傅里叶变换性质
第三章傅里叶变换的性质.ppt

0
f (t)奇函数:X ()
f (t)sin tdt 2
f (t)sin tdt
0
X () 0
R() 0
可见,R()=R(- )为偶函数; X()= -X(- )为奇函数; 若 f (t)是实偶函数,F(j )=R() 必为实偶函数。 若 f (t)是实奇函数,F(j )=jX() 必为虚奇函数。
1 T
(t
T
)
F( j)
T
根据时域微分特性:
( j)2 F ( j) 1 e jT 2 1 e jT ,
0 2
T
TT
T
F(
j )
2
2T
(1
cosT )
4
2T
sin
2 (T
2
)
TSa2 (T
2
)
第三章第1讲
12
频域微分和积分特性
公式:
( jt)n f (t) F (n) ( j) f (0) (t) 1 f (t) F (1) ( j)
表明信号过延程时都了是t0在秒频并谱不搬会移改的变基其础频上谱完的成幅的度。,但是 使其相位变化了 - t0
频移特性: f (t)e j0 t F[ j( 0 )]
表明信号 f (t)乘以 e j0 t,等效于其频谱 F(j)沿频率右移 0
因为: cos 0 t
1 2
(e
j0 t
e
j0 t
)
sin
0t
1 2j
(e
j0 t
傅里叶变换的性质

由于 满足绝对可积条件,其傅里叶变换不含冲激函数,故
10) 频谱如图 5.4-8(d)所示。
(5.4-
(a)
(b)
(c) 图 5.4-8 三角脉冲信号及其频谱 若傅里叶变换式对 求导,可得频域微分性质:
(d) (5.4-11)
例 5.4-6 利用频域微分性质求斜变函数 解
的傅里叶变换。
根据频域微分性质,有
4 傅里叶变换的性质
傅里叶变换建立了信号的时域与频域间的一般关系。实际上, 通过数学运算求解一个信号的傅里叶变换不是最终的目的,重要的是在信号分 析的理论研究与实际设计中能够了解当信号在时域进行某种运算后在频域将 发生何种变化,或反过来从频域的运算推测时域信号的变动。如果采用傅里叶 变换的基本性质求解复杂信号变换,不仅计算过程简单,而且物理概念清楚。
一、线性 傅里叶变换的线性性质包含齐次性与可加性,若
,
则
(5.4-1)
式中 、 为任意常数。
上面的结论可以容易地由傅里叶变换的定义式证明。即傅里 叶变换是一种线性运算,相加信号的频谱等于各个信号的频谱之和。
二、对偶性 若
则
如图 5.4-1 所示,其中
,
。
图 5.4-1 对偶性说明 证明 由逆傅里叶变换公式
(5.4-8)
图 5.4-7 符号函数及其频谱 利用常数 1 和符号函数的傅里叶变换,可求得阶跃函数的变换。由于
故有
(5.4-9)
阶跃函数的傅里叶变换在 处为
,在 处为
。
例 5.4-5 利用时域微分性质求图 5.4-8(a)所示三角脉冲 信号的傅里叶变换。
解 三角脉冲信号可表示为
对 求两次导数,波形如图 5.4-8(b)和(c)所示。根据微分性质得
傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分
解
别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02
-
4
-
2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4
-
(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:
信号分析与处理——傅里叶变换性质

信号分析与处理——傅里叶变换性质傅里叶变换是信号处理中常用的分析方法,通过将信号在频域上进行分解,可以获得信号的频谱信息,并对信号进行频谱分析,从而实现对信号的处理与改变。
傅里叶变换具有以下几个重要的性质,这些性质对于信号处理的理解和实际应用至关重要。
1.线性性质:傅里叶变换具有线性性质,即对于任意两个信号x(t)和y(t),以及对应的傅里叶变换X(f)和Y(f),有以下关系:a) 线性叠加:傅里叶变换对于信号的叠加是可线性的,即如果有h(t) = cx(t) + dy(t),则H(f) = cX(f) + dY(f)。
b) 变换的线性组合:如果有z(t) = ax(t) + by(t),则Z(f) =aX(f) + bY(f)。
这种线性性质为信号的分析和处理提供了很大的方便,可以通过分别对不同组成部分进行变换,再进行线性组合,得到最终的处理结果。
2. 平移性质:傅里叶变换具有平移性质,即如果一个信号x(t)的傅里叶变换为X(f),则x(t - t0)的傅里叶变换为e^(-j2πft0)X(f),其中t0为平移的时间。
这意味着信号在时域上的平移将对应于频域上的相位变化,而频域上的平移则对应于时域上的相位变化。
4.卷积定理:傅里叶变换还具有卷积定理,即信号的卷积在频域上等于信号的傅里叶变换之积。
具体来说,如果两个信号x(t)和h(t)的傅里叶变换分别为X(f)和H(f),则它们的卷积y(t)=x(t)*h(t)的傅里叶变换为Y(f)=X(f)×H(f)。
这个性质在实际的信号处理中有着重要的应用。
通过将两个信号在时域上的卷积转化为频域上的乘法操作,可以方便地进行信号处理的设计和实现。
5. Parseval定理:傅里叶变换还具有Parseval定理,即信号的能量在时域和频域上是相等的。
具体来说,如果信号x(t)的傅里叶变换为X(f),则有∫,x(t),^2dt = ∫,X(f),^2df。
这个性质意味着通过傅里叶变换可以实现信号的能量分析和功率谱估计,从而对信号的能量进行定量的测量。
傅里叶变换的性质

