交流铁芯线圈及等效电路
电工基础教学大纲

电工基础教学大纲(一)教材特点1.本课程采用“面向 21 世纪高等职业技术教育电子电工类系列教材”《电工基础》主编白乃平。
社优秀畅销书一等奖3.由白乃平教师主编的《电工基础》教材已被“教育部职业教育与成人教育司”确定为全国职业教育教材 , 最近即将出版2.由白乃平教师主编的《电工基础》教材于 2019 年 9 月获第六届全国高校出版(二)参考文献1.邱关源电路(第三版,上、下册)高等教育出版社2. 徐国凯电路原理(第一版)机械工业出版社3. 姜钧仁,李礼勋电路基础(第一版)哈尔滨工业大学出版社4. 范世贵电路基础(第一版)西北工业大学出版社5. 张洪让电工基础(第二版)高等教育出版社6. 陈正岳电工基础(第一版)水力电力出版社7. 俞大光电路及磁路(上、下册)高等教育出版社8. 李瀚荪电路分析(修订本上、下册)中央广播电视大学出版社9. 江泽佳电路原理(上、下册)高等教育出版社10. 周孔章电路原理(上、下册)高等教育出版社11. 高希和电路基础冶金工业出版社12. 蔡元宇电路及磁路(上、下册)高等教育出版社高等职业技术教育《电工基础》教学大纲(电专业使用)一、课程的性质、任务、要求本课程为专业基础课,是从事电类专业的技术人员必须具备的基础知识。
本课程的任务是使学生在明确基本电磁现象的基础上,掌握电路和磁路的基本知识、基本理论及分析、计算的基本方法,并能正确使用常用的电工仪表。
着重培养学生的科学思维方法、分析与解决问题的能力,使其成为具有创新精神和实践能力的高素质技术人才,并为后续课程的学习及从事技术工作准备必要的基础。
通过本课程的学习应达到以下要求:1. 深刻理解电路模型、电流和电压的基本概念,并正确建立有关参考方向的概念;熟练掌握电阻元件、电容元件、电感元件的参数及其电压、电流关系;熟练掌握基尔霍夫定律及其应用。
2. 深刻理解等效的概念,熟练掌握电阻的串、并、混联等效电阻的计算;了解△形和 Y 形电阻电路的等效变换,掌握两种实际电源模型的等效变换。
蜂鸣器 等效电路

蜂鸣器等效电路简介蜂鸣器是一种常见的电子元件,用于产生声音信号。
它通常由振膜、驱动电路和共振腔组成。
蜂鸣器的等效电路是一个模型,用于描述蜂鸣器在电路中的行为。
通过了解蜂鸣器的等效电路,我们可以更好地理解其工作原理,并能够设计和优化相关电路。
蜂鸣器基本原理蜂鸣器是一种能够将电信号转换为声音信号的装置。
它利用了压电效应或磁致伸缩效应来实现声音的发生。
压电式蜂鸣器压电式蜂鸣器是最常见的一种类型。
它由一个压电陶瓷材料制成,当施加外加电场时会发生形变,并产生声音波动。
磁性式蜂鸣器磁性式蜂鸣器则利用了磁致伸缩效应来产生声音。
它包含一个铁芯和线圈,在外加磁场作用下,铁芯会发生形变并引起声音波动。
蜂鸣器等效电路模型为了更好地理解蜂鸣器在电路中的行为,我们可以使用等效电路模型来描述它。
蜂鸣器的等效电路通常包括以下几个主要部分:振膜振膜是蜂鸣器的重要组成部分,负责将电信号转换为声音信号。
在等效电路中,振膜通常用一个电容来表示。
这是因为振膜的运动可以看作是一个带有弹性的结构,类似于一个带有弹性恢复力的电容。
驱动电路驱动电路负责向振膜提供适当的驱动信号。
在等效电路中,驱动电路通常由一个交流信号源和一个串联的电阻组成。
交流信号源模拟了输入信号,而串联的电阻则限制了驱动信号的幅度。
共振腔共振腔是指在振动过程中起到共振放大作用的空间。
它可以通过适当设计来调整输出声音的频率和响度。
在等效电路中,共振腔通常由一个并联的LC回路或者RLC 回路来表示。
蜂鸣器等效电路的工作原理蜂鸣器的等效电路模型能够描述其在电路中的行为和工作原理。
当驱动信号源施加一个交流信号时,驱动电路会将信号传递给振膜。
振膜在受到信号的作用下产生振动,进而产生声音。
共振腔对声音的频率和响度有着重要影响。
当输入信号的频率接近共振腔的共振频率时,共振腔会对输入信号进行放大,从而增加声音的响度。
同时,共振腔还可以通过调整其参数来改变输出声音的频率。
