初中数学教程坐标平面内的图形

合集下载

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4.(2016春•江西期末)如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S△ABO=3×4﹣×3×2﹣×4×1﹣×2×2=5;(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。

平面直角坐标系中图形1

平面直角坐标系中图形1

,0),:如下图所示,以点D 为坐标原点,分别y x12341BAC DO-1-2-3-4-5-6师 :这两位同学选取坐标系的方式都是以矩形的某yx12345671234B A CD O -3-2-1O DCAB321321x y -2-1-3DCAB E三、本课小结本节课的目的是在方格纸上建立适当的直角坐标系,描述物体的位置。

2、数轴由哪些元素构成?3、你能在数轴上找到-2和3吗?4、在数轴上能用-2和3同时表示这个红色的点吗?为什么?问:那么生活中2个数字能不能同时用于表示一个位置呢?(多媒体展示)火车票电影票中国象棋的走法班级位置结论:生活中有很多时候需要用一对数字确定平面内一点位置二、导入新课『师』:同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图5-6)(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置A BC D EF O 11xyAB CDEF1y xAB CDEF1y xGxy 1FEDC BA次连接起来。

(1)(-6,5),(-10,3),(-9,3O -1-2-3-4-5-6-7-9-8-10123456789101112345678xy每位同学独立完成。

师 :(拿出一位做对的学生的作品投影)O -1-2-3-4-5-6-7-9-8-10123456789101112345678xy如何利用轴对称的性质进行折纸突破措施 启发引导教学方法 问题意识 差异教学 学习方法 小组交流教学用具 投影仪学情分析初二学生由于受年龄、思维能力及所学知识的限制,要将规律性的东西进行整理、归纳还是有困难的,可借助图片的形象直观及动手操作进行直观感知。

初中数学八年级下册第3章图形与坐标3.1平面直角坐标系教学

初中数学八年级下册第3章图形与坐标3.1平面直角坐标系教学

我思 我进步
通过本节课,你有什么收获? 你还存在哪些疑问,和同伴交流.
练习
3.如图是某动物园的部分平面示意图,试建立适当的 平面直角坐标系, 用坐标表示大门、百鸟园、大象馆、 狮子馆和猴山的位置.
解:如图,以大门所在点为原点O,在网格中以过点O
的水平直线和垂直直线分别作为x 轴,y 轴建立平面直
角坐标系.
y
由图可知大门、百鸟园、大象
馆、狮子馆和猴山的位置为:
大门(0,0),百鸟园(5,
2 O1 学校
-5-4-3-2-1 1 2 3 4 5 x -1
B电影院-2 -3
有时还可借助方向和距离(或称方 位) 来刻画两物体的相对位置.
-4 -5 C汽车站
思考
(1)如图,李亮家距学校1000 m,如何用方向和距离来
描述李亮家相对于学校的位置?(2)反过来,学校相对
于李亮家的位置怎样描述呢?
如图,以学校所在位置为原点,分别以正东、正北方向为x
轴, y 轴的正方向,建立平面直角坐标系, 规定1 个单位长
度代表100 m长. 根据题目条件,点A(5,4.5) 是书

y 5
A书店
4
店的位置,点B(-2.5,-3)是电影
3
院的位置, 点C(4,-6) 是汽车站 的位置. 在日常生活中, 除了用平面直角 坐标系刻画物体之间的位置关系外,
分析:如图,设H 岛所在的位置 为C,△ABC 是直角三角形, ∠CAB = 90°,利用勾股定理可 以求出BC间的距离.
解:在Rt△ABC 中, ∵ AC = 30海里, AB = 40海里,∠CAB = 90°,
BC AC2 AB2 302 402 50海里.
由于在点B处测得H岛在北偏西 53°6′的方向上, 则∠BCA = 53°6′. 故此时,渔政船在H岛南偏东53°6′ 的方向, 距H岛50海里的位置.

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础)责编:杜少波【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。