傅里叶变换的性质本质就是信号的时域运算关系在傅里叶变换域中的体现,也是求解信号傅里叶变换的基本手段。
傅里叶变换具有唯一性。
傅氏变换的性质揭示了信号的时域特性和频域特性之间的确定的内在联系。
讨论傅里叶变换的性质,目的在于:1. 了解特性的内在联系2. 用性质求3. 了解在通信系统领域中的实用这些性质在内容和形式上具有某种程度的对称性。
§3.7.1对称性质1.性质2.意义例3-7-1例3-7-2例3-7-3§3.7.2 线性1.性质2.说明§3.7.3 奇偶虚实性奇偶虚实性实际上在§3.4的“傅里叶变换的特殊形式”中已经介绍过。
1.证明:由定义可以得到2.若,则证明:设f(t)是实函数(为虚函数或复函数情况相似,略)显然§3.7.4 尺度变换性质1. 性质:2. 证明:综合上述两种情况3.意义(1) 0<a<1 时域扩展,频带压缩。
脉冲持续时间增加a倍,信号变化减缓,信号在频域的频带压缩a倍。
因此高频分量减少,幅度上升a倍。
(2) a>1 时域压缩,频域扩展a倍。
持续时间短,变化加快。
信号在频域高频分量增加,频带展宽,各分量的幅度下降a倍。
此例说明:信号的持续时间与信号占有频带成反比,有时为加速信号的传递,要将信号持续时间压缩,则要以展开频带为代价。
§3.7.5 时移特性性质幅度频谱无变化,只影响相位频谱,例3-7-8求下图所示函数的傅里叶变换。
解:由对称关系求,又因为得幅频、相频特性分别如下图所示。
幅度频谱无变化,只影响相位频谱§3.7.6 时移+尺度变换1.性质:2. 证明:(仿的证明过程)当时,设,则例3-7-9方法一:先标度变换,再时延方法二:先时延再标度变换§3.7.7 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.8 频移特性1.性质2.证明3.说明4.应用通信中调制与解调,频分复用§3.7.9 时域微分性质2. 证明即3. 特别注意如果f(t)中有确定的直流分量,应先取出直流分量单独求傅里变换,余下部分再用微分性质。
傅里叶变换的性质课件

c n
1 T0
T0
2 T0
2
f ( t ) e j d0 t t d
c n
1 2
f ( t ) e j td td
F ( ) f ( t ) e j t d t
cn
1 2
F ( )d
(4―22) (4―23) (4―24) (4―25)
现将信号f(t)的傅里叶级数展开式重写如下
1sin2ft]
n
n1,3,5,
4.2 信号的频谱
4.2.1 信号频谱 上一节我们指出,信号可分解为傅里叶级数,即信号
可由系列复数指数函数加权之和构成。一般我们称这 里的复数指数函数ejnΩt为n次谐波,在该函数上所加的权 为谐波的振幅,nΩ为谐波的角频率,可以说所有的信号均 是由系列角频率不同的谐波叠加而成的(角频率可简称 为频率)。
0
t
(a)
F()
2
1
- 0
(b)
图4.8 双边指数信号及其频谱
例4―6 求单位直流信号的频谱。
解 幅度为1的单位直流信号可表示为
f(t)=1,-∞<t<∞
(4―44)
它可以看作是双边指数信号在α取极限趋近0时的 一个特例,即
1limetu(t), 0 0
[1]
[limet 0
u(t)]
lim[et
4.2.4 常见信号的频谱分析举例 例4―2求冲激信号δ(t)的频谱。 解 由频谱函数的定义式(4―28)有
F() (t)ejtdt 1
(t) 1
(4―34) (4―35)
(t)
(1)
0 (a)
F()
1
t
0
(b)
傅里叶变换的性质

