指数函数

合集下载

指数函数的概念

指数函数的概念

⑵ y 3 解:(2) 由5x-1≥0得
5 x1
1 x 5 所以,所求函数定义域为
1 x | x 5

5x 1 0 得y≥1
所以,所求函数值域为{y|y≥1}

y 2x 1

解:(3)所求函数定义域为R
2 0
x
可得
2 1 1
x
所以,所求函数值域为{y|y>1}
6 5 4
x 1
所以,所求函数值域为 {y|y>0且y≠1}
-6
fx =
0.4 x-1
3
2
1
-4
-2
2
4
6
-1
-2
说明:对于值域的求解,可以令 考察指数函数y= 并结合图象 直观地得到: 函数值域为 {y|y>0且y≠1}
1 t x 1
0.4
t
(t 0)
6
5
4
3
2
1
-4
-2
2
4
6
-1
1 x 1 , x 1 2 2 x 1 , x 1
3.2
3.2 3.2 3.2 3.2 333 3
3
3
-0.2
对于有些复合函数的图象,则常用基本函数图象+变换方法 作出:即把我们熟知的基本函数图象,通过平移、作其对称图 等方法,得到我们所要求作的复合函数的图象,这种方法我们 遇到的有以下几种形式: 函 数 y=f(x+a) y=f(x)+a y=f(-x) y=-f(x) y=-f(-x) y=f(|x|) y=|f(x)| y=f(x) a>0时向左平移a个单位;a<0时向右平移|a|个单位. a>0时向上平移a个单位;a<0时向下平移|a|个单位. y=f(-x)与y=f(x)的图象关于y轴对称. y=-f(x)与y=f(x)的图象关于x轴对称. y=-f(-x)与y=f(x)的图象关于原点轴对称.

指数函数

指数函数

指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1. 当底数相同时,则利用指数函数的单调性进行比较;2. 当底数中含有字母时要注意分类讨论;3. 当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1).因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a>0,a≠1)的图像的特征和性质.见下表.图象a>1 a<1性质(1)x>0(2)当x=1时,y=0(3)当x>1时,y>00<x<1时,y<0(3)当x>1时,y<00<x<1时,y>0 (4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1) 当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幂函数幂函数的图像与性质幂函数ny x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 何两个幂函数最多有三个公共点..定义域R R R奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减ny x=奇函数偶函数非奇非偶函数1n>01n<<0 n<O xyO xyO xyO xyO xyO xyO xyO xyO xy幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(;②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质:(1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的; (4)(在第一象限内,过点)1,1(后,图象向右上方无限伸展。

