线段的垂直平分线教学设计复习过程

合集下载

八年级数学上册《线段垂直平分线》教案、教学设计

八年级数学上册《线段垂直平分线》教案、教学设计
(四)课堂练习
1.设计具有代表性的练习题,让学生独立完成,巩固所学知识。
2.练习题包括:判断题、选择题、解答题等,涵盖线段垂直平分线的定义、性质、判定方法及尺规作图等方面。
3.练习过程中,教师关注学生的解题思路和方法,及时给予指导和鼓励。
(五)总结归纳
1.让学生回顾本节课所学内容,分享学习心得和收获。
4.尺规作图法:详细讲解尺规作图法,并现场演示如何作出线段的垂直平分线。
(三)学生小组讨论
1.将学生分成小组,每组四人,让学生围绕以下问题进行讨论:
a.线段垂直平分线的定义是什么?
b.线段垂直平分线具有哪些性质?
c.如何判断一条直线是线段的垂直平分线?
d.尺规作图法如何操作?
2.各小组在讨论过程中,教师巡回指导,解答学生的疑问,确保每位学生都能参与讨论,提高学生的合作能力。
(二)教学难点
1.线段垂直平分线的性质推导与判定方法的应用;
2.尺规作图法的操作技巧;
3.学生对线段垂直平分线在实际问题中的应用能力;
4.学生在解决问题时,对几何知识的综合运用能力。
(三)教学设想
1.创设情境,激发兴趣:以生活中的实际例子引入线段垂直平分线的概念,让学生感受到数学知识在实际生活中的应用,激发学生的学习兴趣。
1.学生对基本几何概念的理解程度,关注学生对线段、角等基础知识的掌握情况,以便为学习线段垂直平分线打下坚实基础;
2.学生在几何图形分析、空间想象能力方面的差异,针ห้องสมุดไป่ตู้不同学生的特点,因材施教,提高学生的几何素养;
3.学生在解决问题时可能存在的思维定势,引导学生突破思维局限,培养学生创新思维;
4.学生在小组合作学习中的参与度,关注学生合作交流能力的培养,提高学生团队协作能力。

