坐标平面内的图形变换.
坐标平面内的位似变换PPT课件

课堂导练
5.(2020·自贡)一种试电笔的构造如图所示,下列说法 正确的是( D ) A.使用试电笔时 手可以接触笔尖 B.使用试电笔时手不要接触笔卡 C.试电笔中的电阻可以用铁丝代替 D.当氖管发光时有微弱电流通过人体
习题链接
1 见习题
提示:点击 进入习题
7
见习题
答案呈现
2B
8 火;切断
3 见习题 4 试电笔;发光
课堂导练
9.(2019·泸州)为安全用电,家庭电路中的空气开关应装 在________线上;空气开关“跳闸”后,受它控制的电 路处于________(填“短路”“断路”或“通路”)状态;试电 笔________(填“能”或“不能”)区分零线与地线。
课堂导练
6.(2019·贵阳)我国的家庭电路有两根进户线,都是从 低压输电线上引下来的。其中一根叫零线,一根叫 ___火__线___,两根进户线之间有___2_2_0___V的电压。
(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′与 △ABC位似,且位似比为1∶2; 解:如图,△A′B′C′ 即为所求.
(2)若点C的坐标为(2,4),则A′B′=__3______,点C′的坐标为 _(_1_,__2_)__,△A′B′C′的面积=___3_____.
8.【中考·玉林】如图,在平面直角坐标系网格中,将△ABC 进行位似变换得到△A1B1C1.
解:由题得k=-2, 把(3,1)和k=-2代入y=kx+b中, 得1=-2×3+b,∴b=7.
(2)若函数y=kx+b的图象与两坐标轴围成的三角形和 △AOB构成位似图形,位似中心为原点,位似比为 1∶2,求函数y=kx+b的表达式.
解:根据位似比为1∶2得函数y=kx+b的图象有两种情况: ①不经过第三象限时,过(1,0)和(0,2),这时表达式为y =-2x+2; ②不经过第一象限时,过(-1,0)和(0,-2),这时表达式 为y=-2x-2.
坐标系与平面图形的关系及其性质

坐标系与平面图形的关系及其性质坐标系和平面图形是数学中的基本概念,它们在解决几何问题和建模实践中扮演着重要的角色。
本文将探讨坐标系与平面图形之间的关系以及它们所具有的性质。
一、坐标系的定义及性质坐标系是用来描述空间位置的系统,常见的坐标系有直角坐标系和极坐标系。
直角坐标系由x轴、y轴和z轴组成,可用三个坐标值(x, y, z)来表示空间中的点。
而极坐标系则由极径和极角两个参数来确定点的位置。
坐标系具有以下性质:1. 唯一性:在一定范围内,每个点都有唯一的坐标表示,不会有重复的情况。
2. 可表示任意位置:坐标系可以描述任意点的位置,无论该点位于直线、曲线、平面还是空间中。
3. 满足数学规律:坐标系中的坐标值满足一系列的数学规律,如直角坐标系中的距离公式、角度计算等。
二、平面图形的定义及性质平面图形是指在平面上由多个点构成的形状,常见的平面图形有直线、曲线、多边形等。
平面图形可以由坐标系表示,通过坐标系中的点的集合来描述其形状、大小和位置。
平面图形具有以下性质:1. 可分解性:平面图形可以被分解为多个线段、面积或其他几何元素的组合。
2. 周长和面积:平面图形的周长和面积是衡量其大小的重要指标,可以通过数学方法进行计算和比较。
3. 对称性:平面图形可能具有对称性,如轴对称、中心对称等特点,这些对称性可以通过坐标系的变换来进行分析和判断。
三、坐标系与平面图形的关系1. 坐标系的应用:坐标系可以用来表示平面图形的位置和形状。
通过设定坐标系的原点和坐标轴方向,可以将平面图形的点与坐标系中的点进行一一对应。
2. 坐标系的变换:坐标系的平移、旋转和缩放等变换操作对于描述和分析平面图形非常重要。
通过坐标系的变换,可以实现对平面图形的位置、形状和尺寸的调整。
3. 区域和方程的关系:平面图形可以通过方程来表示,方程的解即为图形上的点的坐标,而图形的形状和位置则可以由方程的特征来推断。
四、坐标系与平面图形的性质1. 距离计算:坐标系中的两点之间的距离可以通过坐标差值和勾股定理来计算,这一性质在测量和分析平面图形时非常有用。
浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教学设计

浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》教学设计一. 教材分析浙教版数学八年级上册《4.3 坐标平面内的图形的轴对称和平移》是学生在学习了平面直角坐标系、图形的性质等知识的基础上,进一步学习图形的变换。