冀教版初中数学八年级下册教学课件 第十九章 平面直角坐标系 坐标与图形的位置

冀教版初中数学八年级下册教学课件 第十九章 平面直角坐标系 坐标与图形的位置

如图所示,长方形ABCD的长和宽分别是8和6,试建立适当的平面 直角坐标系表示长方形ABCD各顶点的坐标. 提示:可以以长方形的各顶点或中心为 原点建立平面直角坐标系.
如图所示,是一个机器零件的尺寸规格示意图(单位:mm),试建 立适当的平面直角坐标系,并表示其各顶点的坐标.
提示:可过点D作AB的垂线,垂足为点O, 以点O为原点,分别以AB,DO所在直线为x 轴、y轴,建立平面直角坐标系.
1.一个长方形在平面直角坐标系中,它的三个顶点的坐标
分别为(-3,-1),(2,-1),(2,2),则第四个顶点的坐标为 ( A )
A.(-3,2)
Байду номын сангаасB.(3,2)
检测反馈
C.(-3,-4)
D.(7,2)
解析:先在坐标系中描出点(-3,-1),(2,-1),(2,2),然后根据长方形的特点画
出长方形,得到第四个顶点的位置,再写出第四个顶点的坐标.故选A.
2.如图所示,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行
于x轴,则点C的坐标为 ( C )
A.(3,1)
B.(-1,1)
C.(3,5)
D.(-1,5)
解析:∵正方形ABCD的边长为4,点A的坐标为(1,1),AB平行于x轴,∴点B的横坐标为-1+4=3,纵坐标 为1.∴点B的坐标为(3,1).∴点C的横坐标为3,纵坐标 为1+4=5.∴点C的坐标为(3,5).故选C.
可得到B点坐标,利用正方形的对称性可得其他点的坐标.
解:根据题意,在Rt△BOC中, ∵OB2+OC2=BC2且OB=OC,
8.已知四边形ABCD各顶点的坐标分别是A(0,0),B(3, 6),C(6,8),D(8,0)

初中数学八年级上册 4.3 坐标平面内图形的轴对称和平移 课件

初中数学八年级上册  4.3  坐标平面内图形的轴对称和平移  课件

A(-1,3)向右平移3个单位 A1(_2__,_3_)
加3
A(-1,3)向左平移3个单位 A2(-_4__,_3__) A(-1,3)向上平移2个单位 A3(-_1__,_5_)
减3 不变
A(-1,3)向下平移2个单位 A4(_-1__,_1_)
不变
你能发现左右、上下平移时
1、A(-8,坐-1标)变向向化右上平平的移移规55个个律单单位位吗? A′(-3,4 )
A2
A(-1,3)向左平移3个单位 A2(__-4_,__3_)
A(-1,3)向上平移2个单位A3(_-_1_,__5_)
A3 5
A4 3
A1
A4 2 1
-4 -3 -2 -1 0 1 2 3 4 x
A(-1,3)向下平移2个单位 A4(_-_1_,_1__)
-1 -2
点的平移
坐标变化
平移前后,横、纵坐标有何变化吗?填表格: 横坐标 纵坐标
2、从图甲到图乙经过怎样的 图形变换?
6
5
A′
4
(-3,4) 乙 3
2

B′(2,4)
解:
-8 -7 -6 -5 -4 -3 -2-1 0 1 2 3 4 5
A
(-8,-1)

B(-3,-1-1) -2
x
向右平移5个单位
1、A(-8,-1) 向上平移5个单位 A′(-3,4)
B(-3,-1) 向右平移5个单位
点的平移
例题:把点A(a,-3) 向左平移3个单位, 所得的像与点A关于y轴对称, 求a的值。
练习:把点A(3,b) 向下平移4个单位, 所得的像与点A关于x轴对称, 求 b的值。
点的平移
方法一:两次平移

七年级直角坐标系中的图形

七年级直角坐标系中的图形

直角坐标系中的图形一、基本知识1.平移规律:将坐标系中的图形的各个点的横坐标加上一个正整数n ,则该图形向右平移n 各单位;减去正整数n ,则该图形向左平移n 个单位。

将坐标系中的图形的各个点的纵坐标加上一个正整数n ,则该图形向上平移n 各单位;减去正整数n ,则该图形向下平移n 个单位。

2.拉伸规律:将坐标系中的图形的各个点的横坐标乘以一个正整数n ,则该图形拉伸为原图形的n 倍,高度不变;横坐标乘以1n ,则该图形缩为原图形的1n,高度不变。

将坐标系中的图形的各个点的纵坐标乘以一个正整数n ,则该图形拉高为原图形的n 倍,宽度不变;纵坐标乘以1n ,则该图形压缩为原图形的1n,宽度不变。

同时乘以正整数n ,则图形放大为原来的n 倍。

3.乘以负整数规律:将坐标系中的图形的各个点的横坐标乘以-1,纵坐标不变,则两图形关于x 轴对称;将坐标系中的图形的各个点的纵坐标乘以-1,横坐标不变,则两图形关于y 轴对称;同时乘以-1,则两图形关于原点o 对称。

乘以-2、-n 等即是先关于某坐标轴或原点对称,再拉伸或放大-2、-n 倍。

二、基本题型 1. 平移1)在右边的平面直角坐标系中,依次描出下列各点:(0,0),(5,4),(3,0),(5,1), (5,-1),(3,0),(4,-2),(0,0)。