驱动电路中串联的电阻可以限制驱动信号的幅度,避免过大或过小而导致声音失真或无法产生。
磁路与变压器

5
2. 磁通 磁通是磁感应强度矢量的通量,是指穿过某一截面S的磁力 线条数,用Φ表示,单位是Wb,称为韦伯。在均匀磁场中,各 点磁感应强度大小相等,方向相同。当所取截面S与磁力线方向 垂直时,有
Φ BS 或 B Φ
(7.2)
S
从式(7.2)可看出,B也可理解为单位截面上的磁通, 即穿 过单位截面的磁力线条数,故又称为磁通密度,简称磁密。
第二定律。
23
4. 磁路的计算 在进行磁路计算时,首先要注意几个问题。 1) 主磁通与漏磁通 主磁通又称为工作磁通,即工作所要求的闭合磁路的磁 通,如图7.7中的Φ即为主磁通。 漏磁通是不按所需的工作路径闭合的磁通,如图7.7中的 Φσ所示。漏磁通很小,一般只有工作磁通的千分之几,因而 常可忽略不计。
15
图7.4 不同材料的磁滞回线 (a) 永磁材料;(b) 软磁材料;(c) 矩磁材料
16
7.2 磁路计算的基本定律
1. 安培环路定律 任何磁场都是由电流产生的,磁路中的磁场也不例外。安 培环路定律说明了产生磁场的电流与所产生的磁场强度之间的 定量关系,它表述为:在磁场中沿任何闭合回路的磁场强度H的 线积分等于通过闭合回路内各电流的代数和。用数学式表示为
磁通为Φ2和Φ3,则根据物理学中磁通连续性原理可知:
Φ1=Φ2+Φ3
或
Φ1-Φ2-Φ3=0
推广到一般情况,对任意闭合面的总磁通有:
∑Φk=0 这一关系与电路中的基尔霍夫第一定律相对应,可称为磁路
的基尔霍夫第一定律。
另外,若在图7.6所示的磁路中,任取一闭合磁路 ABCDA,其中:CDA段平均长度为L1,AC段平均长度为L2, ABC段平均长度为L3。则根据全电流定律得到
36
电气自动化技术《任务3.2三相交流异步电动机的等效电路 》

?电机设备运行与控制?课程教案NO. 3-02授课班级周次日期任课教师复习提问三相异步电动机的种类有哪些?铭牌参数的种类及意义是什么?学习模块模块三三相异步电动机的检修学习任务任务3.2 三相异步电动机的等效电路授课内容三相异步电动机的工作原理及参数分析课时 4教学载体教学目标知识目标:1.了解旋转磁场的特点;2.掌握三相异步电动机的运转原理;3.掌握三相异步电动机的等效电路组成。
能力目标:1.通过观看教学使学生掌握三相异步电动机的运转原理掌握;2.增强学生对理论知识的掌握能力3.培养学生自主学习能力。
素质目标:1.培养学生实事求是的科学态度、严谨的工作作风和勇于进取的精神。
重点难点本课题重点是三相异步电动机的运转原理;通过课程动画及多媒体课件进行讲解;本课题的难点是三相异步电动机的等效电路分析;利用电路根本知识尽量让学生掌握其电路结构。
授课过程步骤内容方法、资源运用1 旋转磁场产生及特点启发式、多媒体课件2 异步电动机的运转原理启发式、多媒体课件3 异步电动机的等效电路启发式、多媒体课件授课方式学做一体的教学方式教学地点电工技能实训室教学资源投影系统,课程动画资源资料:?电机设备运行与控制?教材、PPT电子课件教学时间教学内容注释5分钟回忆上节课内容,进行复习提问。
5分钟一、任务描述掌握三相异步电动机的运转条件及等效电路,了解生产设备中三相电机的运转情况及原理。
明确学习任务,结合分析说明,让学生明确学习的主要内容。
10 分钟二、任务分析假设要顺利完本钱次课的教学内容,首先应准备甚础知识:电路根本知识,电磁场的根底知识;其次结合电机结构分析出磁场产生的条件及特点,进而分析其工作原理。
教具数量由任课教师根据学生数量和分组情况自行确定100 分钟三、相关知识1、磁场的产生〔1〕2极旋转磁场如图3-1-2-1〔a〕所示为最简单的三相异步电动机的定子绕组,每相绕组只有一个线圈,三个相同的绕组U1-U2、V1-V2、W1-W2在空间的位置彼此互差120°,分别放在定子铁心槽中。
磁路 习题集

