八年级数学:坐标平面内的图形 练习

合集下载

精品试题冀教版八年级数学下册第十九章平面直角坐标系专题训练练习题(精选含解析)

精品试题冀教版八年级数学下册第十九章平面直角坐标系专题训练练习题(精选含解析)

八年级数学下册第十九章平面直角坐标系专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将含有30角的直角三角板OAB 按如图所示的方式放置在平面直角坐标系中,OB 在x 轴上,若4OA =,将三角板绕原点O 逆时针旋转,每秒旋转60︒,则第2022秒时,点A 的对应点'A 的坐标为( )A .(0,4)B .(2)-C .2)D .(0,4)-2、如图,在AOB 中,4OA =,6OB =,AB =AOB 绕原点O 逆时针旋转90°,则旋转后点A 的对应点A '的坐标是( )A .()4,2-B .()-C .()-D .(- 3、在平面直角坐标系xOy 中,若ABC 在第三象限,则ABC 关于x 轴对称的图形所在的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4、在平面直角坐标系中,若点()2,3A -与点B 关于x 轴对称,则点B 的坐标是( )A .()2,3-B .()2,3C .()2,3--D .()2,3-5、如图是北京地铁部分线路图.若崇文门站的坐标为(4,)1-,北海北站的坐标为(2,4)-,则复兴门站的坐标为( )A .(1,7)--B .()7,1-C .(7,1)--D .(1,7)6、如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将三角形ABC 绕点P 旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1) 7、下列命题中为真命题的是( )A .三角形的一个外角等于两内角的和BC 2π,227都是无理数D .已知点E (1,a )与点F (b ,2)关于x 轴对称,则a +b =﹣18、在平面直角坐标系中,点P (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限9、如图,树叶盖住的点的坐标可能是( )A .()2,3B .()2,3-C .()3,4--D .()2,4-10、在平面直角坐标系中,将点A (﹣3,﹣2)向右平移5个单位长度得到的点坐标为( )A .(2,2)B .(﹣2,2)C .(﹣2,﹣2)D .(2,﹣2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA 1A 2=∠MA 2A 3…=∠MAnAn +1=90°,(n 为正整数),若M 点的坐标是(-1,2),A 1的坐标是(0,2),则A 22的坐标为___.2、在平面直角坐标系中,点M 的坐标是(12,)5-,则点M 到x 轴的距离是_______.3、点()3,4P -关于y 轴的对称点的坐标是______.4、一般地,在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点_________;将点(x ,y )向左平移a 个单位长度,可以得到对应点_________;将点(x ,y )向上平移b 个单位长度,可以得到对应点_________;将点(x ,y )向下平移b 个单位长度,可以得到对应点_________.5、请将命题“坐标轴上的点至少有一个坐标为0”改写成“如果⋯那么⋯”的形式__.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,已知点A (﹣3,1),B (﹣2,0),C (0,1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.2、如图,在平面直角坐标系中,点(2,3)A --,点A 关于x 轴的对称点记作点B ,将点B 向右平移2个单位得点C .(1)分别写出点B C 、的坐标:B (____)、C (____);(2)点D 在x 轴的正半轴上,点E 在直线1y =上,如果CDE △是以CD 为腰的等腰直角三角形,那么点E 的坐标是_____.3、在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3),点B 坐标为(2,1);(2)请作出△ABC 关于y 轴对称的△A 'B 'C ',并写出点C '的坐标;(3)△ABC 是 三角形,理论依据 .4、如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、B、C分别对应A1、B1、C1);(2)△A1B1C1的面积=;(3)若M(x,y)是△ABC内部任意一点,请直接写出这点在△A1B1C1内部的对应点M1的坐标;(4)请在y轴上找出一点P,满足线段AP+B1P的值最小,并写出P点坐标.5、如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;并写出点B′的坐标.(2)在图中x轴上作出一点P,使PA+PB的值最小.-参考答案-一、单选题1、C【解析】【分析】求出第1秒时,点A的对应点'A的坐标为(0,4),由三角板每秒旋转60︒,得到此后点'A的位置6秒一循环,根据2022除以6的结果得到答案.【详解】解:过点A作AC⊥OB于C,∵4OA=,∠AOB=30,∴122AC OA==,∴OC∴A2).∵4OA=,∠AOB=30,将三角板绕原点O逆时针旋转,每秒旋转60︒,∴第1秒时,点A的对应点'A的坐标为2),∵三角板每秒旋转60︒,∴此后点'A的位置6秒一循环,∵20223376=⨯,∴则第2022秒时,点A 的对应点'A 的坐标为2),故选:C【点睛】此题考查了坐标与图形的变化中的旋转以及规律型中点的坐标,根据每秒旋转的角度,找到点'A 的位置6秒一循环是解题的关键.2、C【解析】【分析】过点A 作AC ⊥x 轴于点C ,设OC a = ,则6BC a =- ,根据勾股定理,可得2222AB BC OA OC -=-,从而得到2OC = ,进而得到∴AC =,可得到点(2,A ,再根据旋转的性质,即可求解.【详解】解:如图,过点A 作AC ⊥x 轴于点C ,设OC a = ,则6BC a =- ,∵222AC OA OC =- ,222AC AB BC =-,∴2222AB BC OA OC -=-,∵4OA =, AB =∴(()222264a a --=- , 解得:2a = ,∴2OC = ,∴AC ,∴点(2,A ,∴将AOB 绕原点O 顺时针旋转90°,则旋转后点A 的对应点A ''的坐标是()2-,∴将AOB 绕原点O 逆时针旋转90°,则旋转后点A 的对应点A '的坐标是()-.故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A 的坐标,属于中考常考题型.3、B【解析】【分析】设ABC 内任一点A (a ,b )在第三象限内,可得a <0,b <0,关于x 轴对称后的点B (-a ,b ),则﹣a >0,b <0,然后判定象限即可.【详解】解:∵设ABC 内任一点A (a ,b )在第三象限内,∴a <0,b <0,∵点A 关于x 轴对称后的点B (a ,-b ),∴﹣b >0,∴点B (a ,-b )所在的象限是第二象限,即ABC 在第二象限.故选:B .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.4、B【解析】【分析】根据若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点()2,3A -与点B 关于x 轴对称,∴点B 的坐标是()2,3.故选:B【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于x 轴对称,则横坐标不变,纵坐标互为相反数;若两点关于y 轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.5、B【解析】【分析】根据已知点坐标确定直角坐标系,即可得到答案.【详解】由题意可建立如图所示平面直角坐标系,则复兴门站的坐标为()7,1 .故选:B .【点睛】此题考查了平面直角坐标系中点坐标特点,由点坐标确定直角坐标系,由坐标系得到点坐标,属于基础题型.6、C【解析】【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P .【详解】解:选两组对应点,连接后作其中垂线,两中垂线的交点即为点P ,由图知,旋转中心P 的坐标为(1,2)故选:C.【点睛】本题主要考查坐标与图形的变化﹣旋转,解题的关键是掌握旋转变换的性质.7、D【解析】【分析】利用三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点分别判断后即可确定正确的选项.【详解】解:A、三角形的外角等于不相邻的两个内角的和,故原命题错误,是假命题,不符合题意;BC、227是有理数,故原命题错误,是假命题,不符合题意;D、已知点E(1,a)与点F(b,2)关于x轴对称,a=1,b=-2,则a+b=﹣1,正确,为真命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解三角形的外角的性质、最简二次根式的定义、无理数的定义及关于坐标轴对称的点的特点,难度不大.8、B【解析】【分析】根据点横纵坐标的正负分析得到答案.【详解】解:点P (-2,3)在第二象限,故选:B .【点睛】此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.9、B【解析】【分析】根据平面直角坐标系的象限内点的特点判断即可.【详解】∵树叶盖住的点在第二象限,∴()2,3-符合条件.故选:B .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键.10、D【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可得答案.【详解】∵将点A(﹣3,﹣2)向右平移5个单位长度,∴平移后的点的横坐标为-3+5=2,∴平移后的点的坐标为(2,-2),故选:D.【点睛】此题主要考查了坐标与图形的变化,熟练掌握横坐标,右移加,左移减;纵坐标,上移加,下移减的变化规律是解题关键.二、填空题1、(10-+)--,102221【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵22÷8=26,∴A22与A6的位置在第三象限,且在经过点A2、M的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A2(0,3),设直线A2M的解析式为y=kx+3,把M点的坐标(-1,2)代入得:-k+3=2,解得:k=1,∴直线A 2M 的解析式为y =x +3,即A 22点在直线y =x +3上,…,第n )n -1,∴第22)21,可得A 22M =21,∴A21 A 1212010112=+=+1,∴A 22 的横坐标为:1021--,A 22 的纵坐标为:101021322y =--+=-+,∴A 22(1021--,1022-+),故答案为:(1021--,1022-+).【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.2、5【解析】【分析】根据到x 轴的距离等于纵坐标的绝对值解答即可.【详解】解:∵点M 的坐标是(12,)5-,∴点M 到x 轴的距离是55-=,故答案为:5.【点睛】此题考查了点的坐标,关键是掌握点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值.3、(3,4)【解析】【分析】根据关于y 轴对称的点的坐标特征:横坐标互为相反数,纵坐标不变,即可求得.【详解】点()3,4P -关于y 轴的对称点的坐标是()3,4故答案为:()3,4【点睛】本题考查了平面直角坐标系中关于y 轴对称的点的坐标特征,掌握此特征是关键.4、 (x +a ,y ) (x -a ,y ) (x ,y +b ) (x ,y -b )【解析】略5、如果一个点在坐标轴上,那么这个点至少有一个坐标为0【解析】【分析】命题是由题设与结论两部分组成,如果后面的是题设,那么后面的是结论,根据定义直接改写即可.【详解】解:将命题“坐标轴上的点至少有一个坐标为0”改写成“如果⋯那么⋯”的形式:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.故答案为:如果一个点在坐标轴上,那么这个点至少有一个坐标为0.【点睛】本题考查的命题的组成,把一个命题改写成“如果⋯那么⋯”的形式,平面直角坐标系坐标轴上点的坐标特点,掌握“命题是由题设与结论两部分组成”是解本题的关键.三、解答题1、见解析【解析】【分析】先在平面直角坐标系中,分别描出点A (﹣3,1),B (﹣2,0),C (0,1),再顺次连接,可得△ABC ,然后求出点A (﹣3,1),B (﹣2,0),C (0,1)关于y 轴对称的点分别为(3,1),(2,0),(0,1),再顺次连接,可得与△ABC 关于y 轴对称的图形,即可求解.【详解】解:画出图形如下图所示:根据题意得:点A (﹣3,1),B (﹣2,0),C (0,1)关于y 轴对称的点分别为(3,1),(2,0),(0,1) .【点睛】本题主要考查了在平面直角坐标系中描点,画轴对称图形,熟练掌握若两点关于y 轴对称,则横坐标互为相反数,纵坐标不变是解题的关键.2、 (1)()2,3-;()0,3(2)(4,1)【解析】【分析】(1)根据点的平移、对称规律求解即可;(2)作EF x ⊥轴于F ,得到COD DFE ≌,求出3,1====DF OC EF OD 进而得到(4,1)E .(1)解:将点(2,3)A --关于x 轴的对称点B 的坐标为(2,3)-,将点B 向右平移2个单位得点C ,(0,3)C ∴,故答案为:(2,3)B -,(0,3)C ;(2)作EF x ⊥轴于F ,如下图所示:由题意可知,COD DFE ≌,3,1DF OC EF OD ∴====,E ∴点的坐标为(4,1),故答案为(4,1).【点睛】此题主要考查了关于x轴对称点的性质以及平移的性质,正确掌握点的坐标特点是解题关键.3、(1)见解析;(2)图见解析,C'的坐标为(﹣5,5);(3)直角;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【解析】【分析】(1)根据点A及点C的坐标,易得y轴在A的左边一个单位,x轴在A的下方3个单位,建立直角坐标系即可;(2)根据关于y轴对称的点的坐标,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;【详解】解:(1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)直角三角形,∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.依据:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角.【点睛】本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.4、 (1)见解析(2)2(3)(x,-y)(4)点P见解析,(0,2)【解析】【分析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)利用割补法进行计算,即可得到△A1B1C1的面积;(3)根据点M和M1关于x轴对称可得结果;(4)直接利用轴对称求最短路线的方法得出答案.【小题1】解:如图所示:△A1B1C1点即为所求;【小题2】△A1B1C1的面积=111⨯-⨯⨯-⨯⨯-⨯⨯=2;23112213222【小题3】由题意可得:M1的坐标为(x,-y);【小题4】如图所示:点P即为所求,点P的坐标为(0,2).【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.5、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析【解析】【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.【详解】解:(1)如图所示,△A′B′C′即为所求.点B′的坐标为(-4,1);(2)如图所示,点P即为所求.【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.。