a 1
dx
j b a
, dt
t
1
t 1
2f1
(b)
且由图(b)可得 f1 (t ) Sa(t )
第
幅频、相频特性
幅频、相频特性分别如图(c)(d)所示。
| F ( ) |
28 页
( )
1
0
0
(c)
(d)
幅度频谱无变化,只影响相位频谱,
退出
3.时移加尺度变换
(1)性质
2
t
4 E
退出
解 F f t
2E 4E 2E j t t t t e dt 2 2
第 15 页
e 1 2E E 2E 4 j j 2 2 F e e 2 e
则F ( t )的频谱函数形状与 f t 形状相同,t , 幅度差2
3.例题
退出
第
例3-7-1
t 1 , F t 1 2
4 页
例3-7-2
已知F [sgn( t )] 则 2 jt 2 j ,
2 sgn( )
相移全通 网络
j t
dt
f ( u)e j
u
du F ( )
若f ( t ) F ( ),则f ( t ) F ( )
证明
退出
证明
设f(t)是实函数(为虚函数或复函数情况相似,略)
F ( )
傅里叶变换的性质与应用

傅里叶变换的性质与应用傅里叶变换(Fourier Transform)是一种在信号和图像处理领域中广泛应用的数学工具。
它通过将一个函数表示为一系列正弦和余弦函数的线性组合来描述时域和频域之间的关系。
在本文中,我们将探讨傅里叶变换的性质以及其在各个领域中的应用。
一、傅里叶变换的性质1. 线性性质傅里叶变换具有线性性质,即对于任意常数a和b以及函数f(t)和g(t),有以下等式成立:F(af(t) + bg(t))= aF(f(t))+ bF(g(t))其中F(f(t))表示对函数f(t)进行傅里叶变换后得到的频域函数。
2. 对称性质傅里叶变换具有一系列对称性质。
其中最为重要的对称性质为奇偶对称性。
当函数f(t)为实函数并满足奇偶对称时,其傅里叶变换具有如下关系:F(-t)= F(t)(偶对称函数)F(-t)= -F(t)(奇对称函数)3. 尺度变换性质傅里叶变换可以对函数的尺度进行变换。
对于函数f(a * t)的傅里叶变换后得到的频域函数为F(w / a),其中a为正数。
二、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中被广泛应用。
它可以将时域信号转换为频域信号,使得信号的频率成分更加明确。
通过傅里叶变换,我们可以分析和处理各种信号,例如音频信号、图像信号和视频信号等。
在音频领域中,傅里叶变换可以用于音乐频谱分析、滤波器设计和音频压缩等方面。
在图像处理领域中,傅里叶变换可以用于图像增强、图像去噪和图像压缩等方面。
2. 通信系统傅里叶变换在通信系统中具有重要的应用。
通过傅里叶变换,我们可以将信号转换为频域信号,并根据频域特性进行信号调制和解调。
傅里叶变换可以用于调制解调器的设计、信道估计和信号的频谱分析等方面。
在无线通信系统中,傅里叶变换也广泛应用于OFDM(正交频分复用)技术,以提高信号传输效率和抗干扰性能。
3. 图像处理傅里叶变换在图像处理中有广泛的应用。
通过将图像转换到频域,我们可以对图像进行滤波、增强和去噪等操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四.尺度变换性质
第 9
页
若f
(t)
F (),则f
at
1 a
F a
, a为非零实常数
意义
(1) 0<a<1 时域扩展,频带压缩。 (2) a>1 时域压缩,频域扩展a倍。
(3) a 1 f t f t, F F 。
X
第
(1) 0<a<1 时域扩展,频带压缩。
10
页
f t
F
E
E
o t
2
0
F
0
通信中调制与解调,频分复用。
X
七.微分性质
第 16
页
时域微分性质
f (t) F(),则f (t) jF()
频域微分性质
若f (t) F( ), 则tf (t) jd F d
d F
jtf (t)
d
jt n
f
(t)
dn F
d n
或
t n f (t) jn F n
X
1.时域微分
1、f(t)是实函数
实函数傅里叶变换的幅度谱和相位谱分别为偶、 奇函数
若f(t)是实偶函数,F(ω)必为ω的实偶函数
F f ( t )e j t d t
20 f ( t )cost d t
若f(t)是实奇函数,F(ω)必为ω的虚奇函数
F
f
(
t
)e
j
t
d
t
2 j f ( t )sint d t
0
X
第
2、 f(t)是虚函数
7 页
令 f t jgt
F jgt e jt dt
jgt cos( t )dt gt sin( t )dt
虚部
实部
虚函数傅里叶变换的幅度谱和相位谱仍为偶、奇 函数,但实部R(ω)为奇函数,虚部 X(ω)为偶函 数。
X