本节课主要内容是图形的轴对称和平移,这两种变换在实际生活中有着广泛的应用。
教材通过丰富的例题和练习题,引导学生掌握轴对称和平移的性质,培养学生的动手操作能力和空间想象能力。
二. 学情分析八年级的学生已经掌握了平面直角坐标系的基本知识,具备了一定的空间想象能力。
但是,对于轴对称和平移的理解可能还不够深入,需要通过实例和操作来进一步巩固。
此外,学生对于实际生活中的对称和变换现象可能有一定的了解,但需要引导他们将这些现象与数学知识结合起来。
三. 教学目标1.理解轴对称和平移的定义及性质。
2.能够识别和判断图形是否具有轴对称和平移性质。
3.能够运用轴对称和平移的知识解决实际问题。
4.培养学生的空间想象能力和动手操作能力。
四. 教学重难点1.轴对称和平移的定义及性质。
2.图形轴对称和平移的判断。
3.轴对称和平移在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论来理解轴对称和平移的性质。
2.利用多媒体课件和实物模型,直观展示轴对称和平移的变换过程,帮助学生建立空间想象。
3.注重动手操作,让学生通过实际操作来体会轴对称和平移的特点。
4.设计丰富的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.多媒体课件和实物模型。
2.练习题和答案。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些实际生活中的对称和变换现象,如剪纸、建筑物的对称等,引导学生关注这些现象背后的数学原理。
2.呈现(10分钟)介绍轴对称和平移的定义及性质,通过示例和动画演示,让学生直观地理解这两种变换。
3.操练(10分钟)让学生分组进行动手操作,利用实物模型或画图工具,尝试进行轴对称和平移变换,并观察变换前后的图形特点。
中考数学复习 第六章图形与变换 第35课 用坐标表示图形变换课件

关系着手,尤其要抓住关键点的横、纵坐标的变化.
基础自测
1.(2011·河南)如图,将一朵小花放置在平面直角坐标系中第三象
限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它
向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对
探究提高 在平面直角坐标系或网格中求面积,有一定的规律,常以
填空或选择题的形式出现,一般的做法是将难以求解的图形 分割成易求解面积的图形,即构图法.
知能迁移4 已知点A(-1,4),B(2,2),C(4,-1),则△ABC的 面积是___2_.5___.
解析:如图:S△ABC=5×5- 1×2×3=25-22.5=2.5
显然,点P的极坐标与它的坐标存在一一对应关系.例如:
点P的坐标为(1,1),则其极坐标为 [ , 45°]. 2
若点Q的极坐标为[4,60°],则点Q的坐标为( A )
A.(2, 2 3 )
B.(2,-2 3)
C.(2 3 , 2 )
D.(2,2)
题型三 求轴对称、旋转对称对应点的坐标
【例 3】 如图,在边长为1的正方形网格中,将△ABC向右平移两
12×2a、×2a-
1 2
a×、42a=3a2.
(m>0,
n>0且m≠n),试运用构图m法2+求1出6n这2 三9m角2+形4的n2 面积.m2+n2
解:构造△ABC如图(3)所示(未在试卷上画出相应图形 不1×扣2分m)×,2Sn△=AB1C2=mn3m-×2m4nn--312×mnm-×24mnn-=125×m3nm. ×2n- 2
探究提高 本题利用数形结合的方法确定点P的坐标,在阅读理解的
新浙教版八年级上4.3坐标平面内的图形变换(2)

坐标变化
横坐标 +5 -5 不变 不变 纵坐标 不变 不变 +3 -3
4.3坐标平面内的图形变换(2)
——平移变换
1、在直角坐标系中,点(4,-3)与点 y轴 对称, 与点 (-4,-3)关于_______ x轴 对称. (4,3)关于______ 2、点(-3,m)与点(n-2,4)关于x轴 -4 -1 对称,则m= ________ ,n=_______
将点A(-3,3)、 B(4,5)分别作以下平移变换,作出 相应的像,并写出像的坐标。 y A2 向右平移5个单位 B1 B A(-3,3) 2 3 ) (____,____ 4 A A1
4 3 2 1
1、怎样表示线段CD上任意一 点的坐标? (2, y)(-1≤y ≤3)
C
-2 -1 0 1 2 3 4 5 -1 A D B
x
例题分析
规定.