八年级数学下册第三章《图形与坐标》测试题-湘教版(含答案)

八年级数学下册第三章《图形与坐标》测试题-湘教版(含答案)

八年级数学下册第三章《图形与坐标》测试题-湘教版(含答案)一.选择题1.当2<m<3时,点P(m﹣2,m﹣3)在第()A.一象限B.二象限C.三象限D.四象限2.在直角坐标系中,M(﹣3,4),M到x、y轴的距离与M′到x、y轴的距离相等,则M′的坐标不可能为()A.(﹣3,﹣4)B.(3,4)C.(3,﹣4)D.(3,0)3.若点(a,﹣3)与点(2,b)关于y轴对称,则a,b的值为()A.a=2,b=3B.a=2,b=﹣3C.a=﹣2,b=﹣3D.a=﹣2,b=3 4.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3)D.(2,6)5.如果点A(2,﹣3)和点B关于原点对称,则点B的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)6.如图,一个动点P在平面直角坐标系中按箭头所示方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,按这样的运动规律,经过第2013次运动后,动点P的坐标是()A.(2012,1)B.(2012,2)C.(2013,1)D.(2013,2)7.在y轴上,与点A(3,﹣2)的距离等于3的点有()A.1个B.2个C.4个D.0个8.如图,在直角坐标系中,▱OABC的顶点A为(1,3)、C为(5,0),则B的坐标为()A.(6,3)B.(5,5)C.(4,3)D.无法确定9.如图,△AOB关于x轴对称图形△A′OB,若△AOB内任意一点P的坐标是(a,b),则△A′OB中的对应点Q的坐标是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)10.根据指令[s,A](s≥0,0°≤A<360°)机器人在平面上能完成如下动作:先在原地顺时针旋转角度A,再朝其面对的方向沿直线行走距离s.现在机器人在平面直角坐标系的原点,且面对y轴的负方向,为使其移动到点(﹣3,0),应下的指令是()A.[3,90°]B.[90°,3]C.[﹣3,90°]D.[3,270°]二.填空题11.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为,与点A 关于y轴对称的点的坐标为,与点A关于原点对称的点的坐标为.12.若点A(﹣1,a),B(b,2)两点关于y轴对称,则a=,b=.13.点P(1,2)关于点Q(﹣1,1)的对称点的坐标为.14.定义:在平面直角坐标系内,对于点P(x,y),我们把Q(﹣y+1,x+3)叫做它的伴随点.如点(2,1)的伴随点为(﹣1+1,2+3),即(0,5).若点M的伴随点坐标为(﹣5,3),则点M的坐标为.15.将点N(﹣1,2)向右平移3个单位,再向下平移4个单位后,其坐标变为.16.坐标系中M(﹣3,2),N(3,2)之间距离是.17.点M(﹣3,5)关于直线x=1对称的点M′的坐标为.18.如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(e,4)和(g,3),则“马”的位置可表示为.19.在x轴上与点(0,﹣2)距离是4个单位长度的点有.20.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1,△A2A3B2,△A3A4B3,…,△A n A n+1B n均为等边三角形,点A1,A2,A3,…,A n+1在x轴的正半轴上依次排列,点B1,B2,B3,…,B n在直线OD上依次排列,那么B2020的坐标为.三.解答题21.自然数按如图规律排列,14这个数位于第4行,第3列,记作(4,3),那么124这个数记作什么?…12510……43611……98712….…16151413………………….22.已知平面直角坐标系中,点P(1﹣a,2a﹣5)到两坐标轴的距离相等,求a值并确定点P的坐标.23.已知A(0,0)、D(4,2)、E(6,6)、C(2,4),依次连接各点得到四边形ADEC,按要求绘制下列图形.(1)横坐标、纵坐标都乘以﹣1;(2)纵坐标不变,横坐标扩大为原来的2倍;(3)横坐标都加2,同时纵坐标都减5;(4)如果坐标不变,纵坐标都扩大为原来的2倍,同时再加上3,不画图,你能叙述图形的变化吗?24.点P(x+1,2x﹣1)关于原点的对称点在第一象限,试化简:|x﹣3|﹣|1﹣x|25.如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?26.当m为何值时,点P(3m﹣1,m﹣2)到y轴的距离是到x轴距离的3倍?求出此时点P到原点的距离.27.已知在平面直角坐标系中,点A、B的坐标分别为:A(﹣3,4),B(4,﹣2).(1)求点A、B关于y轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A、B关于x轴的对称点M、N,顺次连接AM、BM、BN、AN,求四边形AMBN的面积.参考答案一.选择题1.解:∵2<m<3时,∴m﹣2>0,m﹣3<0,∴点P在第四象限.故选:D.2.解:∵M点的坐标为(﹣3,4),∴M到x、y轴的距离分别为4,3,而M到x、y轴的距离与M′到x、y轴的距离相等,∴M′到x、y轴的距离也为4,3,结合各选项A、B、C到x、y轴的距离分别为4,3,D到x、y轴的距离分别为0,3,故D符合题意.故选:D.3.解:∵点(a,﹣3)与点(2,6)关于y轴对称,∴a=﹣2,b=﹣3,故选:C.4.解:点Q(﹣1,3)向右平移3个单位长度后的坐标为(2,3).故选:C.5.解:∵点A(2,﹣3)和点B关于原点对称,∴点B的坐标为(﹣2,3).故选:A.6.解:∵第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),…,∴按这样的运动规律,第几次横坐标即为几,纵坐标为:1,0,2,0,1,0,2,0 (4)个一循环,∵=503…1,∴经过第2013次运动后,动点P的坐标是:(2013,1).故选:C.7.解:在y轴上,与点A(3,﹣2)的距离等于3的点有(0,﹣2),即只有1个点.故选:A.8.解:由题意得AB∥x轴,那么点A和B的纵坐标相等为3,∵OC=5,那么点B的横坐标为1+5=6.故选:A.9.解:∵△AOB与△A'OB关于x轴对称,∴点P(a,b)关于x轴的对称点为(a,﹣b),∴点P的对应点Q的坐标是(a,﹣b).故选:D.10.解:根据点(0,0)到点(﹣3,0),即可知机器人先顺时针转动90°,再向左平移3个单位,于是应下指令为[3,90°].故选:A.二.填空题11.解:∵点A(2,3)在第一象限,∴与点A关于x轴对称的点的坐标为:(2,﹣3),与点A关于y轴对称的点的坐标为:(﹣2,3),与点A关于原点对称的点的坐标为:(﹣2,﹣3).故答案为:(2,﹣3),(﹣2,3),(﹣2,﹣3).12.解:∵点A(﹣1,a),B(b,2)两点关于y轴对称,∴b=1,a=2,故答案为:2;1.13.解:设点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(a,b),则=﹣1,=1,解得:a=﹣3,b=0,∴点P(1,2)关于点Q(﹣1,1)的对称点的坐标为(﹣3,0),故答案为:(﹣3,0).14.解:设点M(m,n),则它的伴随点为(﹣n+1,m+3),∵点M的伴随点坐标为(﹣5,3),∴﹣n+1=﹣5,m+3=3,解得,m=0,n=6,∴M(0,6).故答案为(0,6).15.解:点N(﹣1,2)向右平移3个单位,再向下平移4个单位后,其坐标为(﹣1+3,2﹣4),即:(2,﹣2),故答案为:(2,﹣2).16.解:∵M(﹣3,2),N(3,2),∴MN∥x轴,∴MN=3﹣(﹣3)=3+3=6.故答案为:6.17.解:∵点M(﹣3,5)与点N关于直线x=1对称,而1×2﹣(﹣3)=5,∴点M(﹣3,5)关于直线x=1对称的点N的坐标是(5,5),故答案为(5,5).18.解:根据题意知“马”的位置可表示为(c,3),故答案为:(c,3).19.解:∵点在x轴上,∴点的纵坐标为0,∵距离(0,﹣2)的距离是4,∴所求点的横坐标为±=±2,∴所求点的坐标是(2,0)或(﹣2,0).故答案填:(2,0)或(﹣2,0).20.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,∴OA2=2OA1=2,同理可得,OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°,∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),∴点B2020的坐标为(3×22018,×22018).故答案为(3×22018,×22018).三.解答题21.解:第一单元是:1,第二单元是:2,3,4,第三单元是:5,6,7,8,9,第四单元是:10,11,12,13,14,15,16,第五单元是:17,18,19,20,21,22,23,24,25,…,所以,124在第12单元,第3个数,即第3行第12个数,∴124这个数记作(3,12).22.解:∵点P(1﹣a,2a﹣5)到两坐标轴的距离相等,∴符合题的点P的横、纵坐标相等或互为相反数,∴|1﹣a|=|2a﹣5|,∴1﹣a=±(2a﹣5)解得:a=2或a=4,则1﹣2=﹣1,2×2﹣5=﹣1,1﹣4=﹣3,2×4﹣5=3,所以P的坐标为(﹣1,﹣1)或(﹣3,3).23.解:(1)如图所示:四边形A′D′E′C′即为所求;(2)如图所示:四边形A″D″E″C″即为所求;(3)如图所示:四边形A1D1E1C1即为所求;(4)图形在原基础上各点向上平移纵坐标个单位后,再将整体图形向上平移3个单位.24.解:∵点P(x+1,2x﹣1)关于原点的对称点P′的坐标为(﹣x﹣1,﹣2x+1),而P′在第一象限,∴﹣x﹣1>0,且﹣2x+1>0,∴x<﹣1,∴|x﹣3|﹣|1﹣x|=﹣(x﹣3)﹣(1﹣x)=﹣x+3﹣1+x=2.25.解:(1)→(2)纵坐标不变,横坐标都加1,(2)→(3)横坐标不变,纵坐标都加1,(3)→(4)横、纵坐标都乘以﹣1,(4)→(5)横坐标不变,纵坐标都乘以﹣1.26.解:根据题意得到|3m﹣1|=3|m﹣2|,两边平方,解得m=因而P的坐标是(,﹣),则OP=.27.解:(1)根据轴对称的性质,得A(﹣3,4)关于y轴对称的点的坐标是(3,4);点B(4,﹣2)关于y轴对称的点的坐标是(﹣4,﹣2).(2)根据题意:点M、N与点A、B关于x轴对称,可得M(﹣3,﹣4),N(4,2);进而可得四边形AMBN为梯形,且AM=8,BN=4.故四边形AMBN的面积为•(8+4)×7=42.。