第
任意 f(t),都具有如下性质
8
X
五.时移特性
第 13
页
若f (t) F( ),
则f (t t0 ) F( )e jt0 ;
则 f (t t0 ) F ()ej t0
若F ( ) F ( ) ej ( ) 则f (t t0 ) F( ) ej( ) t0
幅度频谱无变化,只影响相位频谱,
相
移t0
右 左
时移加尺度变换
1
j
π
(
)
说明:教材中的其它例题请自学
X
第 17
页
f (t) F(),则f (t) jF()
一般情况下 f (n) t j n F( )
若已知F
f
n(t) ,则F
F f n(t)
j n
F
f
(t)
jF ( )
:
幅度乘
相位增加,
j
90
注意
X
第
注意
18
页
如果f(t)中有确定的直流分量,应先取出单独求傅里叶 变换,余下部分再用微分性质。
页
d
推广 或
或 jtf (t) d F
d
jt n
f
(t)
dn F
d n
t n f (t) jn F n
例如
u(t)
1
j
t
j
1
j
1
t j
X
八.时域积分性质
第 20
页
若f t F ,则
t
f
d
πF 0
F
j
F 0
0时,t
f
d
F
j
也可以记作:
F
(
)
幅度差2π。
X
二.线性性质
第 5
页
1.性质
若f1(t) F1( ) , f2(t) F2( )
则c1 f1(t) c2 f2(t) c1F1( ) c2F2( ) c1, c2为常数
2.例3-7-3
ut 1 1 sgnt F π 1
22
j
X
三.奇偶虚实性
第 6
页
在§3.4的“傅里叶变换的表示”中曾介绍过。
t0 t0
若f (t) F( )
则f
at
t0
1 a
FaBiblioteka ejt0 a
则f
t0
at
1 a
F
a
e
j
t0 a
X
六.频移特性
第 14
页
1.性质
若 f (t) F( )
则
f (t )ej0t F 0 f (t )ej0t F 0
2.证明
0为常数,注意 号
F f (t)ej0t f (t)ej0t ej tdt
页
F f (t) F
F f (t) F
F f (t) F
若f (t) F(),则f (t) F()
证明: 由定义
F f (t) f (t)ej t d t F( )
可以得到
F f (t) f (t)ej t d t f (u)ej u d u F( )
X
§3.7 傅里叶变换的基本性质
青岛大学电子学系 2006.3
主要内容
第 2
页
对称性质 奇偶虚实性 时移特性 微分性质
线性性质 尺度变换性质 频移特性 时域积分性质
X
意义
第 3
页
傅里叶变换具有惟一性。傅氏变换的性质揭示了 信号的时域特性和频域特性之间的确定的内在联系。 讨论傅里叶变换的性质,目的在于:
ut F 直流 1 π
2
余下部分
f2(t)
u(t )
1 2
1 2
sgn( t ),
ut
π
1
j
f
2
t
微
分f
2
t
t 1,
f2(t)
1
j
ut
f1t
dut f1t
1
1 2
dt
1
o
t
o
t
o
t
X
2.频域微分性质
第 19
若f (t) F( ), 则tf (t) j d F
•了解特性的内在联系; •用性质求F(ω); •了解在通信系统领域中的应用。
X
一.对称性质
第 4
页
1.性质
若f (t) F() 则Ft 2π f
若f t为偶函数 则Ft 2π f
2. 意义
若F(t)形状与F()相同, t
则F ( t )的频谱函数形状与 f t 形状相同,t ,
f (t)ej0 t d t F 0
X
3.说明
F ( )
F ( 0 )
第 15 页
F ( 0 )
O
O
0
0 O
时域f (t)乘ej0t ,频域频谱搬移 右移0
时域f (t)乘e j0t ,频域频谱搬移 左移0
可以导出
4.应用
f
(
t
)cos0t
1 F
2
0
F
0
f
(
t
)sin0t
j F
带展宽,各分量的幅度下降a倍。
此例说明:信号的持续时间与信号占有频带成反比,
有时为加速信号的传递,要将信号持续时间压缩,则
要以展开频带为代价。
X
第 12 页
(3) a 1 f t f t, F F F* 当f t为实函数时, F F* 共轭 R 为偶函数, X 为奇函数
F( ) R( ) j X ( ) R( ) j X ( ) F *( )
2
2
f t 2
E
o
t
2π o 2π
2E 2F 2
π π
o
脉冲持续时间增加a倍,变化慢了,信号在频域的频 带压缩a倍。高频分量减少,幅度上升a倍。
X
第
(2)a>1 时域压缩,频域扩展a倍。
11 页
f 2t
E
1 F
2 2
E
2
o
t
44
4π
o
4π
持续时间短,变化快。信号在频域高频分量增加,频