其每个点的X坐标值减少5。
旋转运动旋转运动可以让图形绕着某一点进行旋转。
在计算机图形学中,旋转运动可以通过将每个坐标点的X、Y和Z值分别使用旋转矩阵计算来实现。
旋转矩阵是一个三维数学函数,可以将一个点绕某一点旋转一个特定的角度。
【精品】二年级下册数学寒假预习衔接-第三单元 图形的运动(知识梳理+同步测试+解析)人教新课标版

人教版小学二年级数学下册预习与检测专题讲义图形的运动(一)一.知识点归纳对称现象和轴对称图形:对称是指左右两边完全相同的现象。
如果一个图形沿着一条直线对折后,折痕两边的部分能够完全重合,这样的图形就是轴对称图形,折痕所在的直线叫做对称轴。
平移现象:平移是指物体或图形沿着竖直方向上下移动或沿着水平方向左右移动的一种现象。
物体做平移运动时,只是位置发生变化,而本身的形状、大小、方向都没有改变。
旋转现象:旋转是指物体绕着一个点或一条固定轴做圆周运动的现象。
物体旋转时,本身的形状、大小不变,但是方向发生了变化。
1、轴对称图形:如果一个图形沿一条直线对折后,折痕两边的部分能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
【经典例题】下面的图形中,()不是轴对称图形。
A. B. C.【答案】A【解析】【解答】下面的图形中,不是轴对称图形。
故答案为:A.【分析】如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫对称轴;判断一个图形是否是轴对称图形,关键是找它的对称轴,要想象沿着这条线翻折能不能重叠,据此解答。
平移:当物体沿水平方向或竖直方向运动时,是直线运动。
自身方向不发生改变。
如:推拉窗、拉抽屉等。
【经典例题】1.下边的图形,()是通过平移左边的图①得到的。
①A. B. C.【答案】C【解析】【解答】解:下边的图形,C图是通过平移左边的图①得到的。
故答案为:C。
【分析】平移就是将图形按一定的方向和距离平行移动。
2、只有形状、大小、方向完全相同的图形通过平移才能互相重合。
【经典例题】图形从镜子中看到的样子是。
【答案】错误【解析】【解答】解:图形从镜子中看到的样子是。
故答案为:错误。
【分析】从镜面看到的图形是左右相反,上下不变。
3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。
如:大风车的运动、旋转木马的运动、教室门的运动等。
【经典例题】1.旋转就是以一个点或一个轴为中心而做的圆周运动。
图形的运动及位置与方向

定义:图形在镜运动,会呈现上下对
称的镜像效果
应用:在几何学、物理学等 领域有广泛应用
02
图形位置
相对位置
定义:描述图形之间相对位置关系的概念 分类:上下、左右、前后等 应用:在几何学、图形设计等领域中广泛使用 实例:在平面几何中,点与点之间的相对位置关系可以通过坐标轴来表示
动态位置
图形在平面上的位置:包括绝对位置和相对位置 图形在空间中的位置:三维坐标系下的位置 图形运动轨迹:描述图形在平面或空间中的运动路径 动态位置的表示方法:使用数学符号和公式表示图形的位置和运动
03
图形方向
水平方向
定义:图形在水 平方向上的运动, 不改变其形状和 大小。
特点:图形在水 平方向上移动时, 其方向始终保持 不变。
对角线方向
定义:对角线方向是指从一个顶 点到另一个顶点的连线方向。
应用:在几何学、物理学、工程 学等领域中,对角线方向被广泛 应用。
添加标题
添加标题
添加标题
添加标题
性质:对角线方向是图形中最重 要的方向之一,它可以表示物体 的相对位置和运动方向。
意义:对角线方向是描述图形运 动和位置关系的重要参数,对于 理解图形的几何特性和运动规律 具有重要意义。
单击此处添加副标题
图形的运动及位置与方向
汇报人:XX
目录
01 02 03
图形运动 图形位置 图形方向
01
图形运动
平移运动
定义:图形在平面内沿某一方向直线移动一定的距离 特点:图形的大小和形状不发生变化,只改变位置 示例:矩形在水平方向向右平移3个单位 应用:设计图案、拼图游戏等
旋转运动
绝对位置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的运动
知识要点:
1、轴对称图形
沿着一条直线对折,两边能完全重合的图形是轴对称图形,这条直线就是对称轴。
2、平移
在平面内,将一个图形沿某个方向移动一定的距离。
3、旋转
一个图形绕一点沿一定方向转动一定角度。
4、放大和缩小
图形的形状不变,只是大小发生变化。
5、对称、平移、旋转和放大与缩小的相同点和不同点。
试题精选:
1、下面每组图形中,都是轴对称图形的一组是()
A.平行四边形、等边三角形
B.等腰三角形、半圆、扇形
C.长方形、正方形、三角形
D.圆、梯形
2、下列图形中,不是轴对称图形的是( )