18.22 平面直角坐标系中的正方形(专项练习)-2020-2021学年八年级数学下册(人教版)

18.22 平面直角坐标系中的正方形(专项练习)-2020-2021学年八年级数学下册(人教版)

专题18.22 平面直角坐标系中的正方形(专项练习)一、填空题1.(2019·广东红岭中学八年级期中)如图,在平面直角坐标系中,正方形ABCD 的边长为2,点A 的坐标为(1,1).若直线y x b =+与正方形有两个公共点,则b 的取值范围是____________.2.(2020·山东九年级)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕O 点顺时针旋转45︒后得到正方形111OA B C ,依此方式,绕O 点连续旋转2021次得到正方形202120212021OA B C ,则点2021A 的坐标为_______.3.(2020·河北八年级期末)正方形111A B C O ,正方形2221A B C C ,正方形3332A B C C ,按如图所示的方式放置在平面直角坐标系中,若点1A 、2A 、3A 和1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2020B 的坐标是__________.4.(2019·北京人大附中八年级期中)如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且(3,0),(2,)A B b -,则直线CD 的解析式是_____________.5.(2019·丹东市第七中学九年级月考)如图,平面直角坐标系中正方形OABC ,点A 的坐标为(1,2),则点C 的坐标 __6.(2021·湖北八年级期末)如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A的坐标为(,则点B 的坐标为______.7.(2020·宁波市第十五中学八年级期末)如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.8.(2019·河南八年级期末)如图在平面直角坐标系中,A (4,0),B (0,2),以AB 为边作正方形ABCD ,则点C 的坐标为___________.9.(2020·甘肃八年级期末)如图:在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形1n n n n A B C C -,使得点1A 、2A 、3A 、...在直线l 上,点1C 、2C 、3C 、…在y 轴正半轴上,则点2018B 的坐标是__________.10.(2020·湖北九年级期末)如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,继续旋转至2020次得到正方形202020202020OA B C ,那点2020B 的坐标是__________.11.(2021·沭阳县修远中学八年级月考)如图,在平面直角坐标系xOy 中,一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,则正方形OABC 的面积为____.二、解答题12.(2016·浙江八年级月考)如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为(﹣4,﹣2),(1)求点A 的坐标.(2)线段BO 的长度.13.(2019·北京八年级期中)如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上,且A (-3,0),B (2,b ),求正方形ABCD 的面积.14.(2018·青岛超银中学九年级单元测试)在平面直角坐标系中,正方形OABC 的点()2,0A ,()0,0O ,()0,2C ,现将此正方形绕O 逆时针旋转45,得到正方形111OA B C ,求正方形111OA B C 各顶点的坐标.15.(2019·四川八年级期中)如图所示,在平面直角坐标系中,正方形OABC 的点A 、C分别在x 轴和y 轴的正半轴上,点()6,6B 在第一象限,AP 平分CAB ∠交OB 于P .(1)求OPA ∠的度数和OP 的长;(2)点P 不动,将正方形OABC 绕点O 逆时针旋转至图2的位置,60COP ∠=︒,AP 交OB 于点F ,连接CF .求证:OF CF PF +=;(3)如图3,在(2)的条件下,正方形的边AB 交x 轴于点D 、OE 平分BAD ∠,M 、N 是OB 、OE 上的动点,求BN MN +的最小值,请在图中画出示意图并简述理由. 16.(2019·天津中考模拟)在平面直角坐标系中,O 为原点,点A (﹣6,0)、点C (0,6),若正方形OABC 绕点O 顺时针旋转,得正方形OA′B′C′,记旋转角为α:(1)如图①,当α=45°时,求BC 与A′B′的交点D 的坐标;(2)如图①,当α=60°时,求点B′的坐标;(3)若P 为线段BC′的中点,求AP 长的取值范围(直接写出结果即可).17.(2020·广东九年级)在平面直角坐标系中,O 为坐标原点,点A (0,1),点C (1,0),正方形AOCD 的两条对角线的交点为B ,延长BD 至点G ,使DG BD =.延长BC 至点E ,使CE BC =,以BG ,BE 为邻边做正方形BEFG .(①)如图①,求OD 的长及AB BG的值; (①)如图①,正方形AOCD 固定,将正方形BEFG 绕点B 逆时针旋转,得正方形BE F G ''',记旋转角为α(0°<α<360°),连接AG '.①旋转过程中,当BAG ∠'=90°时,求α的大小;①在旋转过程中,求AF'的长取最大值时,点F'的坐标及此时α的大小(直接写出结果即可).18.(2020·四川八年级期末)如图,将正方形ABCD放置在平面直角坐标系中的第一象限,点A,点B分别在y轴,x轴正半轴上,AB所在的直线方程为443y x=-+.(1)求点C和点D的坐标;(2)连接BD,将线段BD绕点B顺时针方向旋转至BE的位置,交线段CD于点F若DE DF=,求直线CE的解析式.19.(2021·广东八年级期末)如图所示,在平面直角坐标系中,已知一次函数112y x=+的图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求正方形ABCD的面积;(2)求点C,D的坐标;(3)在x轴上是否存在点M,使MDB∆的周长最小?若存在,请求出点M的坐标;若不存在,请说明理由.20.(2019·福建八年级期末)如果P 是正方形ABCD 内的一点,且满足①APB+①DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.(1)如图1,正方形ABCD 的对角线AC ,BD 交于点M ,求证:点M 是正方形ABCD 的对补点;(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A (1,1),C (3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.21.(2020·天津九年级月考)已知正方形OABC 在平面直角坐标系中,点A ,C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E ,F 分别在OA ,OC 上,且4OA =,2OE =.将OEF 绕点O 逆时针旋转,得OEF 点E ,F 旋转后的对应点为1E ,1F .(①)①如图①,求11E F 的长;①如图①,连接1CF ,1AE ,求证11OAE OCF △≌△; (①)将OEF 绕点O 逆时针旋转一周,当11OE CF ∥时,求点1E 的坐标(直接写出结果即可).22.如图,在平面直角坐标系中,直角梯形ABCO 的边OC 落在x 轴的正半轴上,且AB ①OC ,BC OC ⊥,AB =4,BC =6,OC =8.正方形ODEF 的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO 面积.将正方形ODEF 沿x 轴的正半轴平行移动,设它与直角梯形ABCO 的重叠部分面积为S .(1)分析与计算:求正方形ODEF 的边长;(2)操作与求解:①正方形ODEF 平行移动过程中,通过操作、观察,试判断S (S >0)的变化情况是 ; A .逐渐增大B .逐渐减少C .先增大后减少D .先减少后增大①当正方形ODEF 顶点O 移动到点C 时,求S 的值;(3)探究与归纳:设正方形ODEF 的顶点O 向右移动的距离为x ,求重叠部分面积S 与x 的函数关系式.23.(2020·北京四中九年级)在ABC 中,点D 在AB 边上(不与点B 重合),DE BC ⊥,垂足为点E ,如果以DE 为对角线的正方形上的所有点都在ABC 的内部或边上,则称该正方形为ABC 的内正方形.(1)如图,在ABC 中,4AB =,30B ∠=︒,点D 是AB 的中点,画出ABC 的内正方形,直接写出此时内正方形的面积;(2)在平面直角坐标系xOy 中,点(,2)A t ,(0,0)B ,3,02C t ⎛⎫ ⎪⎝⎭. ①若2t =,求ABC 的内正方形的顶点E 的横坐标的取值范围;①若对于任意的点D ,ABC 的内正方形总是存在,直接写出t 的取值范围.24.(2020·四川师范大学附属中学九年级月考)如图,在平面直角坐标系中,直线12:43l y x =-+分别交x 、y 轴于B 、A 两点,将AOB 沿直线29:22l y x =-折叠,使点B 落在点C 处.(1)求点C 的坐标.(2)若点D 沿射线BA 运动,连接OD ,当CDB △与CDO 面积相等时,求直线OD 的解析式.(3)在(2)的条件下,当点D 在第一象限时,沿x 轴平移直线OD ,分别交x ,y 轴于点E ,F ,在平面直角坐标系中,是否存在点(),3M m )和点P ,使四边形EFMP 为正方形?若存在,求出点P 的坐标;若不存在,说明理由.25.(2020·湖北江夏一中八年级期中)如图1,在平面直角坐标系中,(,)A a b ,(,0)B c 是x轴正半轴上一点,30ABO ∠=︒|2|a -互为相反数.(1)求c 的值;(2)如图2,AC AB ⊥交x 轴于C ,以AC 为边的正方形ACDE 的对角线AD 交x 轴于F .①求证:2BE OC =;①记22BF OF m -=,2OC n =,求m n的值. 26.(2019·辽宁七年级期末)在平面直角坐标系xOy 中,如图正方形ABCD 的顶点A ,B 坐标分别为()1,0A -,()3,0B ,点E ,F 坐标分别为(),0E m ,()3,0F m ,且12m -<≤,以EF 为边作正方形EFGH .设正方形EFGH 与正方形ABCD 重叠部分面积为S .