指数函数公式运算法则

指数函数公式运算法则

指数函数公式运算法则指数函数是一种常见的数学函数,其公式形式为f(x) = a^x,其中a为底数,x为指数。

指数函数在数学中有着广泛的应用,因此掌握指数函数的运算法则对于解决实际问题具有重要意义。

本文将介绍指数函数的运算法则,包括指数函数的加减乘除、指数函数的幂函数、指数函数的对数函数等内容。

一、指数函数的加减乘除1. 指数函数的加法当两个指数函数相加时,如果它们的底数相同,则可以将它们的指数相加,即a^x + a^y = a^(x+y)。

例如,2^3 + 2^4 =2^(3+4) = 2^7。

2. 指数函数的减法同样地,当两个指数函数相减时,如果它们的底数相同,则可以将它们的指数相减,即a^x - a^y = a^(x-y)。

例如,3^5 - 3^3 = 3^(5-3) = 3^2。

3. 指数函数的乘法当两个指数函数相乘时,如果它们的底数相同,则可以将它们的指数相加,即(a^x) * (a^y) = a^(x+y)。

例如,2^3 * 2^4 =2^(3+4) = 2^7。

4. 指数函数的除法当两个指数函数相除时,如果它们的底数相同,则可以将它们的指数相减,即(a^x) / (a^y) = a^(x-y)。

例如,3^5 / 3^3 =3^(5-3) = 3^2。

二、指数函数的幂函数指数函数的幂函数是指数函数的一种特殊形式,其公式为f(x) = (a^x)^n,其中a为底数,x为指数,n为幂次。

当计算指数函数的幂函数时,可以将指数函数的指数与幂次相乘,即(a^x)^n =a^(x*n)。

例如,(2^3)^2 = 2^(3*2) = 2^6。

三、指数函数的对数函数指数函数的对数函数是指数函数的逆运算,其公式为y =log_a(x),其中a为底数,x为指数,y为对数。

对数函数的作用是求解指数函数的指数,即log_a(x) = y 等价于 a^y = x。

例如,log_2(8) = 3 等价于 2^3 = 8。

【高中数学】指数函数

【高中数学】指数函数

高中数学学科
A.a>b>c
B.a>c>b
C.c>a>b
D.b>c>a
解析:选 A 由 0.2<0.6,0.4<1,并结合指数函数的图象可知 0.40.2>0.40.6,即 b>c;
因为 a=20.2>1,b=0.40.2<1,所以 a>b.综上,a>b>c.
1 4.(2019·南宁调研)函数 f(x)= 2 xx2 的单调递增区间是( )
高中数学学科
指数函数
一、基础知识
1.指数函数的概念 函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,函数的定义域是 R,a 是底数. 形如 y=kax,y=ax+k(k∈R 且 k≠0,a>0 且 a≠1)的函数叫做指数型函数,不是指数函 数. 2.指数函数 y=ax(a>0,且 a≠1)的图象与性质
(1)若 a=-1,求 f(x)的单调区间;
高中数学学科
(2)若 f(x)有最大值 3,求 a 的值.
1 [解] (1)当 a=-1 时,f(x)= 3 -x2-4x+3 ,
令 g(x)=-x2-4x+3,由于 g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,
1 而 y= 3 t 在 R 上单调递减,所以 f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,
研究.
二、常用结论
指数函数图象的特点 -1,1
(1)指数函数的图象恒过点(0,1),(1,a), a ,依据这三点的坐标可得到指数函数 的大致图象.
1 (2)函数 y=ax 与 y= a x(a>0,且 a≠1)的图象关于 y 轴对称. (3)底数 a 与 1 的大小关系决定了指数函数图象的“升降”:当 a>1 时,指数函数的图 象“上升”;当 0<a<1 时,指数函数的图象“下降”.

指数函数知识点归纳

指数函数知识点归纳

指数函数知识点归纳指数函数是一种常见的数学函数,它以底数为常数且大于零的实数来表示自变量的幂。

指数函数有着重要的数学性质和应用。

在这篇文章中,我们将归纳指数函数的一些重要知识点。

1.定义和表示:指数函数可以写成f(x)=a^x的形式,其中a是底数,x是指数。

2.基本性质:(1)当底数a大于1时,指数函数呈现增长态势,即函数值随着自变量的增加而增加;(2)当底数a等于1时,指数函数保持恒定,即f(x)=1;(3)当底数a介于0和1之间时,指数函数呈现减少态势,即函数值随着自变量的增加而减少。

3.导数:指数函数的导数与其本身成正比。

具体地,f'(x) = a^x * ln(a),其中ln(a)是以自然对数e为底的对数。

4.指数函数的图像和性质:(1)当底数a大于1时,指数函数的图像在x轴的右侧逐渐上升;(2)当底数a等于1时,指数函数的图像是一条恒定值的水平直线;(3)当底数a介于0和1之间时,指数函数的图像在x轴的右侧逐渐下降;(4)指数函数的图像通过点(0,1),即f(0)=15.指数函数的性质:(1)指数函数具有不断增长或不断减少的性质;(2)指数函数的图像关于y轴对称;(3)当底数a大于1时,函数值在正无穷大和负无穷大之间无限逼近;(4)当底数a介于0和1之间时,函数值在0和正无穷大之间无限逼近。