3、桌面上平放着一个边长是2分米的等边三角形ABC ,现将这个三角形按下图所示紧贴着桌面进行滚动。
(1)从图①位置滚动到图⑤位置,请你在括号中用A 、B 、C 标出对应点的位置。
(2)在整个滚动过程中,点A 经过的路线轨迹长( )分米。
4、如图,在ABC ∆的顶点A 的位置可以用有序数对(3,5)表示。
当点B 、C 不动,点A 向左平移到位置( , )时,ABC ∆变成直角三角形。
它与原三角形相比,面积( )(填“变大”“变小”“不变”)。
( )
( )
A
C
6
6554312A B
C D
5、画出正确的图形
(1)将图形绕点O按顺时针旋转90°。
(2)将(1)中所得的图形画出另一半,使它成为一个轴对称图形。
(3)试求(2)中轴对称图形的面积(网格是由边长为1的小正方形组成的)。
6、填一填,画一画。
(1)点B的位置为(2,8),点C的位置是()。
(2)画出将三角形ABC向下平移4格后的图形。
(3)画出将三角形ABC按2:1放大后的图形。
7、图形观察,计算与推理。
(1)如果把右图每一方格的边长看成1cm ,那么图中四边形的面积是( )。
(2)在图中画出把四边形绕点O 顺时针方向旋转90°的图形。
8、画一画,填一填。
(1)将下面图形(小三角旗连同旗杆,如图所示)绕点A逆时针旋转︒90,画出旋转后的图形。
(2)把旋转后的图形向右平移5格,画出平移后的图形。
9、按要求画图(每个小方格边长表示1cm )
(1)把梯形绕点A按逆时针旋转︒90,画出旋转后的图形。
(2)以MN为轴,再画一个平行四边形,使它与原平行四边形组成
轴对称图形。
(3)以点C为圆心,画一个半径为2cm的圆。
(4)画出三角形按照2:1的比缩小后的图形。
10、画一画:如图,用4个图形A设计一个图案,既要用到平移的知识,也要用到轴对称的知识。
位置与方向
知识要点:
1、认识东、西、南、北、东南、西南、东北、西北八个方向。
2、数对:一般由两个数组成。
作用:数对可以表示物体的位置,也可以确定物体的位置。
3、行和列的意义:竖排叫做列,横排叫做行。
4、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
5、根据方向和距离确定物体位置的方法。
(1)确定好方向并用量角器测量出被测物体所在的方向(角度);(2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离;
(3)、根据方向(角度)和距离准确判断或描述被测物体的位置。
注意:东偏北30也可说成北偏东60,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
6、找准参照物
位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。
以谁为参照物,就以谁为观测点。
观测点不同,物体位置的描述就不同。
6、绘制路线图的步骤
(1)画出↑北,确定方向标和单位长度比例尺。
(2)确定起点的位置。
(3)根据描述,从起点出发,找好方向和距离,一段一段地画。
画每一段都要以每一段新的起点为观测点 。
(4)以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。
(5)标出数据、名称、角度。
(绘制的路线图只有一条线。
)
试题精选:
1、小明的位置在小红的西偏南30°方向150米处。
(1)请在下图中标出小明的位置。
(2)小红在小明( )偏( )( )°方向( )米处。
2、如图,笑笑家在学校的( )偏( )( )°方向( )米处。
3、小明不行从家出发,先要经过超市再到学校,线路按一定的比例画在下图中。
已知小明家到超市的距离是450m。
请你结合测量和以上信息解答下列问题:
(1)这幅图的比例尺是多少?
(2)超市到学校的实际距离大约是多少米?
(3)量出小明从家出发到超市方向的角(如图 1)的度数,并写出小明到超市步行的方向和路程。
(4)写出小明从学校出发按原路返回到家里步行的方向和路程。
4、在一次春游活动中,甲、乙两组都在9:00从点A 出发,各自按图中的线路步行到自己的活动点。
甲组9:40到达活动点,乙组9:45到达活动点。
(1)哪一组步行速度快?写出思考过程。
(2)写出乙组从点A 出发所走线路的方向和路程。
5、某实验小学周围建筑物如图所示。
(1)新华书店距实验小学的实际距离是200米,这幅图的比例尺是( )。
(2)中心公园在实验小学( )偏( )( )°方向约( )米处。
(3)中医院在实验小学正东方向约350米处,请在图中用“•”标出中医院的位置。
(4)李明每分钟走50米,他从实验小学走到实验初中,大约需要( )分钟。
6、以灯塔为观测点:
(1)轮船A 在灯塔的( )偏( )( )°方向( )千米处。
(2)轮船B 在灯塔南偏东45°方向160千米处,在图中表示出轮船B 的位置。
N
12080
400。