(1)①当点F 与点B 重合时,m 的值为______;①当点F 与点A 重合时,m 的值为______. (2)请用含m 的式子表示S ,并直接写出m 的取值范围.27.(2019·北京八年级期末)在平面直角坐标系xOy 中,正方形ABCD 的两个顶点的坐标分别为(2,0)A -,4()2,D -,顶点B 在x 轴的正半轴上.(1)写出点,B C 的坐标;(2)直线55y x =+与x 轴交于点E ,与y 轴交于点F .求EFC ∆的面积.28.(2019·河北九年级)如图,在平面直角坐标系中,点()()2,1,6,1B C ,四边形ABCD 是正方形,作直线()0y kx k =>与正方形AB CD 、边所在直线相交于E F 、(1)若直线()0y kx k =>经过点A ,求k 的值;(2)若直线()0y kx k =>平分正方形ABCD 的面积,求E 的坐标;(3)若AEF ∆的外心在其内部,直接写出k 的取值范围.29.(2020·天津南开翔宇学校九年级月考)在平面直角坐标系中,O 为原点,点(6,0)A -,点(0,6)C .若正方形OABC 绕点O 顺时针旋转,得正方形'''OA B C ,记旋转角为α.(①)如图①,当45α=︒时,求BC 与''A B 的交点D 的坐标;(①)如图①,当60α=︒时,求点'B 的坐标;(①)若P 为线段'BC 的中点,求AP 长的取值范围(直接写出结果即可).参考答案1.﹣2<b <2【解析】【分析】当直线y =x +b 过D 或B 时,求得b ,即可得到结论.【详解】①正方形ABCD 的边长为2,点A 的坐标为(1,1),①D (1,3),B (3,1). 当直线y =x +b 经过点D 时,3=1+b ,此时b =2.当直线y =x +b 经过点B 时,1=3+b ,此时b =﹣2.所以,直线y =x +b 与正方形有两个公共点,则b 的取值范围是﹣2<b <2.故答案为﹣2<b <2.【点拨】本题考查了一次函数图象上点的坐标特征,正方形的性质,关键是掌握待定系数法正确求出函数的解析式.2.22⎛⎫-- ⎪ ⎪⎝⎭【分析】探究规律,利用规律解决问题即可.【详解】如图,①四边形OABC 是正方形,且OA=1,①A (0,1),①将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,①A 1),A 2(1,0),A 3,),…,发现是8次一循环,所以2021÷8=252……5,①点A 2021的坐标为(2-,2-).故答案为(2-,2-).【点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.3.20202019201921,2()B ﹣ 【分析】根据直线解析式先求出OA 1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n 个正方形的边长,从而求得点B n 的坐标,即可求得点B 2020的坐标.【详解】解:①直线y=x+1,当x=0时,y=1,当y=0时,x=-1,①OA 1=1,①B 1(1,1),①OA 1=1,OA=1,①①OAA 1=45°,①①A 2A 1B 1=45°,①A 2B 1=A 1B 1=1,①A 2C 1=2=21,①B 2(3,2)同理得:A 3C 2=4=22,…,①B 3(7,4);B 4(24-1,24-1),即B (15,8),①B n (2n -1,2n -1),①B (22020-1,22019)故答案为(22020-1,22019).【点拨】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解题的关键.4.355y x =-+ 【分析】根据A(-3,0),B (2,b),得到OA=3,OE=2,易证得≅≅Rt AOD Rt BEA Rt DFC ,得到DF=AO=3,OD=AE=CF=5,即可求得点C 、D 的坐标,从而求得直线CD 的解析式.【详解】作CF①y 轴于F ,BE①x 轴于E ,①A(-3,0),B (2,b),①OA=3,OE=2,①AE= OA+OE =5,①四边形ABCD 是正方形,①AB=AD=CD ,①BAD=①ADC=90︒,①①1+①DAO=90︒,①2+①DAO=90︒,①2+①CDF=90︒,①3+①CDF=90︒,①①1=①2=①3,①≅≅Rt AOD Rt BEA Rt DFC ,①DF=AO=3,OD=AE=CF=5,①OF= OD - DF=2,①点C 的坐标为(5,2),点D 的坐标为(0,5),设直线CD 的解析式为5y kx =+,把点C 的坐标为(5,2)代入得:255k =+, 解得:35k =-,①直线CD 的解析式为355y x =-+, 故答案为:355y x =-+.【点拨】本题考查了正方形的性质、坐标与图形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.5.(-2,1)【分析】过点A 作AD①x 轴于D ,过点C 作CE①x 轴于E ,根据同角的余角相等求出①OAD=①COE ,再利用“角角边”证明①AOD 和①OCE 全等,根据全等三角形对应边相等可得OE=AD ,CE=OD ,然后根据点C 在第二象限写出坐标即可.【详解】如图,过点A 作AD①x 轴于D ,过点C 作CE①x 轴于E ,①四边形OABC 是正方形,①OA=OC ,①AOC=90°,①①COE+①AOD=90°,又①①OAD+①AOD=90°,①①OAD=①COE ,在①AOD 和①OCE 中,90OAD COE ADO OEC OA OC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩①OE=AD=2,CE=OD=1,①点C 在第二象限,①点C 的坐标为(-2,1).故答案为(-2,1).【点拨】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.(1-+【分析】过点A作AE①x轴,垂足为点E,过点B作BF①y轴,垂足为点F,交EA的延长线于点D,证明①AOE①①BAD,得到BF,DE的长度,后将线段的长度转化为点的坐标即可.【详解】过点A作AE①x轴,垂足为点E,过点B作BF①y轴,垂足为点F,交EA的延长线于点D,①四边形ABCO是正方形,①OA=AB,①OAB=90°,①①DBA+①BAD=90°,①BAD+①EAEO=90°,①①DBA=①EAO,在①DBA和①EAO中,①DBA=①AEO,①D=①EAB=OA,①①BDA①①AEO,①BD=AE,AD=OE,①A(1),①OE=AD=DF=1,BD=1,+1,①点B坐标为(1+1),故答案为:(1+.【点拨】本题考查了正方形的性质,一线三直角全等模型,线段与坐标的关系,根据图形的特点,熟练构造模型证明三角形全等是解题的关键.7.()3,1-【分析】过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .先证明AOD COE BCF ∆∆∆≌≌,得到1AD CE BF ===,2OD OE CF ===,根据点的坐标定义即可求解.【详解】解:如图,过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .()2,1C --,2OE ∴=,1CE =.四边形OABC 是正方形,OA OC BC ∴==.易求AOD COE BCF ∠=∠=∠.又90ODA OEC F ∠=∠=∠=︒①AOD COE BCF ∆∆∆≌≌,1AD CE BF ∴===,2OD OE CF ===,∴点A 的坐标为()1,2-,211EF =-=,点B 到y 轴的距离为123+=,∴点B 的坐标为()3,1-.故答案为:()3,1-【点拨】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.8.(2,6)或(−2,−2)【解析】【分析】当点C 在AB 上方时,过点C 作CE①y 轴于点E ,易证①AOB①①BEC (AAS ),根据全等三角形的性质可得BE=AO=4,EC=OB=2,从而得到点C 的坐标为(2,6),同理可得当点C 在AB 下方时,点C 的坐标为:(-2,-2).【详解】解:如图所示,当点C 在AB 上方时,过点C 作CE①y 轴于点E ,①A (4,0),B (0,2),四边形ABCD 为正方形,①①BEC=①AOB=90°,BC=AB ,①①BCE+①EBC=90°,①OBA+①EBC=90°,①①BCE=①OBA ,①①AOB①①BEC (AAS ),①BE=AO=4,EC=OB=2,①OE=OB+BE=6,①此时点C 的坐标为:(2,6),同理可得当点C 在AB 下方时,点C 的坐标为:(-2,-2),综上所述,点C 的坐标为:(2,6)或(−2,−2)故答案为:(2,6)或(−2,−2).【点拨】本题主要考查坐标与图形以及三角形全等的判定和性质,注意分情况讨论,不要漏解. 9.(22017,22018-1)【分析】根据一次函数图象上点的坐标特征和正方形的性质找出A 1、B 1、A 2、B 2、A 3、B 3的坐标,从而求出B n ,从而求出结论.【详解】解:将y=0代入1y x =-中,得x=1①A 1(1,0),①OA 1= A 1B 1=1,即点B 1(1,1)=(21-1,21-1);将y=1代入1y x =-中,得x=2①A 2(2,1),①A 2 C 1= A 2B 2=2,即点B 2的坐标为(2,1+2)=(2,3)=(22-1,22-1);将y=3代入1y x =-中,得x=4①A 2(4,3),①A 3C 2= A 3B 3=2,即点B 3的坐标为(4,1+2+4)=(4,7)=(23-1,23-1); ①点B n 的坐标是(2n -1,2n -1).①点2018B 的坐标是(22018-1,22018-1)=(22017,22018-1).故答案为:(22017,22018-1).【点拨】此题考查一次函数图象上点的坐标特征以及规律型坐标的变化,根据点的坐标的变化找出变化规律“点B n 的坐标是(2n -1,2n -1)(n 为正整数)”是解题的关键.10.(-1,-1)【分析】连接OB ,根据图形可知,点B 在以点O 为圆心、、OB 为半径的圆上运用,将正方形OABC绕点O 逆时针依次旋转45°,可得点B 的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,①四边形OABC 是正方形,且OA=1,①B (1,1),连接OB ,由勾股定理可得OB = ,由旋转的性质得:1232OB OB OB OB ===== 将正方形OABC 绕点O 逆时针依次旋转45°,得:11245AOB BOB B OB ∠=∠=∠==︒,①(10B ,()21,1B -,()3B ,41(1)B --,,…,可发现8次一循环, ①202082524÷=,①点2020B 的坐标为(11)--,, 故答案为(11)--,. 