6.指数函数和对数函数的关系:指数函数和对数函数是互为反函数的。

即,f(x) = a^x 和 g(x) = loga(x)是一对互为反函数的指数函数和对数函数。

函数f(x) = a^x的定义域是实数集R,值域是正实数集R+;函数g(x) = loga(x)的定义域是正实数集R+,值域是实数集R。

7.指数函数的应用:指数函数在各个领域有着广泛的应用,例如经济增长模型、无线电活动强度计算、化学反应速率、放射性衰变等。

指数函数在实际问题中能够提供一种简洁而有效的数学模型。

综上所述,指数函数是一种基于底数为常数的幂函数,具有增长、恒定或减少的性质。

指数函数的概念及其解法

指数函数的概念及其解法

指数函数的概念及其解法
1. 概念
指数函数是数学中一种重要的函数,它的定义形式为 f(x) = a^x,其中 a 是非零实数,x 是任意实数。

2. 解法
指数函数的求解方法主要有以下两种:
2.1. 对数法
对数法是指将指数函数转化为对数函数来求解。

对数函数是指
以某个正实数为底的对数,即 f(x) = log_a(x)。

对数法的基本思路是通过将指数函数的等式转化为对数函数的等式,从而求得未知数 x
的值。

2.2. 变换法
变换法是指通过对指数函数进行变换,将其转化为可以直接求
解的形式。

常用的变换包括平移变换、对称变换、缩放变换等。


过合理选择变换的方式,可以简化指数函数的求解过程。

3. 示例
以下是一个简单的指数函数求解的示例:
已知 f(x) = 2^x = 8,求解 x 的值。

3.1. 对数法解法
我们可以将指数函数转化为对数函数的等式,得到 log_2(8) = x。

通过计算,我们可以得到x ≈ 3。

3.2. 变换法解法
我们可以先将指数函数进行变换,将 f(x) = 2^x = 8 变换为 f(x-3) = 1。

这样,我们可以直接得出 x-3 = 0,从而得到x ≈ 3。

以上是指数函数的概念及其解法的简要介绍。

指数函数在数学中有着广泛的应用,深入理解和掌握其概念及解法对于数学学习和应用都具有重要意义。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是高中数学中的重要内容,它在数学和科学领域中都有着广泛的应用。

指数函数的概念和性质对于学生来说是一个比较抽象和难以理解的内容,但只要我们掌握了其中的一些关键知识点,就能够很好地理解和运用指数函数。

本文将对指数函数的知识点进行总结,希望能够帮助学生更好地掌握这一部分内容。

一、指数函数的定义。

指数函数是以指数为自变量的函数,一般写作y=a^x,其中a是底数,x是指数,y是函数值。

当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。

指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。

二、指数函数的性质。

1. 指数函数的定义域是实数集,值域是正实数集。

2. 当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。

3. 指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。

4. 指数函数的图像经过点(0,1),并且不过x轴。

三、指数函数的运算。

1. 指数函数的乘法,a^m a^n = a^(m+n)。

2. 指数函数的除法,a^m / a^n = a^(m-n)。

3. 指数函数的幂运算,(a^m)^n = a^(mn)。

四、指数函数的应用。

1. 指数函数在经济学中的应用,例如复利计算、指数增长模型等。

2. 指数函数在生物学中的应用,例如细菌繁殖、人口增长等。

3. 指数函数在物理学中的应用,例如放射性衰变、电路中的电流变化等。

五、指数函数的解析式和图像。

1. 当底数a大于1时,指数函数的解析式为y=a^x,图像为逐渐增长的曲线。

2. 当底数a在0和1之间时,指数函数的解析式为y=a^x,图像为逐渐减小的曲线。

六、指数函数与对数函数的关系。

指数函数和对数函数是互为反函数的函数关系,它们之间有着密切的联系。

指数函数的解析式为y=a^x,对数函数的解析式为y=loga(x),它们之间的关系可以通过换底公式进行转换。

指数函数公式

指数函数公式

指数函数公式
指数函数是数学中的一种重要函数,也是很多科学研究和应用中常用的函数形式。

它的定义是:当x>0时,指数函数f(x)=ax(a>0,且a≠1),是一种特殊函数,其中a叫作指数,x叫作底数,而f(x)叫作指数函数的值。

指数函数是一种特殊的函数,它的特点是它的函数图像是一条竖直线,而且它的斜率可以由x的值来确定,其图像也可以由其参数a 来确定。

指数函数的图像在x=0处有一个垂直下降,它以不断增大的速度向上升,且不会越界,绝对值也会不断增大。

指数函数具有很多特点,它是一种单调函数,即指数函数的增减性质在整个定义域中是唯一的,它具有切线不变性,即曲线上任意点的切线斜率是定值。

指数函数的参数a可以是任意大于零的常数,当a增大时,曲线上函数值单调增加的速度就越快,相反,当a减小时,曲线上函数值单调增加的速度就越慢。

指数函数在各个领域都有着广泛的应用,在物理学中,它可以用来描述物体离原点距离随时间变化的情况;在经济学中,它可以用来描述商品价格随时间变化的情况;在数学中,它可以用来描述函数的变化趋势,以及函数的性质等等。