再用线段顺次连结各点,得到一个图形象______。

2)上述各点的纵坐标不变,将横坐标分别加5 得到各个点的坐标分别是: ,描出这几个点,再用线段顺次连接起来,这样得到的图形与原来的图形有什么变化? 先猜一猜,再动手画。

答:____________________________2.拉伸、放大在右边的平面直角坐标系中,依次描出下列 各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)。

再用线段顺次连结各点,得到一个图形象______。

(1)上述各点的纵坐标不变,横坐标分别变为原来的相反数,得到各个点的坐标分别是: ,描出这几个点,再用线段顺次连接起来,这样得到的图形与原来的图形有什么变化? 先猜一猜,再动手画。

坐标平面内的图形变换课件

坐标平面内的图形变换课件
通过图形变换,可以将三维场景中的物体从世界坐标系转 换到屏幕坐标系,实现三维图形的渲染和显示。同时,图 形变换还可以用于实现三维动画、虚拟现实和增强现实等 应用。
05 图形变换的挑战 与展望
复杂图形的变换
总结词
处理复杂图形变换时需要考虑的因素
详细描述
对于复杂图形,如不规则多边形、包 含大量细节的图像等,进行变换时需 要考虑到几何特性、颜色、纹理等各 方面的因素,以确保变换后的图形保 持原有的形状和特征。
矩阵变换
平移矩阵
通过平移矩阵可以将图 形在坐标平面上进行平
移。
旋转矩阵
通过旋转矩阵可以将图 形绕原点进行旋转。
缩放矩阵
通过缩放矩阵可以将图 形在各个方向上进行缩
放。
仿射变换矩阵
通过仿射变换矩阵可以 将图形进行更复杂的变 换,如倾斜、反射等。
齐次坐标
齐次坐标是将一个点的坐标表示为分数的形式,通过齐次坐标可以将二维平面上 的点扩展到三维空间中,也可以将三维空间中的点扩展到更高维度的空间中。
坐标轴
坐标平面由x轴、y轴和原点构成,x 轴和y轴具有方向性。
单位长度
坐标轴上相邻刻度之间的距离称为单 位长度,通常为1个单位。
点的坐标表示
点与坐标
在坐标平面上,任意一点P可以用一对有序实数(x, y)表示,称为点P的坐标 。
原点
坐标平面的中心点O称为原点,其坐标为(0,0)。
02 图形变换基础
缩放变换可以应用于多种场景,如图像处理、计算机图形学、地图缩放等领域。
旋转变换
旋转变换是指图形绕着原点旋转一定的角度,而其形状和大小保持不变 。
旋转变换可以通过旋转变换矩阵或者向量运算来实现,旋转变换矩阵表 示为:$begin{bmatrix} cos theta & -sin theta & 0 sin theta & cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

☆建立坐标系求图形中点的坐标 问题:正方形ABCD的边长为4,请建立一个平面直角 坐标系,并写出正方形的四个顶点A,B,C,D在这个平面 直角坐标系中的坐标.
D
C
A
B
y 4D
(A) O
解:如图,以顶点A为原点, C AB所在直线为x轴,AD所在直
线为y轴建立平面直角坐标系. 此时,正方形四个顶点A,B,C,D
例3:如图,已知点A(2,-1),B(4,3),C(1,2),
求△ABC的面积.
解:如图,作辅助线.
∵A(2,-1),B(4,3),C(1,2),
∴BD=3,CD=1,CE=3,AE=1,
AF=2,BF=4,
∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA
=BD·DE-1 DC·DB- 1 CE·AE- 1 AF·BF
第11章 平面直角坐标系 11.1 平面内点的坐标
第2课时 坐标平面内的图形
关注“初中教师园地”公众号 2019秋季各科最新备课资料陆续推送中
快快告诉你身边的小伙伴们吧~
学习目标
1.在给定的直角坐标系中,会根据坐标描出点的位置, 并能求出顺次连接所得图形的面积;(重点) 2. 能建立适当的直角坐标系,描述图形的位置;(难点) 3.通过用直角坐标系表示图形的位置,使学生体会平 面直角坐标系在实际问题中的应用.
形,并计算他们的面积.
(1)A(5,1),B(2,1),C(2,-3) (2)A(-1,2),B(-2,-1),C(2,-1),D(3,2)
y
y
4
3
2
B
A
1
A
2
D
-2 -1 O 1 2 3 4 5 x
-1 -2 -3 C
-2 O
2 4x
B
C
-2
y
y
B O
A x
A
O B
D x
C
C
(1)得到一个直角三角形, 如图所示. ∴ S = 1 ×3×4=6.
4
3
2
D
-5 -4
B ●
-3 -2
1
-1O
-1
-2
-3
-4
A●
-5
∵A(-4,-5),∴D(-4,0) .
由点的坐标可得 AD=5 ,BC=6,
C