【点拨】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键. 11.325【分析】过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,由正方形的性质就可以得出CDO AEO ∆≅∆,就可以得出CD AE =,OD OE =,由一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -,就可以得出(24,)A a a --代入解析式就可以求出a 的值,由正方形的面积等于2OC 就可以求出结论.【详解】解:过点C 作CD x ⊥轴于点D ,过点A 作AE y ⊥轴于点E ,90CDO AEO ∴∠=∠=︒.四边形OABC 是正方形,90AOC ∴∠=︒,OC OA =.90DOE ∠=︒,AOC DOE ∴∠=∠,AOC AOD DOE AOD ∴∠-∠=∠-∠,COD AOE ∴∠=∠.在CDO ∆和AEO ∆中,CDO AEO COD AOE OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CDO AEO AAS ∴∆≅∆CD AE ∴=,OD OE =.一次函数24y x =-的图象经过正方形OABC 的顶点A 和C ,设点(,24)C a a -, OD a ∴=,24CD a =-,OE a ∴=,24AE a =-,(24,)A a a ∴--,2(24)4a a ∴-=--,125a ∴=. 125OD ∴=,45CD =,在Rt CDO ∆中,由勾股定理,得2222212432555OC OD CD ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭. 2OABC S CO =正方形,325OABC S ∴=正方形. 故答案为:325. 【点拨】 本题考查了正方形的性质及面积公式的运用,垂直的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,一次函数图象上点的坐标的特征的运用,构造K 字形全等,得出AC 两点坐标关系是解题的关键.12.(1)A(-2,4);(2)【解析】试题分析:(1)过点A 作AE①y 轴,垂足为E ,过点C 作CD①y 轴,垂足为D,易证①AEO①①ODC ,即可求得A 点的坐标;(2)过点B 作BF①CD 交DC 的延长线于点F ,易证①BFC①①ODC ,即可求得点B 的坐标,由勾股定理求得正方形的边长,即可求得正方形的对角线OB 的长.试题解析:(1)过点A 作AE①y 轴,垂足为E ,过点C 作CD①y 轴,垂足为D,易证①AEO ≅①ODC,得A(-2,4);(2)同理可证①BFC ≅①ODC ,得B(-6,2),得.13.34【分析】过点B 作BM①x 轴于点M ,通过证明AOD BMA ≅,可得,AO MB DO AM ==,即可得出AO 、DO 的值,根据勾股定理求出AD 的值,即可求出正方形的面积.【详解】过点B 作BM①x 轴于点M①四边形ABCD 是正方形,90AD AB DAB ︒∴=∠=90OAD BAM ︒∴∠+∠=90BAM ABM ︒∠+∠=OAD ABM ∴∠=∠在①AOD 和①BMA 中AOD AMBOAD ABM AD AB∠=∠⎧⎪∠=∠⎨⎪=⎩AOD BMA ∴≅,AO MB DO AM ∴==(3,0),(2,)A B b -3,2AO OM ∴==3,325MB AM AO OM ∴==+=+=5DO ∴=22292534AD AO DO =+=+=234ABCD S AD ∴==正方形.【点拨】本题考查了正方形的面积问题,掌握正方形的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.14.1A ,(1B ,(1C ,()0,0O . 【分析】作A 1D①x 轴于D ,C 1E①x 轴于E ,如图,根据正方形的性质得,①BOA=①BOC=45°,再根据旋转的性质得点B 1在y 轴上,OB 1,①A 1OD=45°,①B 1OC 1=45°,OA 1=OA=OC 1=2,则可判断①A 1OD 和①EOC 1都是等腰直角三角形,于是可根据等腰直角三角形的性质得到A 1D=OD=2OA 1,C 1E=OE=2OC 1,然后根据各象限点的坐标特征和y 轴上点的坐标特征写出正方形OA 1B 1C 1各顶点的坐标.【详解】解:作1A D x ⊥轴于D ,1C E x ⊥轴于E ,如图,①正方形OABC 的点()2,0A ,()0,0O ,()0,2C ,①OB =45BOA BOC ∠=∠=,①正方形OABC 绕O 逆时针旋转45,得到正方形111OA B C ,①点1B 在y 轴上,1OB OB ==,145A OD ∠=,1145B OC ∠=,112OA OA OC ===,①1A OD 和1EOC 都是等腰直角三角形,①112A D OD OA ===112C E OE ===,①1A ,(1B ,(1C ,()0,0O . 【点拨】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.15.(1)∠OP A=67.5°;OP =6;(2)详见解析;(3)【分析】(1)先求出①3=①2=①BAC=45°,进而得出①CAP=22.5°,即可得出OP=OA ,即可得出结论;(2)先求出①P=15°,进而判断出①FOG 是等边三角形,再判断出①COF①①POG ,即可得出结论,(3)先作出点B 关于OE 的对称点B',得出BN+MN=B'M ,然后根据垂线段最短的性质可确定M 点坐标,即可计算出结论.【详解】解:(1)如图1,①AC ,OB 是正方形OABC 的对角线,①OA =AB ,①2=①3=①BAC =45°,①AP 是①BAC 的角平分线,①①1=12①BAC =22.5°, ①①OAP =①3+①1=67.5°,在①OAP 中,①OP A =180°﹣①2﹣①OAP =67.5°,①①OAP =①OP A ,①OA =OP ,①B (6,6),①AB =6,①OA =AB =6,①OP =6;(2)如图2,①四边形OABC 是正方形,①OA =OC ,①AOC =90°,①①COP =60°,①①AOP =150°,由(1)知,OP =OA①①P =15°,由(1)知,①POG =45°,①①AGO =①P +①POG =60°,①OB 是正方形的对角线,①①BOC =45°,①①COP =60°,①POG =45°,①①BOG =①COP =60°,①①OFG 是等边三角形,①OF =FG =OG ,在①COF 和①POG 中,45OF OGCOF POG OC OP=⎧⎪∠=∠=︒⎨⎪=⎩,①①COF ①①POG ,①PG =CF ,①CF +OF =PG +FG =PF ;(3)如图3,过点B 作BQ ①OE 于Q ,延长BQ 交x 轴于B ',①OE 是①DOB 的平分线,①BQ =B 'Q ,①点B '与点B 关于OE 对称,连接B 'M '交OE 于N ',①BN '+M 'N '=B 'N '+M 'N '=B 'M ',过点B '作B 'M ①OB 于M ,交OE 于N ,此时,BN +MN 最小,①OB 是边长为6的正方形的对角线,①OB =由作图知,OB '=OB =,由(2)易知,①BOD =30°,在Rt①B 'OM 中,B 'M =12OB '=3,即:BN +MN 的最小值为【点拨】此题是四边形综合题,主要考查了正方形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,轴对称性质,角平分线的性质,灵活运用所学知识进行推理证明是解题关键.16.(1)(6-;(2)3,3+;(3)3323AP +.【分析】(1)当α=45°时,延长OA′经过点B ,在Rt①BA′D 中,①OBC =45°,A′B =6,可求得BD 的长,进而求得CD 的长,即可得出点D 的坐标;(2)过点C′作x 轴垂线MN ,交x 轴于点M ,过点B′作MN 的垂线,垂足为N ,证明①OMC′①①C′NB′,可得C′N=OM=,B′N=C′M=3,即可得出点B′的坐标;(3)连接OB,AC相交于点K,则K是OB的中点,因为P为线段BC′的中点,所以PK=12OC′=3,即点P在以K为圆心,3为半径的圆上运动,即可得出AP长的取值范围.【详解】解:(1)①A(﹣6,0)、C(0,6),O(0,0),①四边形OABC是边长为6的正方形,当α=45°时,如图①,延长OA′经过点B,①OB=OA′=OA=6,①OBC=45°,①A′B=6,①BD=(6)12=-,①CD=6﹣(12-=6,①BC与A′B′的交点D的坐标为(6-6);(2)如图①,过点C′作x轴垂线MN,交x轴于点M,过点B′作MN的垂线,垂足为N,①①OC′B′=90°,①①OC′M=90°﹣①B′C′N=①C′B′N,①OC′=B′C′,①OMC′=①C′NB′=90°,①①OMC′①①C′NB′(AAS),当α=60°时,①①A′OC′=90°,OC′=6,①①C′OM=30°,①C′N=OM=,B′N=C′M=3,①点B′的坐标为(3,3+;(3)如图①,连接OB,AC相交于点K,则K是OB的中点,①P为线段BC′的中点,①PK=12OC′=3,①P在以K为圆心,3为半径的圆上运动,①AK=①AP最大值为3,AP的最小值为3,①AP长的取值范围为3323AP+.【点拨】本题考查正方形性质,全等三角形判定与性质,三角形中位线定理.(3)问解题的关键是利用中位线定理得出点P的轨迹.17.(①,12AB BG =;(①)①α=30°,α=150°,①F '),α=315°.【分析】(①)根据正方形的性质以及勾股定理即可解决问题;(①)①因为①BAG ′=90°,BG ′=2AB ,可知sin①AG ′B ='AB BG =12,推出①AG ′B =30°,推出旋转角α=30°,据对称性可知,当①ABG ″=60°时,①BAG ″=90°,也满足条件,此时旋转角α=150°;①当α=315°时,A 、B 、F ′在一条直线上时,AF ′的长最大.【详解】解:(①)如图①中,①A (0,1),①OA =1.①四边形OADC 是正方形,①①OAD =90°,AD =OA =1,①OD =AC ,①AB =BC =BD =BO =2. ①BD =DG ,①BG ,①AB BG=12. (①)①如图①中,①①BAG ′=90°,BG ′=2AB ,①sin①AG ′B ='AB BG =12, ①①AG ′B =30°,①①ABG ′=60°,①①DBG ′=30°,①旋转角α=30°,根据对称性可知,当①ABG ″=60°时,①BAG ″=90°,也满足条件,此时旋转角α=150°.