《线段的垂直平分线》教案

《线段的垂直平分线》教案

《线段的垂直平分线》教案一、教学目标:知识与技能:1. 学生能理解线段的垂直平分线的概念。

2. 学生能运用线段的垂直平分线性质解决实际问题。

过程与方法:1. 学生通过观察、思考、交流,掌握线段的垂直平分线的判定方法。

2. 学生能运用几何画图软件或手工绘制线段的垂直平分线。

情感态度价值观:1. 学生培养对数学几何图形的美感,提高对几何学习的兴趣。

2. 学生在解决实际问题中,培养合作、交流、解决问题的能力。

二、教学重点与难点:重点:1. 线段的垂直平分线的概念及性质。

2. 线段的垂直平分线的判定方法。

难点:1. 线段的垂直平分线的证明。

2. 运用线段的垂直平分线解决实际问题。

三、教学方法与手段:教学方法:1. 采用问题驱动法,引导学生探索线段的垂直平分线性质。

2. 运用合作学习法,让学生在小组内讨论、交流、分享学习心得。

教学手段:1. 利用几何画图软件,动态展示线段的垂直平分线。

2. 采用实物模型,直观演示线段的垂直平分线特点。

四、教学过程:环节一:导入新课1. 利用生活中的实例,引出线段的垂直平分线概念。

环节二:探究线段的垂直平分线性质1. 学生分组讨论,探究线段的垂直平分线性质。

2. 各小组汇报讨论成果,教师点评并补充。

环节三:判定线段的垂直平分线1. 学生根据线段的垂直平分线性质,尝试判定线段的垂直平分线。

环节四:运用线段的垂直平分线解决实际问题1. 学生分组解决实际问题,运用线段的垂直平分线性质。

2. 各小组汇报解题过程,教师点评并指导。

环节五:课堂小结2. 教师点评学生表现,布置课后作业。

五、课后作业:1. 绘制本节课学习的线段垂直平分线图形,并标注性质。

3. 预习下一节课内容,了解线段垂直平分线的拓展应用。

六、教学评价:1. 知识与技能:学生能熟练掌握线段的垂直平分线的概念和性质,并能运用其解决几何问题。

2. 过程与方法:学生在探究和解决实际问题的过程中,培养了观察、思考、交流和合作的能力。

八年级数学上册《线段的垂直平分线的性质和判定定理》教案、教学设计

八年级数学上册《线段的垂直平分线的性质和判定定理》教案、教学设计
1.注重分层教学,针对不同学生的学习需求,制定合适的教学策略,提高教学质量。
2.加强直观演示,利用教具、多媒体等教学手段,帮助学生形象地理解线段垂直平分线的性质和判定定理。
3.引导学生主动参与课堂,鼓励学生提问、发表见解,培养学生的自主学习能力和思考习惯。
4.拓展课堂练习,设计具有梯度、挑战性的习题,使学生在解决问题的过程中,巩固所学知识,提高综合运用能力。
(二)过程与方法
1.通过实际操作、观察和分析,引导学生发现线段垂直平分线的性质和判定定理。
-教师可以组织学生进行小组讨论、合作探究,通过观察线段垂直平分线的实例,引导学生发现性质和判定定理。
-学生在自主探究过程中,培养观察、分析、总结的能力。
2.运用数形结合的方法,培养学生的空间想象能力和逻辑思维能力。
5.练习巩固,拓展提高。
-设计形式多样的练习题,包括基础题、提高题和拓展题,以满足不同层次学生的学习需求。
-通过练习,让学生在巩固知识的同时,提高解决问题的能力,拓展思维深度和广度。
6.反馈评价,总结反思。
-教学结束后,组织学生进行自我评价和同伴评价,反思学习过程中的收获和不足。
-教师根据学生的反馈,进行教学反思,调整教学策略,以促进教学效果的提升。
-学生可以通过写学习心得、画思维导图等方式,对自己的学习进行梳理和总结。
6.预习任务:
-布置下一节课的预习任务,让学生提前了解下节课将要学习的内容,为课堂学习做好准备。
2.提高题:设置一些有一定难度的题目,让学生在小组内合作完成,培养学生的团队协作能力。
3.拓展题:设计一些富有挑战性的题目,激发学生的思维潜能,提高学生的创新能力。
(五)总结归纳
1.学生总结:教师引导学生回顾本节课所学内容,让学生用自己的话总结线段垂直平分线的性质和判定定理。

初三课堂线段的垂直平分线数学教案

初三课堂线段的垂直平分线数学教案

初三课堂线段的垂直平分线数学教案
标题:初三课堂线段垂直平分线数学教案
一、教学目标
(这部分应详细描述学生在本节课中需要达到的学习目标)
二、教学重点与难点
(列出本节课的重点内容和可能存在的难点)
三、教学过程
1. 导入新课(约300字)
- 创设情境,引导学生思考并引出本节课的主题——线段的垂直平分线。

2. 新知探索(约600字)
- 定义讲解:什么是线段的垂直平分线?
- 性质讲解:线段的垂直平分线有什么性质?
- 举例说明:通过具体例子来加深理解。

3. 实践应用(约400字)
- 做一些相关的练习题,让学生运用所学知识解决实际问题。

4. 巩固提高(约200字)
- 设计一些进阶题目,帮助学生进一步巩固和提升。

四、教学评价
(如何对学生的学习效果进行评估)
五、教学反思
(教师对本次教学活动的自我评价和改进意见)
以下是一个简单的示例:
在"新知探索"部分:
定义讲解:
线段AB的垂直平分线是一条直线l,使得l经过线段AB的中点,并且直线l与线段AB互相垂直。