如图,在直角坐标系中,平行于x轴的线段AB上所有点的纵 坐标都是-1,横坐标x的取值范围是1≤x ≤5 ,则线段AB上 任意一点的坐标可以用“(x,-1) (1≤x ≤5)”表示,按照这样 y 的规定,回答下面的问题:
x
1.把以 (-2,7)、(-2,2)为端点的线段向 右平移7个单位,所得像上任意一点的坐 (5, y)(2≤y ≤7) 标可表示为__________________
2.把以 (-1,3)、(1,3)为端点的线段 向下平移4个单位,所得像上任意一点 x, -1)(-1≤x ≤1) 的坐标可表示为( ___________________
平面直角坐标系中图形的位似变换

7
原
6
图
形
5
被
4
纵 向
3
拉
2
伸
到
1
原
0 1 2 3 4 5 6 7 8 9 10
x
–1
来 的
2
–2
倍
–3
–4
在平面直角坐标系中,在作(x,y)
(x,ay)或(ax,y)变换时, 这不是相似变换,叫伸缩变换。
练一练:
1.如图表示△AOB和把它缩小后得到的△COD,求它们的相似比 y
A
C
o
D
B
x
沪科版九年级数学上册
思考回答
如何把三角形ABC放大为原来的2倍?
E
B
O
C
F
D
A
D
B
O
C
F
A
E
对应点连线都交于_位__似___中__心____ 对应线段___平___行__或__在___一__条__直___线__上_________
接下来想一想?
1、如果把位似图形放到平面直角坐标系 中,又如何去探究位似变换与坐标之间的关 系呢?
A′(2,1),B′(2,0) y
A〞(-2,-1),B(-2,0)
A
A'
B〞
x
o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原 点为位似中心,相似比为k,那么位似图形对 应点的坐标的比等于k或-k.
探索2:
在平面直角坐标系中, △ABC三个顶点的坐标分别 为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相 似比为2画它的位似图形.
坐标平移的性质

坐标平移与图形 变换的关系
图形变换的基本概念
图形变换是指通 过平移、旋转、 缩放等操作,改 变图形的大小、 形状和位置。
图形变换广泛应 用于计算机图形 学、动画制作、 游戏开发等领域。
三维坐标平移
三维坐标平移的定义
定义:将三维空间中的点按照给定的向量进行平移,得到新的点。 性质:平移不改变点的坐标值,只改变点的位置。 应用:在几何、物理、工程等领域中广泛使用,例如机器人移动、机械零件装配等。 注意事项:平移时需要确保方向和距离的正确性,否则会产生误差。
三维坐标平移的性质
定义:将一个点在三维空间中沿着某一方向移动一定的距离 性质:平移不改变点的坐标,只改变点的位置 方向:可以沿着x轴、y轴或z轴平移,也可以沿着任意方向平移 距离:平移的距离可以是任意的实数
三维坐标平移的应用
机器人的移动控制:通过三维坐标平移,可以精确控制机器人的移动轨迹和位置。
建筑建模:在建筑行业中,利用三维坐标平移技术可以建立精确的建筑模型,提高施工效率和精 度。
地球科学:在地球科学领域,通过三维坐标平移,可以对地球表面进行精确测量和建模,为地质 调查、矿产资源勘探等领域提供有力支持。
坐标平移是图形变 换中最基本的一种 ,是理解其他变换 的基础。
图形变换的应用
图形变换在计算机图形学中的应用,如动画、游戏、虚拟现实等。 图形变换在图像处理中的应用,如图像缩放、旋转、平移等。 图形变换在建筑设计中的应用,如建筑模型的三维建模、景观设计等。 图形变换在机械设计中的应用,如零件的建模、装配等。
感谢您的观看
汇报人:XX
坐标与图形的变化

缩放变换是图形变换中常用的一种,它通过改变图形上所有点的坐标值来实现放大或缩小。在缩放变 换中,图形上任意一点都按照相同的比例因子进行放大或缩小,保持了图形之间的相对关系不变。