综上所述:旋转角α=30°或150°时,①BAG ′=90°. ①如图3中,连接OF .①四边形BE ′F ′G ′,①BF ′=2,①当α=315°时,A 、B 、F ′在一条直线上时,AF ′的长最大,最大值为2+2,此时α=315°,F ′(1122+-,).【点拨】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用. 18.(1)点C 的坐标为(7,3),点D 的坐标为(4,7);(2)直线CE 的解析式为746y x =-. 【分析】(1)先求出点A 、B 的坐标,从而可得3,4OB OA ==,再根据正方形的性质、直角三角形的性质可得,AB BC OAB HBC =∠=∠,然后根据三角形全等的判定定理与性质可得3, 4CH BO BH AO ====,从而可得7OH =,由此即可得出点C 的坐标,同样的方法可求出点D 的坐标;(2)设旋转角DBE ∠的大小为x ,先根据正方形的性质、等腰三角形的性质、三角形的外角性质求出30x =︒,再根据直角三角形的性质、平行四边形的判定与性质可得//BD CE ,然后利用待定系数法求出直线BD 的解析式,从而可得直线CE 的解析式中的一次项系数,最后将点C 的坐标代入即可得. 【详解】 (1)AB 所在的直线方程为443y x =-+, 当0x =时,4y =,即()0,4A , 当0y =时,4403x -+=,解得3x =,即(3,0)B , 3,4OB OA ∴==,如图,过点C 作⊥CH x 轴,垂足为H , 四边形ABCD 是正方形,90,ABC AB BC ∴∠=︒=,90OAB OBA OBA HBC ∴∠+∠=∠+∠=︒, OAB HBC ∴∠=∠,在OAB 和HBC 中,90OAB HBC AOB BHC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()OAB AAS HBC ∴≅,3, 4CH BO BH AO ∴====,347OH OB BH ∴=+=+=,∴点C 的坐标为(7,3),同理可得:点D 的坐标为(4,7);(2)设旋转角DBE ∠的大小为x ,四边形ABCD 是正方形,45BDC ∴∠=︒,AC BD =,AC BD ⊥, DFE ∠是BDF 的一个外角,45DFE DBE BDC x ∴∠=∠+∠=+︒, DE DF =,45DEF DFE x ∴∠=∠=+︒,由旋转的性质得:BD BE =,45BDE BED x ∴∠=∠=+︒,4545EDF BDE BDC x x ∴∠=∠-∠=+︒-︒=,在EDF 中,由三角形的内角和定理得:180EDF DEF DFE ∠+∠+∠=︒, 即()245180x x ++︒=︒, 解得30x =︒,如图,过点E 作EM BD ⊥于点M ,连接AC ,交BD 于点N ,则1122CN AC BD ==, 在Rt BEM 中,30EBM x ∠==︒,1122EM BE BD ∴==, EM CN ∴=,,E AC BD M BD ⊥⊥,//EM CN ∴,∴四边形EMNC 是平行四边形,//BD CE ∴,设直线BD 的解析式为y kx b =+,将()3,0B 和()4,7D 代入得:3047k b k b +=⎧⎨+=⎩,解得721k b =⎧⎨=-⎩, 则直线BD 的解析式为721y x =-,//BD CE ,∴设直线CE 的解析式为7y x m =+,将点()7,3C 代入得:493m +=,解得46m =-,故直线CE 的解析式为746y x =-.【点拨】本题考查了正方形的性质、三角形全等的判定定理与性质、等腰三角形的性质、利用待定系数法求一次函数的解析式等知识点,较难的是题(2),利用平行四边形的判定与性质得出//BD CE 是解题关键.19.(1)5;(2)()1,3C -,()3,2D -;(3)存在,()1,0M - 【分析】(1)在直角三角形AOB 中,由OA 与OB 的长,利用勾股定理求出AB 的长即可; (2)过C 作y 轴垂线,过D 作x 轴垂线,分别交于点E ,F ,可得三角形CBE 与三角形ADF 与三角形AOB 全等,利用全等三角形对应边相等,确定出C 与D 坐标即可; (3)作出B 关于x 轴的对称点B′,连接B′D ,与x 轴交于点M ,连接BD ,BM ,此时①MDB 周长最小,求出此时M 的坐标即可. 【详解】 (1)对于直线112y x =+,令0x =,得到1y =;令0y =,得到2x =, ①()2,0A -,()0,1B ,在Rt AOB ∆中,2OA =,1OB =,根据勾股定理得:AB == 所以正方形ABCD 面积为5.(2)作CE y ⊥轴,DF x ⊥轴,可得90CEB AFD AOB ∠=∠=∠=︒, ①正方形ABCD ,①BC AB AD ==,90DAB ABC ∠=∠=︒, ①90DAF BAO ∠+∠=︒,90ABO CBE ∠+∠=︒,①90DAF ADF ∠∠=+︒,90BAO ABO ∠+∠=︒, ①BAO ADF CBE ∠=∠=∠, ①BCE DAF ABO ∆∆∆≌≌,①2BE DF OA ===,1CE AF OB ===,①213OE OB BE =+=+=,213OF OA AF =+=+=, ①()1,3C -,()3,2D -;(3)找出B 关于x 轴的对称点B ′,连接B D ',与x 轴交于点M ,此时BMD ∆周长最小, ①()0,1B , ①()0,1B '-设直线B D '的解析式为y kx b =+, 把B ′与D 坐标代入得:132b k b =-⎧⎨-+=⎩,解得:11k b =-⎧⎨=-⎩,即直线B D '的解析式为1y x =--,令0y =,得到1x =-,即()1,0M -.【点拨】此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,正方形的性质,全等三角形的判定与性质,一次函数与坐标轴的交点,勾股定理,熟练掌握定理及性质是解本题的关键.20.(1)证明见解析;(2)对补点如:N(52,52).证明见解析【解析】试题分析:(1)根据正方形的对角线互相垂直,得到①DMC=①AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可,通过证明①DCN①①BCN,得到①CND=①CNB,利用邻补角的性质即可得出结论.试题解析:(1)①四边形ABCD是正方形,① AC①BD.① ①DMC=①AMB=90°.即①DMC+①AMB=180°.① 点M是正方形ABCD的对补点.(2)对补点如:N(52,52).说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上除(2,2)外的任意点均可.证明(方法一):连接AC ,BD由(1)得此时对角线的交点为(2,2).设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.则点N(52,52)是直线AC上除对角线交点外的一点,且在正方形ABCD内.连接AC,DN,BN,① 四边形ABCD是正方形,① DC=BC,①DCN=①BCN.又① CN=CN,① ①DCN①①BCN.① ①CND=①CNB.① ①CNB+①ANB=180°,① ①CND+①ANB=180°.① 点N是正方形ABCD的对补点.证明(方法二):连接AC ,BD,由(1)得此时对角线的交点为(2,2).设点N是线段AC上的一点(端点A,C及对角线交点除外),连接AC,DN,BN,① 四边形ABCD是正方形,① DC=BC,①DCN=①BCN.又① CN=CN,① ①DCN①①BCN.① ①CND=①CNB.① ①CNB+①ANB=180°,① ①CND+①ANB=180°.① 点N是正方形ABCD除对角线交点外的对补点.设直线AC的解析式为:y=kx+b,把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.在1<x <3范围内,任取一点均为该正方形的对补点,如N (52,52).21.(①)①11=E F ①见解析;(①)点1E 的坐标为(或(1,. 【分析】(1)①根据勾股定理求出EF 的长,11E F 的长;根据SAS 定理证明11OAE OCF △≌△即可; (2)由于①OEF 是等腰Rt①,若OE①CF ,那么CF 必与OF 垂直;在旋转过程中,E 、F 的轨迹是以O 为圆心,OE (或OF )长为半径的圆,若CF①OF ,那么CF 必为①O 的切线,且切点为F ;可过C 作①O 的切线,那么这两个切点都符合F 点的要求,因此对应的E 点也有两个;在Rt①OFC 中,OF=2,OC=OA=4,可证得①FCO=30°,即①EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E 点的坐标,由此得解. 【详解】解:(①)①①等腰直角三角形OEF 的直角顶点O 在原点,2OE =, ①90EOF ∠=︒,2OF OE ==.在Rt OEF 中,由勾股定理,得EF =.①11OE F △是由OEF 绕点O 逆时针旋转得到的,①11=E F①①四边形OABC 为正方形, ①OA OC =,①将OEF 绕点O 逆时针旋转,得11OE F △, ①11AOE COF ∠=∠,又OEF 是等腰直角三角形, ①11OE F △是等腰直角三角形, ①11OE OF =, ①11OAE OCF △≌△. (①)如图,①OE①OF ,①过点F 与OE 平行的直线有且只有一条,并与OF 垂直, 当三角板OEF 绕O 点逆时针旋转一周时, 则点F 在以O 为圆心,以OF 为半径的圆上. ①过点F 与OF 垂直的直线必是圆O 的切线.又点C 是圆O 外一点,过点C 与圆O 相切的直线有且只有2条,不妨设为CF 1和CF 2, 此时,E 点分别在E 1点和E 2点,满足CF 1①OE 1,CF 2①OE 2. 当切点F 1在第二象限时,点E 1在第一象限. cos①COF 1=112OF OC =, ①①COF 1=60°,①①AOE 1=60°. ①点E 1的横坐标为:x E1=2cos60°=1,点E 1的纵坐标为:y E1①点E 1的坐标为(1;当切点F 2在第一象限时,点E 2在第四象限.同理可求:点E 2的坐标为(1,).综上所述,三角板OEF 绕O 点逆时针旋转一周,存在两个位置,使得OE①CF ,此时点E 的坐标为E 1(1或E 2(1,. 【点拨】本题考查了图形的旋转变化、全等三角形的判定和性质、切线的判定、解直角三角形、以及分类讨论的数学思想.能够联系圆的相关知识来解答(3)题是此题的一个难点. 22.(1)①ODEF 1S =(48)6362ABCO S =+⨯=, 设正方形的边长为x ,①236x =,6x =或6x =-(舍去).。