性质讲解:
1. 线段垂直平分线上的点到这条线段两个端点的距离相等。

2. 到一条线段两端距离相等的点在这条线段的垂直平分线上。

举例说明:
如图所示,直线DE是线段AC的垂直平分线,那么我们可以看到,点B和点D 到线段AC的两个端点A和C的距离都是相等的。

这就是线段垂直平分线的一个重要性质。

八年级数学下册《线段的垂直平分线》教案、教学设计

八年级数学下册《线段的垂直平分线》教案、教学设计
-思考线段垂直平分线与线段中点的关系,并尝试用自己的语言进行解释。
-要求:培养学生的逻辑思维能力和表达能力,激发学生的探究精神。
5.预习作业:
-预习下一节课的内容,了解几何图形的对称性质。
-要求:预习作业有助于培养学生自主学习的能力,为新课的学习打下基础。
注意事项:
1.作业要求学生在规定时间内独立完成,注意书写规范,保持卷面整洁。
2.培养学生的逻辑思维能力和空间想象能力,提高解决问题的策略和方法。
-教学难点:学生在解决问题时,难以将所学知识灵活运用,缺乏有效的解题策略。
-教学策略:引导学生运用已知知识和方法,发现问题的解题思路;组织学生进行小组讨论,分享解题方法和经验,提高学生的解题能力。
(二)教学设想
1.教学方法
-采用启发式教学法,引导学生自主探究、发现和总结线段垂直平分线的性质和判定定理。
-学生思考,教师引导:线段的垂直平分线会垂直于线段,并且将线段平分,那么它会有哪些性质呢?
(二)讲授新知
1.线段垂直平分线的定义:
-通过动态演示或静态图示,向学生展示线段的垂直平分线的概念。
-解释垂直平分线的定义:垂直平分线是指垂直于一条线段,并且将该线段平分的直线。
2.线段垂直平分线的性质:
-引导学生观察图形,发现线段垂直平分线的性质:线段垂直平分线上的任意一点到线段两端点的距离相等。
八年级数学下册《线段的垂直平分线》教案、教学设计
一、教学目标
(一)知识与技能1.理解来自段垂直平分线的定义,掌握线段垂直平分线的性质和判定定理。
-通过直观演示和实际操作,使学生理解线段垂直平分线的概念,学会用符号语言表达线段的垂直平分线。
-通过具体实例,引导学生发现并总结线段垂直平分线的性质,如:线段垂直平分线上的任意一点到线段两端点的距离相等。