旋转变换
总结词
旋转变换是指图形绕某一点旋转一定的角度,同时改变其方向和位置。
详细描述
旋转变换是图形变换中常用的一种,它通过旋转图形上所有点的坐标值来实现旋转。在旋转变换中,图形上任意 一点都绕着旋转中心按照相同的旋转角度进行旋转,保持了图形之间的相对关系不变。
在实际应用中,坐标与图形变化的应用非常广泛。例如,在计算机图形学中,坐标与图形变 化被用于生成和处理各种类型的图像;在物理学中,它们被用于描述物体的运动轨迹和状态 变化;在工程学中,它们被用于设计和分析各种机械系统和控制系统。
对未来研究的展望与建议
• 随着科技的不断发展,坐标与图形变化的应用前景将更加广阔。未来,我们可 以进一步探索如何将坐标与图形变化应用于更多领域,以解决更多实际问题。
在机械设计中,可以通过建立坐标系来描述机器部件的位置和运 动轨迹,从而进行精确的设计和制造。
航空航天
在航空航天领域,通过建立三维坐标系,可以描述飞行器的位置和 姿态,从而进行导航和控制。
自动化控制
在自动化控制领域,通过建立坐标系,可以描述机器的位置和状态, 从而进行精确的控制和监测。
05
总结与展望
• 总之,坐标与图形变化是一个充满活力和潜力的研究领域。未来,我们可以通 过不断深入研究和探索,推动该领域的发展和应用,为解决更多实际问题提供 更多有效的方法和工具。THAKS感谢观看04
坐标与图形变化的应用
在几何学中的应用
01
02
03
坐标变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创设情境,引入新知 教学过程
教材分析
问题:一幅原本是 “向日葵”的画像,如果
教学方法 只给你四分之一,你有办法将它补充完整吗?
学法指导
教学过程
教学评价
退出
创设情境,启发学生的积极主动的数学 思维,活跃课堂气氛,为新知识的学习作 好铺垫。
合作交流,探究新知 教学过程
教材分析
问题1:(1)写出点A的坐标
议一议:
O O' 1
x
A A'
教学评价 把一个轴对称图形画在直角坐标系中,怎样画最简便呢?
(教师进行小结,并将师生总结结果进行板书)
退出
培养学生分析问题、解决问题的能力。
教学过程
运用知识,体验成功
教材分析
小试牛刀:
教学方法
学法指导 教学过程
1、求出∆ABC各顶点的坐标及 关于y轴的对称点的坐标,并描点。
教学方法
(2)作点A关于x、y轴的对称点A’、A’’, 并写出它的坐标。
观察: 点A与A’、A’’的坐标,有什么特别之处?
学法指导
(引出讨论)
y
教学过程
教学评价
退出
3 2
1 -4 -3 -2 -1
-1 -2 -3
A
1234
掌握对称变换的特 征,使学生的感性认识 上升到理性思维。电脑
x 演示可以转化难点,发
教学评价
本节课的设计,充分发挥了学生的主体性 作用。在合作与交流环节,教师要注意控制 时间,既要给学生足够的时间进行讨论和总 结,又要防止讨论时间过长影响课堂学习氛 围。在进行轴对称图形在直角坐标平面内画 法的总结时,需要学生对知识进行归纳和总 结,这是本节课的一个难点,学生的归纳可 能不全面。教师可注意进行适当的引导,并 进行板书。
教学评价
坐标平面内作轴对称图形
退出
教材分析 教学方法:
教学方法
问题情境
学法指导 教学过程
教学评价
退出
建立模型 应用与拓展
教学方法
教材分析
学法指导
教学方法
学法指导 教学过程
观察分析为主 自主探索、合作交流为辅
教学评价
退出
教材分析 教学方法
学法指导 教学过程
教学评价
退出
教学过程
创设情境,引入新知 合作交流,探究新知 运用知识,体验成功 知识深化,应用提高
退出
归纳小结、形成结构 教学过程
教材分析谈一谈: 教学方法 请学生谈谈自己学习了本节课的收获,在交流中师生共
同整理知识点。
学法指导 教学过程