磁路习题集一、填空题1.定量描述磁场中各点磁场强弱和方向的物理量是______,表示符号___,它的单位是___,表示符号____。
2.磁滞是指磁材料在反复磁化过程中的的变化总是滞后于的变化现象。
3.根据磁滞回线的形状,常把铁磁材料分成:_________、____________两类。
4.铁磁材料的磁化特性为______________、_____________、____________和_____________。
5.用铁磁材料作电动机及变压器铁心,主要是利用其中的____________特性,制作永久磁铁是利用其中的____________特性。
6.铁磁材料被磁化的外因是________________,内因是________________。
7.交流铁心线圈电流不仅与外加电压的有效值有关还与有关。
8.不计线圈电阻,漏磁通影响时,线圈电压与电源频率成比,与线圈匝数成比,与主磁通最大值成比。
9.交流铁心线圈的磁化电流是指。
10.铁心线圈在正弦电流激励下,其磁通波形为,电压波形为。
11.正弦电流激励下的铁心线圈其电压与有关。
12.铁心损耗是指铁心线圈中的与的总和。
13.涡流是指交变磁场在铁心里感应生成的旋涡状。
14.不计线圈内阻、漏磁通、铁损时,交流铁心线圈可看成是元件。
15.不计线圈内阻、漏磁通、交流铁心线圈的电路模型可由组成串联模型。
二、判断题1.硬磁材料的磁滞回线比较窄,磁滞损耗较大。
()2.若要消除铁磁材料中的剩磁必须在原线圈中加以反向电流。
()3.铁磁性物质磁化后的磁场强度可趋于无穷大。
()4.铁磁物质在反复磁化过程中H的变化总是滞后于B的变化。
()5.磁路的欧姆定律只适用一种媒介的磁路。
()6.磁场强度的大小与磁导率有关。
()7.在相同条件下,磁导率小的通电线圈产生的磁感应强度大。
()8.对比电路与磁路,可认为电流对应于磁通。
()9.交流铁心线圈电路的R不变,L及L是非线性的。
( )s10.交流铁心线圈的伏安特性是一条非线性曲线。
变压器等效电路

变压器等效电路变压器是电力系统中常用的重要设备,用于改变交流电压的大小。
在电力系统中,为了进行电路分析和计算,可以采用等效电路模型来表示变压器的工作原理和性能。
本文将介绍变压器等效电路的基本原理和常见模型。
1. 变压器的基本原理变压器是由一个或多个线圈组成的,通过电磁感应的原理来改变电压。
变压器由铁心和绕组组成。
绕组分为初级绕组和次级绕组,通过将电流通过初级绕组,产生的磁场会感应到次级绕组,从而改变输出电压的大小。
变压器的基本原理是基于法拉第电磁感应定律。
2. 变压器的等效电路模型为了简化电路分析和计算,可以采用等效电路模型来代替变压器。
常见的变压器等效电路模型有两种:简化型和精确型。
2.1 简化型等效电路模型简化型等效电路模型将变压器抽象为两个卷绕电感和一个理想变压器,分别代表初级绕组和次级绕组的电感和变压器的变换关系。
在这个模型中,忽略了变压器的内阻和铁芯的磁滞特性。
2.2 精确型等效电路模型精确型等效电路模型更加符合实际变压器的工作原理,考虑了变压器的内阻和铁芯的磁滞特性。
在这个模型中,将变压器抽象为两个卷绕电感、两个卷绕电阻和一个理想变压器。
通过考虑内阻和磁滞特性,可以更加准确地描述变压器的电特性。
3. 变压器等效电路模型的参数无论是简化型还是精确型等效电路模型,都需要知道一些参数来描述变压器的性能。
常见的参数有:3.1 变压器的变比变比是指变压器的输入电压与输出电压的比值。
例如,变比为2:1表示输出电压是输入电压的两倍。
3.2 变压器的电感电感是指变压器的绕组对电流变化的阻抗。
初级绕组和次级绕组的电感分别表示为L1和L2。
3.3 变压器的内阻内阻是指变压器绕组的电阻。
初级绕组和次级绕组的内阻分别表示为R1和R2。
4. 变压器等效电路的应用变压器等效电路模型可以应用于电力系统的分析和计算中。
通过使用等效电路模型,可以更加方便地处理变压器与其他电路元件之间的相互作用。