线段的垂直平分线数学教案

线段的垂直平分线数学教案

线段的垂直平分线数学教案
标题:线段的垂直平分线
一、教学目标
1. 知识与技能目标:理解并掌握线段的垂直平分线的概念,能够通过作图找出线段的垂直平分线。

2. 过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何直觉,提高学生的问题解决能力。

3. 情感态度价值观目标:激发学生对几何学习的兴趣,培养学生的合作精神和探索精神。

二、教学重点难点
1. 教学重点:线段垂直平分线的概念及性质。

2. 教学难点:如何准确地找出线段的垂直平分线。

三、教学过程
1. 导入新课:
通过回顾旧知识(如线段、直线、垂线等)引出新课主题——线段的垂直平分线。

2. 新知讲解:
(1) 定义:通过一个图形的所有点都到线段两端距离相等的直线叫做这条线段的垂直平分线。

(2) 性质:线段垂直平分线上的点到线段两端的距离相等。

3. 实践操作:
(1) 学生自己动手画图,找出给定线段的垂直平分线。

(2) 讨论并分享各自的方法和步骤,老师点评和总结。

4. 应用练习:
设计一些练习题,让学生运用所学知识解决问题,巩固知识点。

5. 小结:
回顾本节课的主要内容,强调重点和难点,解答学生的疑问。

四、作业布置
设计一些相关习题,包括基础题和提升题,供学生课后练习。

五、教学反思
根据课堂情况和学生反馈,反思本次教学的优点和不足,为下次教学改进提供参考。

《线段的垂直平分线》第2课时示范公开课教案【八年级数学下册北师大版】

《线段的垂直平分线》第2课时示范公开课教案【八年级数学下册北师大版】

《线段的垂直平分线》教学设计第2课时一、教学目标1.会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并解决相关的问题.2.掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.3.能用尺规做出已知直线的垂线,培养尺规作图的技能.4.经历探索、猜测、证明的过程,进一步体会证明的必要性,增强证明意识和能力.二、教学重难点重点:会证明三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,并解决相关的问题.难点:掌握三角形三条边的垂直平分线的性质,能利用尺规作出符合条件的三角形.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】教师活动:教师提出问题,引导学生思考回答.问题1:线段的垂直平分线的性质定理是什么?它有哪些应用?预设:线段垂直平分线上的点到这条线段两个端点的距离相等.几何语言:如图,直线MN⊥AB,垂足是点C,且AC=BC,P是MN上的点,则P A=PB.应用:经常用来证明两条线段相等.问题2:线段的垂直平分线的判定定理是什么?它有哪些应用?预设:到线段两个端点距离相等的点在这条线段的垂直平分线上.几何语言:如图,线段AB,P A=PB,则点P在线段AB的垂直平分线上(即PC⊥AB且AC=CB).应用:经常用来证明点在直线上或直线经过某一点.问题3:如何作已知线段的垂直平分线?预设:已知:线段AB,如图.求作:线段AB的垂直平分线.作法:1.分别以点A和B为圆心,以大于线段AB 长度的一半为半径作弧,两弧交于点C和D.2. 作直线CD.则直线CD就是线段AB的垂直平分线.的学生适当点拨,最终教师展示答题过程.例1求证:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.分析:两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.证明前要先将题目转化为几何语言,画出图形.然后结合前面学过的线段垂直平分线的判定定理和性质定理进行证明.求解过程:已知:如图,在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在边AC的垂直平分线上,且P A =PB=PC.证明:∵点P在边AB的垂直平分线上,∴P A=PB(线段垂直平分线上的点到这条线段两个端点的距离相等).同理,PB=PC.∴P A=PB=PC.∴点P在边AC的垂直平分线上(到线段两个端点距离相等的点在这条线段的垂直平分线上).【议一议】分别作出锐角三角形、直角三角形、钝角三角形三边的垂直平分线,说说你的发现.⊥ 锐角三角形三边的垂直平分线交于三角形内部一点;⊥ 直角三角形三边的垂直平分线交于三角形斜边中点处.⊥ 钝角三角形三边的垂直平分线交于三角形外部一点.【归纳】教师活动:结合上面的例题讲授及作图内容,鼓励学生先自主思考并讨论总结三角形外心的相关内容,然后做整体归纳总结.三角形的外心:三角形三边的垂直平分线交于一点,这一点称为三角形的外心.三角形的外心到三角形三个顶点的距离相等.三角形外心的位置:(1)锐角三角形三边的垂直平分线交于三角形内部一点;(2)直角三角形三边的垂直平分线交于三角形斜边中点处;(3)钝角三角形三边的垂直平分线交于三角形外部一点.【议一议】(1)已知三角形的一条边及这条边上的高,你能做出满足条件的三角形吗?如果能,能作几个?所作出的三角形都全等吗?预设:能作出无数个,所作出的三角形不都全等.(2)已知等腰三角形的底边及底边上的高,你能用尺规作出满足条件的一个等腰三角形吗?分析:先作出底边的垂直平分线,再截取已知长度的高,即可作出满足条件的三角形.预设:能作出两个三角形,所作出的两个三角形全等.【典型例题】教师活动:先帮学生回忆前面学习的尺规作图的基本内容,然后和学生一起分析具体作图方法,在学生作图过程中,引导学生体会每一作图步骤的作用及其理论依据.例2 已知底边及底边上的高,求作等腰三角形.已知:如图,线段a,h.求作:△ABC,使AB=AC,且BC=a,高AD= h.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线l,交BC于点D.(3)在l上截取DA= h.(4)连接AB,AC.△ABC就是所求作的等腰三角形.【做一做】已知直线l和l上一点P,用尺规作l 的垂线,使它经过点P 呢.小明的作法如下,你能明白他的作法吗?分析:先在直线l上截取A、B两点,且这两点到点P的距离相等;接着分别以点A、B为圆心,大于线段AB的一半的长为半径画弧,交于两点;最后连接得到的两个交点,得到直线m即为所求.你是怎样作的?和同学们交流讨论一下.【议一议】如果点P是直线l外一点,那么怎样用尺规作l的垂线,使它经过点P呢?说说你的作法,并与同伴进行交流.分析:应先依据题意写出已知、求作.可以在直线l的另一侧取点K,过P点以PK长为半径作弧,与直线l相交于两点,即构造出等腰三角形,则问题就转化为等腰三角形作底边垂直平分线的问题,得以解决.已知:直线l,及l外一点P .求作:直线m垂直于直线l,且经过点P.作法:1. 任取一点K,使点K与点P在直线l 两旁;2.以点P为圆心,以PK的长为半径作弧,交直线l于点A和点B;3.作线段AB的垂直平分线m.直线m垂直于直线l,且经过点P.教师活动:进行总结说明,给出简要证明,因为P A=PB,根据线段垂直平分线的判定定理可证得.教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.【随堂练习】1.三角形三边的垂直平分线的交点() A.到三角形三边的距离相等B.到三角形三个顶点的距离相等C.到三角形三个顶点与三条边的距离相等D.不能确定2. 如图,D是线段AC,AB的垂直平分线的交点,若∠ACD=30°,∠BAD=50°,则∠BCD 的大小是()A.10°B.20°C.30°D.40°3.如图,O为△ABC三边垂直平分线的交点,点O到顶点A的距离为 5 cm,则AO+BO+CO=cm.4.如图,在△ABC中,∠BAC=52°,O为AB,AC的垂直平分线的交点,连接OB,OC,那么∠OCB=______.5.如图,在△ABC中,BC=2,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,请找出图中相等的线段,并求△AEF的周长.答案:1.B2.A3.154.38°5.解:如果设AB的中点为D,AC的中点为G,那么图中相等的线段有:AD=BD(已知),AG=CG(已知),BE=AE(线段垂直平分线上的点到这条线段两个端点的距离相等),同理AF=CF.思维导图的形式呈现本节课的主要内容:。