总的来说,指数函数是一种十分重要的函数,它不仅在数学中有着
重要的地位,而且在物理学、经济学等领域也有着重要的应用。

它的参数a的变化可以改变曲线的性质,使它能够更好地描述实际情况,从而对很多实际问题有着十分重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③④
C 1<a <b< c < d
D a<b <1 <d < c
练习.
4

1 3
,2
2 3
,


2
3
,

3

1 2
3 3 4
变式1
2、解不等式:
(1)

2 3
3x1



2 3
2 x

;(2)(1)x2 2 2

2.
变式2 a3x1 a2x (a 0且a 1)
二、新 课
例求1、单求调下区列间函数的单调区间:
(1) y 3 ; x2 2x3
(2) y 2 ; x2 2x3
(32)
yy
12122x

4
x
x.

2
(3)y (1)x 1 x 1 4 2
例:3:当a>1时,讨论函数f(x)= ax 1 的奇偶性和单 ax 1
P59 T7
练习:1。设y1
=40.9
,y2
=80.48
,y
3
=

1 2
-1.5

,则(
)
A.y3 y 1 y2 , B.y2 y 1 y3,
C.y1 y2 y3, D.y1 y3 y2.
2.F
x

1
2 2x 1
f

xx

0 是偶函数,且f
(4)是R上的增函数
(4)是R上的减函数
练习
求定义域 (1) y (1) x 9
3
函数y=ax+2+1(a>0,且a≠1)必经过哪个定 点?
【例2】 比较下列各题中两个值的大小: (1)1.72.5,1.73;(2)0.8-0.1,0.8-0.2; (3)1.70.3,0.93.1.
方法引导: 比较两数值的大小,常可以归结为比较两函数值的大小,所以需 要我们能够恰当地构造函数,使两数值为同一函数的两个函数值 ,然后根据函数的单调性来比较大小. 有时也需要借助中间量0,1 来过渡。
画图
y = (1)x
2
y
y= 2x
8 7 6 5 4 3 2 1
-3 -2 -1 0 1 2 3 4 5 6 7 8 x
y 2x和
y

-1
1-2 ( )-3
x
的图象有什么关系?,
2
y

2x和
y

(1)x 2
的图象关于y轴对称,
y a x 和 y ax 的图象关于y轴对称
y=f(x)与y=f(-x)的图像关于y轴对称
一、问题引入
问题三、认真观察并回答下列问题:
(1)、一张白纸对折一次得两层,对折两次得4层,
对折3次得8层,问若对折 x 次所得层数为y,则y与x
的函数关系是:
y 2x,(x N)
1
中间剪(2一)、次一剩根下1米1 长米的,绳若子这从条中绳间子剪剪一x次次剩剩下下y米2 米,,则再y与从
x的函数关系是:4
y 2x 1
作业:
作函数y 1 x2 , y ( 1)x 1
2
2
的图象,并由图像指出其单调区间
二、新 课
例1例、2求:下求列下函列数函的数单的调值区域间:
(1) y 3 ; x2 2x3
(0 x 3)
(2) y 2 ; x2 2x3
(3) y 12 2x 4x .
1
(n∈N*);
③负整数指数幂:a-p=__a_p__(a≠0,p∈N*);
m
④正分数指数幂:a n
=__n__a_m__(a>0,m、n∈N*,
且n>1);
⑤负分数指数幂:a

m n
=
1
m
an
=1 a n m
(a>0,m、n
∈N*,且n>1).
⑥0的正分数指数幂等于___0___,0的负分数指数幂
定义域 值域
_R__ _(_0_,__+_∞__)___
(1)过定点_(_0_,_1_)____
(2)当x>0时,__y_>_1_; (2)当x>0时,_0_<_y_<_1__;
性质 x<0时,_0_<_y__<_1_
x<0时,_y_>_1__
(3)在(-∞,+∞) (3)在(-∞,+∞)上是
练习:在同一坐标系中画出下列函数的图象:
y (1)x 3
y 3x
问题3:
你能发现函数的图象与 其底数之间有什么样的 规律?
你能根据指数函数的图 象概括、归纳指数函数 的性质吗?
观问察题右一边:图象,回答下列问题:y (12
)
x
y