4.1 电路分析变压器等效电路模型可以与其他电路元件一起进行电路分析,例如,计算电流、电压、功率等参数。
磁路及交流铁心线圈

1.磁路的欧姆定律
式中
为磁阻,
2.磁路基尔霍夫第一定律
3.磁路基尔霍夫第二定律
为磁导。
二、交流铁芯线圈
励磁电流为直流时,称为直流铁心线圈(如直流电磁铁、 直流继电器的线圈),当励磁电流为交流时,称为交流铁心线 圈(如交流电机、变压器的线圈)。
i
+
– e
u –
e+–+
N
主磁通 :通过铁心闭合的 磁通。 与i不是线性关系。
O
到饱和值,这种现象称为磁 饱和性。从图中还可看出B 和H不成正比,所以磁性材 料的μ不是常数。
H
磁性材料的磁化曲线
(3)磁滞特性 若将磁性材料进行周期性磁化,磁感应强度 B随磁场强
度H 变化的曲线称为磁滞回线,如图所示。
从图中可见,当 H 已减到零 时, B 并未回到零值,而等于 Br 。这种磁感应强度滞后于磁场
磁路及交流铁心线圈
一、磁路及其基本定律
(一)磁路的概念 磁力线所通过的路径称为磁路。磁路主要由具有良好导 磁性能的磁性材料构成,如:硅钢片,铸铁等。
i1
u1 e1Βιβλιοθήκη N1N2e2
当线圈(通常被称为励磁线圈或励磁绕组)中通入电 流(通常被称为励磁电流)时,在线圈周围会形成磁场, 由于铁心的导磁性能比空气要好得多,所以绝大部分的磁 通将在铁心内通过,我们称它为主磁通或工作磁通;同时 有少量磁通会通过空气交链,我们称它为漏磁通,工程中 通常忽略不计。主磁通和漏磁通所通过的路径分别称为主 磁路和漏磁路。
或
3. 磁场强度H 磁场强度是计算磁场时所用的一个物理量,它也是个 矢量,根据安培环环路定理,沿任意闭合路径,磁场强度 的线积分等于该回路所包围的导体电流的代数和。
变压器中等效电阻的公式

变压器中等效电阻的公式变压器是现代电力系统中最重要的设备之一,它能将高电压转换为低电压,或者将低电压升高到高电压,从而实现电能传输和分配。
然而,在实际应用过程中,变压器会存在一定的电阻,这会影响变压器本身的效率和稳定性。
因此,计算变压器中的等效电阻是非常关键的工作。
变压器中等效电阻的计算是通过对变压器铁芯、线圈和绝缘材料的特性参数进行分析和估算得出的。
其中,铁芯的磁导率、线圈的电阻和电感等参数都会影响变压器中的等效电阻。
根据欧姆定律,变压器中的电阻取决于电流和电压之比,即R=V/I,其中R为等效电阻,V 为电压,I为电流。
在变压器中,等效电阻通常包括两个部分:铜损和铁损。
铜损是指在变压器线圈中,电流通过导线时由于线圈内电阻所损失的能量。
而铁损则是指在变压器铁芯中,由于涡流和磁头损耗所产生的能量损失。
因此,在计算变压器中的等效电阻时,需要综合考虑铜损和铁损对电阻的影响。
为了更准确地计算变压器中的等效电阻,需要了解变压器的构成和特性,对变压器的原理和性能进行深入研究。
在变压器的设计和制造过程中,需要考虑各种因素对电阻的影响,从而提高变压器的性能和稳定性。
同时,需要进行电气测试和检测,确保变压器在正常运行过程中能够保证电阻的稳定性和精度。
综上所述,变压器中等效电阻的计算是非常重要的一项工作。
在实际应用中,需要根据变压器的特性参数对电阻进行合理的估算和分析,从而保证变压器的性能和稳定性。
同时,需要进行检测和调试,确保变压器在正常运行过程中能够满足电力系统的要求。
电气工程师需要掌握变压器的原理和性能知识,熟悉电路分析和计算方法,才能更好地进行变压器设计和制造工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.3 简单直流磁路的计算
目的与要求
掌握恒定磁通磁路的计算
重点与难点
重点: 恒定磁通磁路的计算 难点: 恒定磁通磁路的计算
9.3 简单直流磁路的计算(一)
第一种是先给定磁通, 再按照给定的磁通及磁路尺寸、材料求出 磁通势, 即已知Φ求NI; 另一种是给定NI, 求各处磁通, 即已知NI 求 Φ。 本节只讨论第一种情况。
9.3 简单直流磁路的计算(三)