初中数学初二数学上册《线段的垂直平分线》教案、教学设计

初中数学初二数学上册《线段的垂直平分线》教案、教学设计
二、学情分析
初二是学生数学学习的关键时期,学生已经具备了一定的几何基础,掌握了点、线、面的基本概念和性质,能够进行简单的几何推理。在此基础上,学习线段的垂直平分线,有助于巩固和拓展学生的几何知识体系。然而,学生在实际操作和解决问题时,可能会遇到以下困难:对线段垂直平分线的性质理解不够深入;作图技巧不够熟练;在运用线段垂直平分线解决问题时,缺乏灵活性和创新性。因此,在教学过程中,教师应关注学生的个体差异,针对不同学生的需求进行有针对性的指导,帮助学生克服困难,提高几何素养。同时,注重培养学生的动手操作能力和逻辑思维能力,为后续几何学习打下坚实基础。
4.课后作业布置:布置适量的课后作业,巩固课堂所学,并提前告知下节课的学习内容,为下节课的学习做好准备。
五、作业布置
为了巩固本节课所学内容,确保学生对线段垂直平分线的概念、性质和作图方法有深刻的理解,特布置以下作业:
1.基础知识巩固题:
-请学生完成课本第XX页的练习题1-5,重点考察对线段垂直平分线性质的理解。
初中数学初二数学上册《线段的垂直平分线》教案、教学设计
一、教学目标
(一)知识与技能
1.理解线段垂直平分线的定义,掌握其基本性质。
2.学会使用尺规作图法作出线段的垂直平分线。
3.能够运用线段的垂直平分线解决几何问题,如求线段的中点、等分线段等。
4.掌握线段垂直平分线与三角形、四边形等几何图形的关系,提高综合运用能力。
(三)情感态度与价值观
1.激发兴趣:设计有趣的教学活动,让学生在轻松愉快的氛围中学习线段垂直平分线。
2.培养审美情趣:引导学生发现几何图形的美,提高学生的审美能力。
3.严谨态度:强调作图和证明的严谨性,培养学生一丝不苟的学习态度。
4.自信心和自主学习能力:鼓励学生独立思考、解决问题,培养学生的学习自信心。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的垂直平分线教
学设计
线段的垂直平分线教学设计
一.教学目标:
1•知识与技能:
(1)掌握线段的垂直平分线的定义
(2)经历线段的对称性、线段的中垂线的性质定理及其逆定理的探索过程,在探究中总结归纳并理解各定理。