12 345 x

S△ABC
=
1 2
·BC·AD
= 1 ×6×5=15.
2
例2:在平面直角坐标系中描出下列各组点,并将各组内的点用
线段依次连接起来得到一个封闭图形,说说得到的是什么图
导入新课 情境引入
问题:如果某小区里有一块如图所示的空地,打算进 行绿化,小明想请他的同学小慧提一些建议,小明要 在电话中告诉小慧同学如图所示的图形,为了描述清 楚,他使用了直角坐标系的知识.你知道小明是怎样 叙述的吗?
讲授新课
☆在坐标平面内描点作图 问题:我们上节课已经学习过了平面直角坐标系的定 义.根据定义想一想你会在坐标轴上描点吗?
例4:长方形的两条边长分别为4,6,建立适当的直角 坐标系,使它的一个顶点的坐标为(-2,-3).请 你写出另外三个顶点的坐标.
解:如图建立直角坐标系, ∵长方形的一个顶点的坐标为A(-2,-3), ∴长方形的另外三个顶点的坐标分别为 B(2,-3),C(2,3),D(-2,3).
方法总结
由已知条件正确确定坐标轴的位置是解决本题 的关键,当建立的直角坐标系不同,其点的坐标也 就不同,但要注意,一旦直角坐标系确定以后,点 的坐标也就确定了.
2
2
2
=12-1.5-1.5-4
=5.
方法总结
本题主要考查如何利用简单方法求坐标系中图形的面积. 已知三角形三个顶点坐标,求三角形面积通常有三种方法: 方法一:直接法,计算三角形一边的长,并求出该边上的高; 方法二:补形法,将三角形面积转化成若干个特殊的四边形 和三角形的面积的和与差; 方法三:分割法,选择一条恰当的直线,将三角形分割成两 个便于计算面积的三角形.
2
(2)得到一个平行四边形, 如图所示. ∴ S =3×4=12.
例3:如图,已知点A(2,-1),B(4,3),C(1,2), 求△ABC的面积.
解析:本题宜用补形法.过点A作x轴的平 行线,过点C作y轴的平行线,两条平行线 交于点E,过点B分别作x轴、y轴的平行 线,分别交EC的延长线于点D,交EA的 延长线于点F,然后根据S△ABC=S长方形 BDEF-S△BDC-S△CEA-S△BFA即可求出 △ABC的面积.
B
OA
x
A(-4,-4), B(0,-4),C(0,0), D(-4,0).
A(-2,-2), B(2,-2),C(2,2), D(-2,2).
追问 由上得知,建立的平面直角坐标系不同,则 各点的坐标也不同.你认为怎样建立直角坐标系才 比较适当?
【总结】平面直角坐标系建立得适当,可以容易确定 图形上的点,例如以正方形的两条边所在的直线为坐 标轴,建立平面直角坐标系.又如以正方形的中心为 原点建立平面直角坐标系.建立不同的平面直角坐标 系,同一个点就会有不同的坐标,但正方形的形状和 性质不会改变.
B
4 x 的坐标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
想一想:还可以建立其他平面
直角坐标系,表示正方形的四
y
D
个顶点A,B,C,D的坐标吗?
C
A(0,-4), B(4,-4),C(4,0), D(0,0).
A(-4,0), B(0,0),C(0,4), D(-4,4).
找点的方法: 先分别找出该点的横坐标、纵坐标在两条 数轴上的点,再分别作对应坐标轴的垂线, 交点即为所要找的点的位置.
典例精析
例1:在直角坐标系中描出下列各点,并将各组内的点 用线段依次连接起来.
① (-6,5),(-10,3),(-9,3),(-3,3),(-2,3); ② (-9,3),(-9,0),(-3,0),(-3,3); ③ (3.5,9),(2,7),(3,7),(4,7),(5,7); ④ (3,7),(1,5),(2,5),(5,5),(6,5); ⑤ (2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).
y

●●●●

●●●●Biblioteka ●●●●●
●●



●●
O
x
☆坐标平面内图形面积的计算
y
画一画:你能在直角坐标系
4
3
里描出点A(-4,-5),B(-2,0),
2
B
1

-5 -4 -3 -2 -1O
-1
C(4,0)吗?并连线.
C

12 345 x
-2
-3
-4
A●
-5
问题:你能求出△ABC的面积吗? y 解:过点A作AD⊥x轴于点D.
相关文档
最新文档