(3) 由已知磁通Φ, 算出各段磁路的磁感应强度B=Φ/S。 (4) 根据每一段的磁感应强度求磁场强度, 对于铁磁材料 可查基本磁化曲线(如图9.6所示)。 对于空气隙可用以下公式:
H 0 B 0 0 4 B 1 0 70 0 .8 16 B 0 0 (A /m ) 8 13 B 0 0 (A /c)m
解 (1) 按照截面和材料不同, 将磁路分为三段l1, l2, l3。
例9.1(二)
(2) 按已知磁路尺寸求出:
l1 275220275 770mm 77cm S1 5060 3000mm2 30cm2 l2 3522035 290mm 29cm S2 6070 4200mm2 42cm2 l3 22 4mm 0.4cm S3 6050(6050)2 3220mm2 32.2cm2
在计算时一般应按下列步骤进行: (1) 按照磁路的材料和截面不同进行分段, 把材料和截面相同 的算作一段。 (2) 根据磁路尺寸计算出各段截面积S和平均长度l。
9.3 简单直流磁路的计算(二)
Sa (a)(b)ab(ab)
Sb
(r)2
2
r2r
a r
b
(a)
(b)
图9.11
(a) 矩形截面; (b) 圆形截面
磁化曲线:铁磁性物质的磁感应强度B与外磁场的磁场强 度H之间的关系曲线, 所以又叫B-H曲线。
I+
-
A
1
2
Us
1′ S
2′
N L
S
Rw
图 9.2 B-H 曲线测量电路
9.1.2 磁化曲线(二)
B R
Q
max
P
0
H
0
H
(a)
(b)
图 9.3 起始磁化曲线
9.1.2 磁化曲线(三)
1. 起始磁化曲线
例9.1(三)
50
170
50
60
70
l1
I 硅钢
310
70Leabharlann 12 l3l2
铸钢
2
图9.12 例9.1图
例9.1(四)
(3) 各段磁感应强度为
B1
S1
2.0103 30
0.667Wb/cm2
0.667T
B2
S2
2.0103 42
0.476104Wb/cm2
0.476T
B3
S3
2.0103 32.2
2、一磁路如图9. 13所示,图中各段截面积不同,试列出磁通 势和磁位差平衡方程式。
l1
l2
l5
l3 l4
图 9.13 思考题 2 图
9.4 交流铁芯线圈 及等效电路
目的与要求
理解交流铁芯线圈及其等效电路
重点与难点
重点: 交流铁芯线圈及其等效电路 难点: 交流铁芯线圈的等效电路
9.4.1 电压、电流和磁通(一)
9.4.4 伏安特性和等效电感
Le U
UN
U( I )
Le( I )
0
IN
I
图 9.23 交流铁芯线圈的伏安关系
Le
U
L
教学方法
思考题(一)
1、将一个空心线圈先接到直流电源和交流电源 上,然后在这个线圈在插入铁心,如果交流电压和 直流电压相等,分析这种情况下通过线圈的电流和 功率的大小,并说明理由。
9.2.2 磁路定律(一)
1. 磁路的基尔霍夫第一定律
0
1 2 3 0
9.2.2 磁路定律(二)
D
A
1
l1′
2
l3′
I1
I2
N1 l1
N2 l2
C
l1″
B
l3″
图 9.9 磁路示意图
3 l0
9.2.2 磁路定律(三)
2. 磁路的基尔霍夫第二定律
(Hl) (IN)
对于如图9.9所示的ABCDA回路, 可以得出
0.621104Wb/cm2
0.621T
例9.1(五)
(4) 由图9.6 所示硅钢片和铸钢的基本磁化曲线得
H1 1.4 A / cm H 2 1.5A / cm
空气中的磁场强度为
H3
B3
0
0.621
4 10 7
4942
A / cm
例9.1(六)
(5) 每段的磁位差为
H1l1 1.477107.8A H2l2 1.52943.5A H3l3 49420.4197.68A
图 9.6 几种常用铁磁材料的基本磁化曲线
教学方法
联系实际讲解本节
思考题
1、铁磁性物质为什么会有高的导磁性能? 2、制造电喇叭时要用到永久磁铁,制造变压器时要用到铁心, 试说明它们在铁磁性材料时有何不同?