(3)会利用线段的中垂线的性质定理及其逆定理进行简单的计算与推理。

(4)在探究中发现线段的中垂线的尺规作图方法。

2.情感态度价值观:通过利用应用性质定理及逆定理解决实际问题,体验数学与生活的联系。

3.过程方法:通过学生动手折纸、画图等活动,引导学生观察、发现、分析、归纳、总结,锻炼学生的学习能力。

二教学重点:
1.数学知识:掌握线段的中垂线的定义,理解线段的中垂线的性质定理及其逆定理,并能利用定理进行简单计算与合情推理,熟练进行尺规作图。

2.能力:通过观察操作和归纳推理培养学生提出问题、解决问题的意识,锻炼
学生的逻辑推理能力。

三•教学难点:两个性质的归纳与理解。

四•课前准备:多媒体课件、三角形纸片、矩形纸片、三角板、量角器
五.教学过程:
环节一:创设情境,导入新课
问题1 :在小河的同旁有两个村庄,为了过河方便,两村人准备共同出资修建一
座小桥,小桥修在小河的哪个位置才能到两个村庄的距离相等呢?你的根据是什么?
预设1:把小河看成两个点,连接这两点,找出它的中
点,就是了。

预设2:不对,所找的这点一定在小河上,而连接两点
的线段的中点一定不在小河上。

教师引导:这个问题不好解决,不要灰心,学完本节
课,我们再来解决它。

设计目的:通过实际问题引入,激发学生兴趣,体会数学在生活的用处。

环节二:复习回顾,以旧引新。

问题2:什么样的图形是轴对称图形?怎样判断一个图形是不是轴对称图形?我们学过的图形中哪些是轴对称图形?
预设1通过折叠,看折线两边是否重合
预设2:找对应点,看对应点的连线是否被同一条直线垂直平分
问题3:猜想:线段是轴对称图形吗?如果是,它的对称轴是什么呢?
验证:画线段AB,并根据刚才所说的识别方法验证线段AB的对称性。

预设1折痕为线段的垂直平分线
预设2:折痕为线段本身
若出现预设1 ,可直接总结归纳线段的对称性。

若出现预设2,则将问题10和问题11在此解决。

设计目的:在知识的复习中,体会知识的前后联系,易于形成知识链条。

环节三:小组合作,归纳展示
活动1:初探线段的对称性,总结线段的垂直平分线的定义
问题4:在刚才的折叠中,你有什么发现?请说出结论并演示验证过程。

预设1:线段是轴对称图形。

将线段AB的点A和点B重合,折叠线段AB,发现折痕两旁的部分完全重合,对称轴就是折痕。

问题5:根据对称轴与线段的关系,试着用语言描述这条对称轴。

(提示)我们
假设折痕为CD,与线段AB的交点为0,请大家观察这个图形,能得出哪些结论?说出你的理由。

设计目的:引导学生找出相等的线段和相等的角,
通过相等的线段和角证明垂直平分。

问题6:从刚才的推理中我们知道,直线CD有两个重要的特点,你能用最简练的语言来描述这条直线并为这条直线下定义吗?
预设1:线段的对称轴是经过线段的中点,并且垂直于这条线段的一条直线。