(1) 3
x
图象分别在哪几个象限?
y=3X
Y y=2x
答:四个图象都在第_Ⅰ_、_Ⅱ_象限
问题二: 图象的上升、下降与底数a有联系吗O ?
Y=1
X
答:当底数_a >_1时图象上升;当底数_0 _< a_<_1 时图象下降.

问题三: 图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1

0<a<1

性 (1)定义域为(-∞,+ ∞ ),值域为(0,+ ∞ ) (2)图像都过点(0,1),当x=0时,y=1
(x)

a

2 2x 1
(a

R):
(1)探索函数f (x)的单调性
(2)是否存在实数a使得f (x)为奇函数?
二、新 课
例3、(1)若x
[0,
2],
求y

x1
42

3
2x

5的取值范围;
(2)若函数y 4x 3 2x 3的值域为[1, 7],求x范围;
(3)已知关于x的方程2|x| m 1有实根,求实数m

x
不恒等于0,则f x( )
A.是奇函数,B.是偶函数
C.可能是奇函数也可能偶函数
D.不是奇函数也不是偶函数
练习2、此图是①y=ax,②y=bx, ③y=cx,④y=dx的图象,则a,b, c,d与1的大小关系是( )
A a<b <1 < c < d ① ②
B b<a <1 < d < c
质 (3)当x>0时,y>1;x<0时,0<y<1(3)当x>0时,0<y<1;x<0时,y>1
(4)是R上的增函数
(4)是R上的减函数
例1、已知指数函数f(x)=ax (a>0,且a≠1)的图 象经过点(3,π),求f(0)、f(1)、f(-3)的值.
问题:你能根据本例说出确定一个指数函数需要几个条件吗?
1练求习下:列函数的定义域值域:
(1)y 3 x2 (3) y 1
(2) y


1
x
2
(4) y
(1)x 1 3
1 2x
(5) y (2x 1)x
练习、函数y=ax-3+2(a>0,且a≠1)必经 过哪个定点?
练习、函数y=ax+1-1(a>0,且a≠1)必经过 哪个定点?
y


3

x
2
例2:说明下列函数的图象与 指数函数y=2x的图象的关系, 并画出它们的示意图 (1)y=2x+1 (2) y 2x2
(3) y 2x 1 (4) y 2x (5) y 2x
作函数y 2 x 的图象, 并由图像指出其单调区间
变式y 2 x2
指数函数的概念 指数 自变量
形如y = a x函数叫做指数函数
底数(a>0且a≠1) 常数
(1)y=1.073x
(2)
p

(
1
t
) 5730
2
二、新 课
思考:为何规定a0,且a1?


0
1
a
1
当a0时,ax有些会没有意义,如(-2)2
,0
1 2
等都没有意义;
而当a=1时,函数值y恒等于1,没有研究的必要.
(3)y

(1)x 4

1 x 2
1

3

x

2
例3:求函数 y (1)x2 2x 的单调区间 2
二、新 课
一、指数型复合函数的单调性:同增异减
一般地,对于函数y a f (x) (a 0且a 1)令u f (x), x D,u D, D R.则y au。 (1)当a 1时, y ax在R上单调递增。若u f (x)在D上 单增,则y a f (x)在D上单增;若u f (x)在D上单减, 则y a f (x)在D上单减。 (2)当0 a 1时, y ax在R上单调递减。若u f (x)在D上 单增,则y a f (x)在D上单减;若u f (x)在D上单减, 则y a f (x)在D上单增。
变式:函数 f(x) ax (a 0, a 1)在区间1,2
上的最大值与最小值差 为 a ,求a的值。 2
变式:最大值和最小值 的 和为12,求a的值
1求下列函数的定义域值域:
(1)y 3 x2
(3) y (1)x 1 3
练习:
(2) y


1
1
x
相关文档
最新文档