3、什么是基本磁化曲线?什么是起始磁化曲线? 4、铁磁性材料的μ不是常数, μ的最大值处在起始磁化曲线的 哪个部位?
交流铁芯线圈及等效电路
9.1 铁 磁 性 物 质
目的与要求
掌握铁磁性物质及其分类
重点与难点
重点:磁化曲线 难点:磁化曲线
9.1.1 铁磁性物质的磁化
磁化:铁磁物质会在外加磁场的作用下, 产生一个与外磁场 同方向的附加磁场, 这种现象叫做磁化。
(a)
(b)
(c)
图 9.1 铁磁性物质的磁化
9.1.2
H1l1 H1'l1' H1"l1" H2l2 I1N1 I2N2
UmFm
9.2.3 磁路的欧姆定律
HS
Hl lUlm
Um Rm
S S
教学方法
用比较的方法讲解本节
思考题
1、已知线圈电感L=Ψ/I=NΦ/I,试用磁路欧姆定律证明 L=N2μS/ l,并说明如果线圈大小、形状和匝数相同时,有铁心线圈和 无铁心线圈的电感哪个大?
9.2 磁路和磁路定律
目的与要求
掌握磁路基尔霍夫定律,磁路欧姆定律
重点与难点
重点: 磁路基尔霍夫定律,磁路欧姆定律 难点: 磁路基尔霍夫定律,磁路欧姆定律
9.2.1 磁路(一)
N
I
S
S
U
N
(a)
(b)
图9.7 直流电机和单相变压器磁路
9.2.1 磁路(二)
边 缘 效应
主磁通
I 漏磁通
图 9.8 主磁通、 漏磁通和边缘效应
2、将铁心线圈接在直流电源上,当发生下列情 况时,铁心中的电流和磁通有何变化?
(1)铁心截面增大,其它条件不变;
(2)线圈匝数增加,线圈电阻及其它条件不变;
(3)电源电压降低,其它条件不变。
思考题(二)
3、将铁心线圈接在交流电源上,当发生上题中所 述情况时,铁心中的电流和磁通又如何变化?
4、为什么变压器的铁心要用硅钢片制成?用整块 铁行不行?
4 .44
fN m
9.4.1 电压、电流和磁通(三)
B
S
O
Ni
H
l
O
i
图 9.15 B-H曲线与Φ-i曲线
9.4.1 电压、电流和磁通(四)
0
t
0
i
0 i
t
图 9.16 电流i的波形的求法
9.4.1 电压、电流和磁通(五)
m m 0
U E j4.44 fN m
•
I m Im 0
U E
(6) 所需的磁通势为
N H 1 l I 1 H 2 l 2 H 3 l 3 1 . 8 0 4 . 5 7 1 3. 8 9 2 7 . 1 1 A 6
激磁电流为
INI212.182.1A N 1000
教学方法
用比较法
思考题
1、有两个相同材料的芯子(磁路无气隙),所绕的线圈匝数 相同, 通以相同的电流,磁路的平均长度l1 =l2 , 截面S1 ﹤S 2, 试用磁路的基尔霍夫定律分析B1与B2 、Φ 1与 Φ 2的大小。
(1) OP段 (2) PQ段 (3) QR段 (4) R点以后
9.1.2 磁化曲线(四)
2. 磁滞回线
B
B
Bm3
Bm
a
Bm2
b Br
Bm1
-H m -H c cO
f
Hm
H
O Hm1 Hm2 Hm3
H
e
d
-Bm
(b )
(a)图9.4 交变磁化(磁滞回线)
9.1.3 铁磁性物质的分类(一)
B
软磁 硬磁
1. 电压为正弦量
i
uE
N
图9.14 交流铁芯线圈各电磁量参考方向
9.4.1 电压、电流和磁通(二)
u(t) e(t) d (t) N d (t)
dt
dt
设Φ(t)=Φmsinωt, 则有
u(t)
e(t)
N
d (t) dt
N
1 dt
( m sin
t)
N
m
sin(
t
2
)
U
E
N m 2
2 fN m 2
9.3 简单直流磁路的计算(四)
(5) 根据每一段的磁场强度和平均长度求出H1l1 , H2l2……。 (6) 根据基尔霍夫磁路第二定律, 求出所需的磁通势。