预设2;线段是轴对称图形,它的一条对称轴是经过线段中点并且垂直于这条线段的直线。

活动2:探究总结线段的垂直平分线定理
问题7: 一条线段的中垂线能垂直平分这条线段,那么垂直平分线上的每一个点又有什么特
点呢?我们再来实验:在线段AB上任意取一点P,连接PA、PB,你有何发现?怎样验证你的结
论。

学生在折叠实验中发现,通过小组交流,归纳总结刚才的发现。

预设1:学生能总结出结论
预设2:当学生不能达到预设1时,教师应当适当引导,如下:
板书:PA=PB,
引导:PA表示点P到点A的距离,PB表示点P到点B的距离,这两个距离相等。

点P代表
哪些点?,点A、B代表哪些点?
板书:“点P 到点A、点B的距离相等”)线段中垂线
上的点线段的两个端点
生:线段中垂线上的点到线段的两个端点的距离相等。

(多个学生叙述结论后,教师出示结论)
设计目的:通过学生折叠、测量等手段,锻炼学生主动探究的意识,在归纳总结中,锻炼学
生归纳总结的能力。

活动三:探究线段性质定理的逆定理
问题8:这个结论反过来怎么叙述呢?它是正确的吗?根据刚才的验证方法,请自行设计一
个实验验证你的猜想。

小组讨论,交流验证。

预设1:学生画图,通过测量得出结论。

预设2:学生不能正确得出逆定理,从而无法下手验证。

教师在巡视中适当点拨。

环节四:巩固应用,拓展提升:
活动一:练习巩固,加深理解
1.A ABC 中,AD 垂直平分BC,AB=5,贝U AC=
C
2. A ABC中,BC=10,边BC的垂直平分线分别交
BC于点E、D,BE=6,求△ BCE的周长。

(见右图)
问题9:通过这个练习,对于线段的轴对称性,你有什么体会?
教师导语:通过刚才的学习我们知道要探求一种图形的特性,可以通过观察、分析、猜
想、实验验证、归纳、总结得出正确结论。

刚才在验证线段的对称性时,有一
位同学很有创意,他是沿着AB所在的直线进行折叠。

如果这样折叠,线段的对称轴应该是什么呢?
问题10:完整的说线段有几条对称轴,线段的对称轴应该怎样描述??设计目的:通过深入思考,弄清线段的对称性,从而理清“线”的对称性。

问题11:由此你能得出哪些结论?
预设1:射线的对称性
预设2:直线的对称性
活动二:用尺规作一条线段的垂直平分线
问题12:我们已经对线段的垂直平分线有了深入的了解,你能做出一条线段的垂直平分线吗?说出你能想到的所有办法。

预设1:取中点做垂线
预设2:根据两点确定一条直线,只要找到到线段两个端点距离相等的两点,连接这两点即可。

环节五:课堂小结,解决问题
学生谈收获,可以是知识,也可以是方法,也可以是其他收获。

1.本节课我们通过对称变换得到了线段的对称性
2•总结了线段垂直平分线主要特征,并利用这些特征解决了实际问题,这也是今后说明两条线段相等的重要根据;同时经历了猜想、验证、分析总结的过程。

3.解决本节开头的问题
4,深入探究,拓展应用:
有三条公路a、b、c两两相交,如图所示,现在要修建一个货场,要求到三条公路
环节六:布置作业
(必做)课后练习1.2.3
(选作)如何过一点做一条已知直线的垂线。

相关文档
最新文档