宾川县实验中学八年级数学下册第十九章平面直角坐标系19.3坐标与图形的位置课后练习新版冀教版3

宾川县实验中学八年级数学下册第十九章平面直角坐标系19.3坐标与图形的位置课后练习新版冀教版3

坐标与图形的位置1.方格纸上有A ,B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(-4,3);若以A 点为原点建立直角坐标系,则B 点坐标为( C )A .(-4,-3)B .(-4,3)C .(4,-3)D .(4,3) 解析:画出图来易得.故选C.2.如图,在△ABC 中,A (0,4),C (3,0),且△ABC 面积为10,则B 点坐标为(-2,0). 解析:S △ABC =12BC ·4=10,解得BC =5,∴OB =5-3=2, ∴点B 的坐标为(-2,0).3.如图,等边三角形ABC ,B 点在坐标原点,C 点坐标为(4,0),A 点的坐标为(2,23).解析:如图所示,过点A 作AD ⊥BC , ∵△ABC 为等边三角形,∴BD =CD =2,OA =4.根据勾股定理,得AD =23,∴点A 的坐标为(2,23).4.如图,草房地基AB 长15米,房檐CD 的长为20米,门EF 宽6米,CD 到地面的距离为18米,请你建立适当的坐标系,并写出A,B,C,D,E,F各点的坐标.解:草房所在的平面图是轴对称图形,如图,以直线AB为x轴,以线段AB的中垂线为y轴,建立坐标系.∵AB长15米,且在x轴上,A点在负轴上,B点在正轴上,故得出A(-7.5,0),B(7.5,0),E(-3,0),F(3,0),C(-10,18),D(10,18).5.在如图所示的网格中,每个小正方形的边长都为1.(1)试作出直角坐标系,使点A的坐标为(2,-1);(2)在(1)中建立的直角坐标系中描出点B(3,4),C(0,1),并求△ABC的面积.解:(1)作出直角坐标系如图所示.(2)如图所示.S △ABC =3×5-12×3×3-12×2×2-12×5×1=6.6.如图所示,已知等边三角形ABC 两个顶点的坐标为A (-4,0),B (2,0). (1)求点C 的坐标; (2)求△ABC 的面积.解:(1)如图,作CD ⊥AB 于点D ,则AD =12AB =3,所以点D 的坐标为(-1,0),所以CD=AC 2-AD 2=33,所以点C 的坐标为(-1,33).(2)S △ABC =12AB ·CD =12×6×33=9 3.7.在棋盘中建立如图①所示的直角坐标系,三颗棋子A,O,B的位置如图①,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图②,添加棋子C,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可).解:(1)如图所示,直线l即为该图形的对称轴.(2)P(2,1)或(-1,-1)(答案不唯一).1.2分式的乘法和除法第1课时分式的乘除法【知识与技能】理解分式的乘、除运算法则,会进行简单的分式的乘、除法运算.【过程与方法】经历探索分式的乘、除法法则的过程,并结合具体情境说明其合理性.【情感态度】通过师生讨论、交流,培养学生合作探究的意识和能力.【教学重点】掌握分式的乘、除法运算法则.【教学难点】熟练地运用乘除法法则进行计算,提高运算能力.一、情景导入,初步认知计算,并说出分数的乘除法的运算法则:【教学说明】复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备.二、思考探究,获取新知1.探究:分式的乘除法法则你能总结分式乘除法的运算法则吗?与同伴交流.【归纳结论】分式乘分式,把分子乘分子、分母乘分母分别作为积的分子、分母分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:【教学说明】让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的运算法则.【教学说明】学生独立完成,教师点评.3.计算:【教学说明】如果分子、分母含有多项式因式,应先分解因式,然后按法则计算.三、运用新知,深化理解3.先化简,再求值:222396a aba ab b--+,其中a=-8,b=12.解:当a=-8,b=12时,4.甲队在n天内挖水渠a米,乙队在m天内挖水渠b米,如果两队同时挖水渠,要挖x米,需要多少天才能完成?(用代数式表示)【教学说明】需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第1、4、5 题.在练习中暴露出一些问题,例如我在传授过程中急于求成,法则的引入没有给学生过多的时间,如果时间足够,学生自己得出法则并不是一件难事.在解决习题时,对学生容易出现的错误没有重点强调,所以学生在后面的练习中仍然出现这样那样的错误.学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中应加强学生答题的规范性练习.期末模拟卷(3)一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.2.(3分)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)3.(3分)要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数4.(3分)对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限5.(3分)下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,26.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形7.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.(3分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若n边形的每个内角都是150°,则n=.10.(3分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为cm.11.(3分)已知点A(a,b),B(4,3)关于y轴对称,则a+b=.12.(3分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为.13.(3分)如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=.14.(3分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.15.(3分)矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=°.16.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是cm.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.(6分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.(6分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.19.(6分)已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.20.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.(8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B0.5<t≤1 20C1<t≤1.5 aD 1.5<t≤2 30E t>2 10请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?23.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x (时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.(10分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)55 36售价(元/箱)63 4225.(10分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.26.(12分)已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.期末模拟卷(3)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列图案中,不是中心对称图形的是()A.B.C.D.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.2.(3分)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)【解答】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C在第二象限;∵点距离x轴2个单位长度,距离y轴3个单位长度,所以点的横坐标是﹣3,纵坐标是2,故选:C.3.(3分)要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数【解答】解:频数分布直方图是用来显示样本在某一范围所占的比例大小,故选:D.4.(3分)对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限【解答】解:A、∵函数y=﹣2x是正比例函数,∴此函数的图象是一条直线,故本选项正确;B、∵当x=﹣1时,y=2,∴过点(﹣1,2),故本选项正确;C、∵k=﹣2<0,∴y随着x增大而减小,故本选项错误;D、∵k=﹣2<0,∴函数图象经过二四象限,故本选项正确.故选:C.5.(3分)下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选:C.6.(3分)下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选:D.7.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.8.(3分)如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,∴S△ABO=S△ADO,故②正确;当∠ABD=45°时,则∠AOD=90°,∴AC⊥BD,∴矩形ABCD变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等,∴正确结论的个数是4个.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)若n边形的每个内角都是150°,则n=12 .【解答】解:依题意得,(n﹣2)×180°=n×150°,解得n=12故答案为:1210.(3分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为12 cm.【解答】解:∵直角三角形斜边上的中线长为6cm,∴这个直角三角形的斜边长为12cm.11.(3分)已知点A(a,b),B(4,3)关于y轴对称,则a+b=﹣1 .【解答】解:∵点A(a,b),B(4,3)关于y轴对称,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故答案为:﹣1.12.(3分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为y=3x﹣4 .【解答】解:将正比例函数y=3x的图象向下平移4个单位长度,所得的函数解析式为y=3x﹣4.故答案为y=3x﹣4.13.(3分)如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC= 3 .【解答】解:∵AC平分∠BAD∴∠1=∠BAC∴AB∥DC又∵AB=DC∴四边形ABCD是平行四边形∴BC=AD又∵∠1=∠2∴AD=DC=3∴BC=3.14.(3分)如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12 米.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.15.(3分)矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=120 °.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵AC=2AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=180°﹣60°=120°;故答案为:120°.16.(3分)如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是10 cm.【解答】解:CD=DE∵AC=BC∴∠B=45°∴DE=BE∵△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填10.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.(6分)某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).【解答】解:根据题意得:∠ABC=90°,则AB===450(米),即该河的宽度为450米.18.(6分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.19.(6分)已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.【解答】解:依题意可以设该一次函数解析式为y=kx+4(k≠0).把(﹣1,2)代入得到:2=﹣k+4,解得k=2,所以该函数解析式为:y=2x+4.其函数图象如图所示:.20.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【解答】证明:∵平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD.∵BE、DF分别是∠ABC、∠ADC的平分线,∴∠BEC=∠ABE+∠BAE=∠FDC+∠FCD=∠DFA,在△BEC与△DFA中,∵∴△BEC≌△DFA(AAS),∴AF=CE,∴AE=CF.21.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解答】解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,在Rt△ADE和Rt△BEC中,,∴Rt△ADE≌Rt△BEC(HL);(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.22.(8分)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.类别时间t(小时)人数A t≤0.5 5B0.5<t≤1 20C1<t≤1.5 aD 1.5<t≤2 30E t>2 10请根据图表信息解答下列问题:(1)a=35 ;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?【解答】解:(1)a=100﹣5﹣20﹣30﹣10=35,故答案为:35;(2)条形统计图如下:(3)∵100÷2=50,25<50<60,∴第50个和51个数据都落在C类别1<t≤1.5的范围内,即小王每天进行体育锻炼的时间在1<t≤1.5范围内;(4)被抽查学生的达标率=×100%=75%.23.(8分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x (时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【解答】解:(1)设线段DE所在直线对应的函数关系式为y=kx+b.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5;(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.∴当甲队清理完路面时,乙队铺设完的路面长为87.5米,∴乙队还有160﹣87.5=72.5米的路面没有铺设完,答:当甲队清理完路面时,乙队还有72.5米的路面没有铺设完.24.(10分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)55 36售价(元/箱)63 42【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(63﹣55)x+(42﹣36)(50﹣x)=2x+300;(3)由题意,得55x+36(50﹣x)≤2000,解得x≤10,∵w=2x+300,y随x的增大而增大,∴当x=10时,y最大值=2×10+300=320元,此时购进B品牌的饮料50﹣10=40箱,∴该商场购进A、B两种品牌的饮料分别为10箱、40箱时,能获得最大利润320元.25.(10分)将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.【解答】证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC==4,∴OA=AC=2,在Rt△AOE中,AE=5,OE==,∴EF=2OE=2.26.(12分)已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.【解答】解:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,由8k+b=8,6k+b=0,解得k=4,b=﹣24,故直线AB的解析式为y=4x﹣24,由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,点M的坐标为(6.4,1.6).。