通过这个环节,一方面使教师了解到学生的学习情况, 对知识的理解程度,另一方面通过学生谈收获不仅对本 节课知识进行总结,而且也让学生总结学习过程中的体 验和收获,增加学习数学的信心,形成能力结构。
退出
2、教学目标
教材分析
教学方法
知识与技能: 了解、学会、运用
学法指导
过程与方法目标:
教材分析
教学过程
点确定坐标
描点
图形变换
教学评价 情感与态度目标:
退出
提升团队合作意识、培养数学素养
教材分析 3、教学重点与难点
教材分析
教学方法 ❖教学重点:
学法指导
关于坐标轴对称的两个点之间的坐标关系
教学过程 ❖ 教学难点:
教学评价
退出
布置作业: 课本P135第1、3题
教材分析
板书设计 板书设计
教学方法
6.3 坐标平面内的图形变换
一、关于坐标轴对称的点A与A’、A’’的坐标的关系
例题讲解演示
学法指导
1、
2、
教学过程
二、关于坐标轴对称的点的坐标关系的一般规律
合作与交流部分学生板演
教学评价
退出法
学法指导 教学过程
展学生的抽象思维和空 间想象力。
-4
合作交流,探究新知 教学过程
教材分析
教学方法
❖ 引导学生归纳: 点A与A’、A’’的坐标的关系(教师板书)
学法指导 教学过程
讨论:如果改变点A的坐标,这个规律仍然成立吗?
❖ 教师小结: 在直角坐标系中,点(a,b)关于x轴的对称点的 坐标为(a,-b),关于y轴的对称点的坐标为(-a,b)。
教学过程
100 150
教学评价
400 100
退出
500
单位:mm
教材分析
知识深化,应用提高 教学过程
教学方法
学法指导
议一议:
与同伴作出的图形比较,它们的形状、大小相同吗?
(要求学生用图形变换的观点加以说明)
教学过程
教学评价
退出
培养学生的合作意识、动手实践能力、逻辑 推理能力,积累数学活动经验,激发学生的学 习兴趣和学习主动性。从而使学生体会其中所 包含的数学思想。
教学评价
退出
从特殊到一般的教学过程,符合学 生的认知结构,层层深入的提问方式能 激发学生的求知欲望,从而引起学生学 习的兴趣。通过讨论和归纳,能提高学 生分析和解决问题的能力。
合作交流,探究新知
教材分析
教学方法
做一做:
点A关于X轴的对称点是_____
学法指导
点B关于Y轴的对称点是_____ 点C关于X轴的对称点是_____
教材分析
新浙教版八年级上册
教学方法
学法指导
6.3 坐标平面内的图形变换
教学过程
教学评价
退出
教材分析
教学方法
说
学法指导
课
流
教学过程
程
教学评价
退出
教材分析 教学方法 学法指导 教学过程 教学评价
教材分析
教材分析 1、教材的特点、地位与作用
教学方法
学法指导 教学过程
教学评价
本节课是在学生学习了图形变换以及 平面直角坐标系的基础上,继续讲述在坐 标平面内的图形变换,本课时的学习与图 形变换这一知识点联系密切,目的是使学 生实现从形到数的转化,并且为后面的 “几何证明”提供依据和方法,为后续学 习提供必要的知识准备和经验积累。
y B
2、将∆ABC以y轴为对称轴作一次轴对称变换,
然后将所得的像连同原图形,
A
以x轴为对称轴再作一次轴对称变换, 分别作出经两次变换后所得的像。
C
x
教学评价
退出
及时巩固,使学生学会举一反三,形成 问题解决能力。
知识深化,应用提高 教学过程
教材分析
合作与交流:
教学方法
学法指导
完成一个零件的主视图按你自己所认为合适的比例,选 取合适的方格纸,建立直角坐标系。在直角坐标系中选 取适当的位置,作出这个主视图,标明比例,并求出轮 廓线各个转折点的坐标。
教学过程
教学过程
y
A C
O
x
B
教学评价
及时巩固,有助于加深对知识的理 解与掌握。
退出
教学过程
运用知识,体验成功
教材分析 例题精讲:
y
教学方法
(1)求图形轮廓线各转折点的坐标
F F'
E' (2)利用坐标关系,求各转折点关 D'
ED
学法指导
于y轴的对称点的坐标
B' C' C B
教学过程
(3)在同一坐标系中,描点, 并用线段依次连接。