初中数学八年级《坐标》练习题1(含答案)

初中数学八年级《坐标》练习题1(含答案)

初中数学八年级《坐标》练习题1(含答案)一、填空题1、已知点A的坐标是(4,-5),则A点到y轴的距离是。

2、点M点的坐标是(a,1),若M点沿着x轴的正方向移动1个单位,再沿着y轴的反方向移动2个单位,这时M点的坐标是(3,-1),则a的值是。

3、点A与点B关于x轴对称,已知A的坐标是(3,-2),则B点的坐标是()。

4、点A的坐标是(2a,3+a),若A的横坐标数值大于它的纵坐标数值,则A点在第()象限。

5、已知线段MN平行于y轴,点M的坐标是(-1,3),若MN=4,则点N的坐标是.6、若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.7、在平面直角坐标系中,点O是坐标原点,已知点A的坐标是(2,2),请你在坐标轴上找出点B,使△AOB是等腰三角形,则符合条件的点B共有个.8、如图,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标为.9、若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标为.10、如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有个,写出其中一个点C的坐标为.二、选择题1、点P(-1,-2)到x轴的距离是( )A.1B.2C.-1D.-22、如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为( )A.(2,1)B.(-2,-1)C.(0,1)D.(-2,1)第2题3、如图,将长为3 cm的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为( )A.(5,3)B.(4,3)C.(4,2)D.(3,3)4、如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么“炮”的位置应表示为( )A.(8,7)B.(7,8)C.(8,9)D.(8,8)5、设三角形三个顶点的坐标分别为A(0,0),B(3,0),C(3,-3),则这个三角形是( )A.等边三角形B.任意三角形C.等腰直角三角形D.钝角三角形6、已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )A.a<-1B.-1<a<32 C.-32<a<1 D.a>327、点P的坐标为(2-a,3a+6),且到两坐标轴的距离相等,则点P的坐标为( )A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)8、若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第四象限B.第三象限C.第二象限D.第一象限9、在坐标平面上两点A(-a+2,-b+1),B(3a,b),若点A向右移动2个单位长度后,再向下移动3个单位长度后与点B重合,则点B所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限10、如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)三、解答题1、已知点A(a,3),B(-4,b),试根据下列条件求出a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于x轴对称;(3)AB∥x轴;(4)A,B两点在第二、四象限两坐标轴夹角的平分线上.2、在图中,确定点A,B,C,D,E,F,G的坐标.并说明点B和点F有什么关系?3、在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l′与直线l垂直于点C,求垂足点C的坐标.4、等腰直角三角形ABC的直角顶点C在x轴上,斜边AB在y轴上,点A 在点B上方,直角边AC=2,试写出顶点A,B,C的坐标.5、将下图中的△ABC做下列变换,分别指出变换后的图形的三个顶点的坐标.(1)关于y轴对称;(2)沿x轴正方向平移5个单位;(3)沿y轴负方向平移,使BC落在x轴上.6、如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.7、如图,四边形ABCD各个顶点的坐标分别为A(-2,8),B(-11,6),C(-14,0),D(0,0).(1)求这个四边形的面积?(2)如果把原来四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?8、已知,△ABC满足BC=AB,∠ABC=90°,A点在x轴的负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(-3,0),点B与原点重合,则点C的坐标是;(2)如图2,过点C作CD⊥y轴于点D,请判断线段OA,OD,CD之间的数量关系并说明理由;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x 轴于点F,问CF与AE有怎样的数量关系?并说明理由.参考答案一、填空题1、42、23、(3,2)4、第一象限解:A的横坐标数值大于它的纵坐标数值即2a>3+aa>3-------①式两边同时乘以2,得2a>6 这说明横坐标2a>6 故横坐标即为正①式两边同时加上3得3+a>6 这说明纵坐标3+a >6 故纵坐标即为正既然横坐标、纵坐标都为正,所以A在第一象限。

八年级数学上册第三章位置与坐标课时练习题及答案

八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。

八年级数学位置与坐标知识点及练习题

八年级数学位置与坐标知识点及练习题

第三章位置与坐标一、知识要点一、平面直角坐标系(一)有序数对:有顺序的两个数a与b组成的数对。

1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。

(二)平面直角坐标系1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。

(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。

二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。

三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。

四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;•在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

A 一个点B 一个图形C 一个数D 一个有序数对学生自测1.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.2、在平面直角坐标系内,下列说法错误的是()A 原点O不在任何象限内B 原点O的坐标是0C 原点O既在X轴上也在Y轴上D 原点O在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标点在x轴上,坐标为(x,0)在x轴的负半轴上时,x<0, 在x轴的正半轴上时,x>0点在y轴上,坐标为(0,y)在y轴的负半轴上时,y<0, 在y轴的正半轴上时,y>0第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy>0第二、四象限角平分线上的点的横纵坐标相反(即在y= -x直线上);坐标点(x,y)xy<0,则点P的坐标是,若点Q在例1 点P在x轴上对应的实数是31,则点Q的坐标是,y轴上对应的实数是3例2 点P(a-1,2a-9)在x轴负半轴上,则P点坐标是。

八年级数学上册第4章图形与坐标B卷浙教版

八年级数学上册第4章图形与坐标B卷浙教版

9.小明为画一个零件的轴截面,以该轴截面底 边所在的直线为x轴,对称轴为y轴,建立如图 所C示的平面直角坐标系.若坐标轴的单位长度取 1 mm,则图中转折点P的坐标表示正确的是
()
10.如图,平面直角坐标系中,一蚂蚁从A点出 发,沿着A→B→C→D→A…循环爬行,其中A 点的坐标为(2,-2), BD点的坐标为(-2,-2),C点的坐标为(-2,6), D点的坐标为(2,6),当蚂蚁爬了2019个单位时, 蚂蚁所处位置的坐标为
解: 答案不唯一,
(1)A(0,2),B(1,0),C(3,0),D(4,2),E(3,3);
(2)S 五边形 ABCDE=3×4-12×1×2-12×1×2-12×1×3-12×1×1 =12-1-1-1.5-0.5=8.
20.(10分)(1)写出点A,B的坐标.
(2)线段CD先向
平移
个单位长
解:(1)∵点 A(-2,4),B( 2+ 3, 2- 3), ∴[A]=|-2|+|4|=2+4=6,[B]=| 2+ 3|+| 2- 3| = 2+ 3+ 3- 2=2 3; (2)∵点M在x轴的上方,其横,纵坐标均为整数,且[M]=3, ∴x=±1时,y=2或x=±2,y=1或x=0时,y=3, ∴点M的坐标为(-1,2),(1,2),(-2,1),(2,1),(0,3).
14.如图是雷达探测到的6个目标,若目标B用
C
(30,60°)表示,目标用D(50,210°)表示,那么
(40,120°)表示的是目标
.
15.如图,在平面直角坐标系内,点P(a,b)为
△ABC的边AC上一点,将△ABC先向(a左-2平,-移b)2 个单位,再作关于x轴的轴对称图形,得到
△A′B′C′,则点P的对应点P′的坐标
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学:坐标平面内的图形 练习
1.在如图所示的平面直角坐标系中描出下面各点:A (0,3);B (
1,-
3);C (3,-5); D (-3,-5);E (3,5);F (5,7);G (5,0).
(1)将点C 向轴的负方向平移6个单位,它与点 重合.
(2)连接CE ,则直线CE 与轴是什么关系?
(3)顺次连接D 、E 、G 、C 、D 得到四边形DEGC,求四边形DEGC 的面积。

2. 如图,正方形ABCD 的边长为2,建立适当的平面直角坐标系,分别表示A ,B ,C ,D 四个点的坐标.
x
y
3. 如图是画在方格纸上的某一小岛的示意图. ⑴分别写出地点A ,C ,E ,G ,M 的坐标;
⑵(3,6),(7,9),(8,7),(3,3)所代表的地点分别是什么?
x
y
O 2 3 4 5 6 7 8 9 10 11 1
2 3 4 5 6 7 8 9 B
C
D
E F
G
H
M
A
4. 在如图所示的坐标系中描出下列各组点,并将各组内的点用线段依次连接起来. ⑴(1,2),(2,1),(6,1),(7,3); ⑵(3,3),(3,6),(5,2.5); 观察所得到的图形,你觉得它像什么?
x y
O 1 2 3 4 5 6 7 8 9
1
2 3 4 5 6 7。

相关文档
最新文档